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We study the synchronization dynamics for a system of two Hodgkin-HuxleysHHd neurons coupled diffu-
sively or through pulselike interactions. By calculating the maximum transverse Lyapunov exponent, we found
that, with diffusive coupling, there are three regions in the parameter space, corresponding to qualitatively
distinct behaviors of the coupled dynamics. In particular, the two neurons can synchronize in two regions and
desynchronize in the third. When excitatory and inhibitory pulse coupling is considered, we found that syn-
chronized dynamics becomes more difficult to achieve in the sense that the parameter regions where the
synchronous state is stable are smaller. Numerical simulations of the coupled system are presented to validate
these results. The stability of a network of coupled HH neurons is then analyzed and the stability regions in the
parameter space are exactly obtained.
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I. INTRODUCTION

Synchronous oscillations of neuronal activity have been
observed at all levels of the nervous system, from the brain-
stem to the cortex. The ubiquitous nature of neural oscilla-
tions has led to the belief that they may play a key role in
information processing. For example, synchronized gamma
oscillations have been related to object representationf1g,
and synchronized neural activity in the somatosensory cortex
has been proposed as a mechanism for attentional selection
f2g.

From a theoretical point of view, the problem of under-
standing how synchronized oscillations arise has been con-
sidered for a variety of systemssseef3g for a reviewd. For
neuronal systems, theoretical results are usually obtained un-
der several simplifying assumptions including instantaneous
interactions. However, time delays are inherent in neuronal
transmissions because of both finite propagation velocities in
the conduction of signals along neurites and delays in the
synaptic transmission at chemical synapsesf4g. It is thus
important to understand how synchronization can be
achieved when such temporal delays are not negligiblef5,6g.
Indeed, it has been suggested that time delays can actually
facilitate synchronization between distant cortical areas.

The study of network models has shown that delayed in-
teractions can lead to interesting and unexpected phenomena
f7g. For example, inf8g the authors showed that time delays
can induce synchronized periodic oscillations in a network of

diffusively coupled oscillators which exhibited chaotic be-
havior in the absence of coupling. This was revealed by a
stability analysis performed around the synchronized state of
the system.

Our goal is to examine whether similar results can be
found in biophysical neuronal models, such as the Hodgkin-
Huxley sHHd model. Indeed, numerical experiments reported
by many authors show that when two systems of the HH type
are coupled, they seem to synchronize. Moreover, it has been
demonstratedf9g that, in the absence of delay, synchroniza-
tion takes place for arbitrary initial conditions for a large
class of equations including HH models. For delayed inter-
actions, however, an analytical approach to global stability is
out of reach, and only local results can be obtained. Here we
apply the approach used inf8g to study the stability of the
synchronous solutions of coupled HH equations as a function
of the coupling strength and time delay. Although the results
we obtained are only local, they are still helpful and infor-
mative with regards to understanding the mechanisms of
synchronization. Moreover, they can be used to reveal re-
gions of the parameter space where two neurons cannot syn-
chronize, regardless of their initial respective conditions.

For two HH neurons coupled diffusively, we found two
distinct regions in the parameter space where the synchro-
nized dynamics is stable, and one region where it is not
stable. These results, based upon the calculation of the maxi-
mum transverse Lyapunov exponent, were then confirmed by
numerical simulations.

The results above are found for neurons with diffusive
couplings. Pulse coupled neurons, on the other hand, occur
far more frequently in the nervous systemf10g. Here an ap-
proach to tackle the problem of pulse coupling is developed,
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which enables us to carry out a general investigation on the
stability of synchronized firing of the HH neurons. Our re-
sults indicate that whether inhibitory or excitatory interac-
tions can more easily stabilize synchronous firing depends on
the quantities we look at. This contrasts with most published
results where it is claimed that inhibitory interactions are
more effective in inducing synchronizationssee, for example
f11gd.

Finally, we consider networks of HH neurons and deter-
mine the parameter regions where synchronous oscillations
are found to be stable. Results using similar techniques have
appeared in a few other recent publicationsf12,13g, but, to
the best of our knowledge, no results on neuronal models
have been reported. Although in the current paper we confine
ourselves to considering the HH model, our approach can be
adopted to investigate more detailed biophysical models of
neurons which may, for example, include a wider repertoire
of ion channels.

II. MODELS

For a description of the neuronal dynamics we use the
Hodgkin-HuxleysHHd model,

V̇ =
1

C
fI ionsV,m,h,nd + Iextg, s1d

ṁ=
m`sVd − m

tmsVd
, ḣ =

h`sVd − h

thsVd
, ṅ =

n`sVd − n

tnsVd
, s2d

whereC is the membrane capacitance,V is the membrane
potential,

I ionsV,m,h,nd = − gNam
3hsV − VNaddt − gkn

4sV − Vkddt

− gLsV − VLd

is the total ionic current, andIext is an externally applied
current which we will assume to be constant. For a detailed
definition and values of the parameters in the model at a
temperature 6.3 °C, we refer the reader tof14,15g. In the
following, we will indicate the “gate variables” collectively
by the vectors=sm,h,nd, and putC=1.

For Iext, I1<6 mA/cm2 the systems1d ands2d has a glo-
bally attracting fixed point: if excited, the neuron fires a
single action potential and then returns to the resting state.
Periodic solutions arise atIext= I1, through a saddle-node bi-
furcation. ForI1, Iext, I2<9.8 mA/cm2, the system has two
attractors, a fixed point and a limit cycle, and the neuron
starts showing oscillations of small amplitude around the
resting potential. AtIext= I2 the unstable branch of the peri-
odic solutions dies through an inverse Hopf bifurcation, and
for Iext. I2 the system has only one attractor which is a limit
cycle. In this region, the neuron fires repetitively.

A. Diffusive coupling

We start by considering two identical neurons, repre-
sented by the variablesVi, si, i =1,2, coupled linearly via
their membrane potentials. This type of coupling, usually
referred to in the literature asdiffusivecoupling, is appropri-

ate for describing an electrical synapse. For the sake of sim-
plicity, we consider symmetrical coupling. The system is de-
scribed by

V̇i = I ionsVi,sid + Iext+ efVjst − td − Vig, i, j = 1,2, j Þ i ,

s3d

wheree is the coupling strength,tù0 is the time delay in
the interaction, and the gate variables follow equations simi-
lar to Eq.s2d.

A synchronous statefor our system is a solution of Eq.s3d
such that

„V1std,s1std… = „V2std,s2std… s4d

for all timest. This state lies on thesynchronizationmanifold
sV1,s1d=sV2,s2d, which is invariant due to the symmetry of
the equations. Given asymmetric initial conditions, we say
that the systemsynchronizesif Eq. s4d holds asymptotically.
It follows from the definition that, for a synchronous state,
we have

V̇ = I ionsV,sd + Iext+ efVst − td − Vg,

ṡ=
s̀ sVd − s

tssVd
. s5d

In the absence of delay, the equations above reduce to Eqs.
s1d and s2d, thus, for any value of the bifurcation parameter
Iext, each neuron in a synchronous state will behave as if the
interaction were absent. In particular, forIext. I2, the two
coupled neurons, once synchronized, will fire periodically as
if they were isolated. In the presence of delay, on the other
hand, the behavior of a neuron entrained in a synchronous
state can be radically different from that of a neuron in iso-
lation. It can be shown that single units displaying a chaotic
behavior can be recruited into synchronized periodic oscilla-
tions, or periodic oscillators can exhibit synchronized chaos
when coupled.

For the synchronous state to be stable, all motions trans-
verse to the synchronization manifold must asymptotically
damp out. To examine this, we first reformulate the problem
using a more precise notation. By definingX i

=sVi ,mi ,hi ,nid ande1=se1,0 ,0,0d, the system is rewritten as

Ẋ i = FsX id + e1 · „X jst−td − X i
…, i, j = 1,2, j Þ i s6d

and the synchronous stateXstd is defined as a solution of

Ẋ = FsXd + e1 · „Xst−td − X… s7d

whereF is defined by Eq.s5d. We now introduce the trans-
verse vectorX'=X2−X1 and linearize the systems6d around
the synchronous state, to obtain

Ẋ' = J„Xstd… ·X' − e1 · „X'st − td + X'… s8d

where the matrixJ=DFs·d is the Jacobian ofF. The stability
of the synchronous state is now related to the Lyapunov ex-
ponents associated with the systems8d. Because of the delay
term, the system considered is a functional differential equa-
tion with an infinite number of Lyapunov exponents. The
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synchronous state is stable if all the Lyapunov exponents are
negative. This condition is ensured if themaximum
Lyapunov exponent can be calculated and it is shown to be
negative.

B. Pulse coupling

Although numerous examples of electrical synapses have
been described in the nervous system of invertebrates and
lower vertebrates, the most widespread interaction mecha-
nism among the neurons in the mammalian brain relies on
pulselike release of neurotransmitters following action po-
tentials. In order to apply the approach described above to
this case, the pulselike interaction must be first put into a
convenient mathematical form. In particular, the interaction
term must be expressed as a function of the variables of the
presynaptic neuron. Hence we consider the following model:

V̇i = I ionsVi,sid + Iext+ ed„Vjst − td − V̄…Q„mjst − td − m̄…,

s9d

where Qs·d is the Heaviside function, andm̄ is a suitably
chosen constant. Due to them-dependent factor in the inter-
action term, it is possible to select either the upward or the
downward threshold crossing event, as it is evident from
considering a projection of the spike trajectory on theV−m
plane ssee Fig. 1d. In particular, the interaction term in Eq.
s9d will differ from zero only when the membrane potential
crosses the threshold from below.

The system is formulated as follows:

Ẋ i = FsX id + o
j=1

2

GijH„X jst − td…, i = 1,2, s10d

where X i =sVi ,sid , i =1,2,G=fGijg is the coupling matrix
given by

G11 = G22 = 0, G12 = G21 = e1, s11d

and the interaction term is given by

HsXd = sH1,0,0,0d = „dsX1 − X̄1dQsX2 − X̄2d,0,0,0….

s12d

Linearizing the motion around the synchronous state, we ob-
tain in the transverse direction,

Ẋ = F„Xd + e1 ·HsXst−td…, s13d

Ẋ' = J„Xstd… ·X' − e1 ·DH„Xst−td… ·X'st−td. s14d

Note that, in this case, the synchronous state depends on the
coupling even in the absence of delay. Also, because of the
nature of the interaction, we have to deal with singular terms
in DH. In particular we have

]H1

]X1
= d8sX1−X̄1dQsX2−X̄2d s15d

and

]H1

]X2
= dsX1−X̄1ddsX2−X̄2d, s16d

whered8 is the derivative of the delta function in the sense of
distributions. Although both terms are highly singular, fortu-
nately a numerical solution of the linearized system is still
possible. When a forward Euler scheme is used to solve Eqs.
s13d and s14d, the two “hard” terms are integrated as

A =E
t

t+Dt

Q„mst8−td−m̄…d8„Vst8−td−V̄…V'st8 − tddt8

s17d

and

B =E
t

t+Dt

d„mst8−td−m̄…d„Vst8−td−V̄…m'st8−tddt8.

s18d

Let us consider the termA first. Since the system crosses the

m-threshold,m̄, and theV-threshold,V̄, for different values
of t, we have that for all the intervals containing the zeros of
the argument ofd8, the rest of the integrand is regular. In
particular, for all the intervals containing the upward cross-
ing times we will have

A =E
t

t+Dt

d8„Vst8−td−V̄…V'st8−tddt8

= −
V̇'stid

uV̇stidu
I ft+t,t+t+Dgstid

wherehtij indicates the upward crossing times previous oft,
andI is the indicator function. On the other hand, during the
downward crossing events we will haveA=0.

As for termB, it is easy to show that, once the “driving”
systemXstd has settled on the attractor, the integrand is al-

FIG. 1. Solution of Hodgkin-Huxley model for Iext

=10 mA/cm2. sUpper paneld By setting a threshold for the mem-

brane potentialsV=V̄=50 mV, dashed lined, we cannot distinguish
between the upward and downward crossings events.sLower paneld
The two crossing events can be discriminated if an additional
threshold for them-variable is introduced.
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ways null, so we can assumeB=0 for all times during inte-
gration.

III. RESULTS

All the differential systems have been integrated numeri-
cally using a forward Euler scheme with a time step of
10 ms. A standard technique to calculate the largest
Lyapunov exponent,l', consists in averaging the exponen-
tial growth rate of the vectorX' along the trajectoryf16g.
Alternatively, as suggested inf8g, the finite time estimate

l̂'sTd =
1

T
loguX'sTdu s19d

can be used, providedT is a reasonably long time. However,
we found this procedure to be prone to errors because of the
oscillating behavior of loguX'stdu. Instead, a more reliable
estimate is obtained by considering the function

jstd =
1

t
E

0

t

loguX'st8dudt8.

Indeed, we have asymptotically

jstd = const. +
l'

2
t + OS1

t
D

from where the maximum Lyapunov exponent can be esti-
mated.

A. Diffusive coupling

For the case of diffusive coupling, we have considered a
range of values for the applied current stimulusIext=7, 10,
15, and 20mA/cm2. For all these values, the isolated neu-
rons fire periodically. Simulation results show thatl' is al-
ways negative on the semiaxisst=0,e.0d, regardless of the
amplitude of the current stimulus consideredssee Fig. 2d.
Therefore two identical HH neurons with symmetrical cou-
pling will always synchronize in the absence of delays, no
matter how small the coupling is. This result is consistent
with what was shown inf9g. As expected,ul'u increases
monotonically with e, indicating that the system synchro-
nizes more rapidly with stronger coupling.

The se ,td space is characterized by a predominance of
stable solutions. However, the plot of Fig. 2 reveals three
distinct regionssleft panel, Fig. 2d, which correspond to dif-
ferent behaviors of the solutions of the coupled systems3d.
Direct simulations revealed that in the region at the bottom
of each graph, the synchronous state is represented by ordi-
nary oscillations, and that this state is globally attractive.
Therefore, in this region, two neurons will eventually syn-
chronize, regardless of their initial phase. However, the syn-
chronous state, and its stability, change witht. In particular,
whent is increased above the first boundary line, the ampli-
tude of the limit cycle on the synchronous manifold is sud-
denly reduced, and we observe the phenomenon of oscilla-
tion deathssee Fig. 3 upper leftd. In order to display this
behavior, the neuron must still have a stable resting state,
albeit with a small basin of attraction. Therefore oscillation

death will only be observed in the region of bistabilityI1

, Iext, I2. Note that, because of the term −eVstd, the region
of bistability of the model with self-interaction is different
from that of the isolated model, thus explaining why the
quenched oscillations can be observed also in the other cases
considered here. In the region between the two boundary
lines, this state is locally attractive for the dynamics of the
complete system, thus we see coupled neurons reciprocally
suppressing their oscillations. Occasionally, depending on
the initial conditions and the choice of the parameters, we
observed the coupled system desynchronizing and settling in
an antiphase locked oscillatory statessee Fig. 3 upper rightd.
The “hot-spot” near the upper left corner of Fig. 2 is indica-
tive of a different attractor on the synchronous manifold,
which looks like that shown in Fig. 3sbottom leftd. In this
case, the time delay is such that the current pulse, due to the
self-interaction, is delivered too late to switch the system to
the resting state, yet too early to anticipate the onset of the
next spike. However, we found that these oscillations are
very easily destabilized, and the complete system is attracted
to the antiphase locked state. Finally, in the region above the
upper boundary line, the synchronous state is again oscilla-
tory, although the firing rate is now almost twice as much as
that of the isolated neurons. This is due to the self-interaction
pulse which follows each spike, which now is delivered suf-
ficiently late, and with a sufficient amplitude, to overcome
refractoriness and anticipate the occurrence of the following
spike ssee Fig. 3 bottom rightd.

In Fig. 4 we depicted the period of the oscillations,T,
observed by simulating the coupled system. The figure has to
be viewed together with Fig. 2. Below the unstable region,
the values reported correspond to the period of the synchro-
nous oscillations. In the regionsmiddled where the synchro-
nous state is not stable, the observed period is that of an-
tiphase locked solutions. The points whereT=0 sthat appear
as dark blue “holes” in the graphd mark the values of the
parameters for which quenched oscillations were observed.
In the upper region, a mixed phenomenon is observable, with
the seemingly random occurrence of synchronized and an-
tiphase locked states. This plot shows clearly the sudden
drop of the period across the lower boundary line, which
marks the onset of an attractive antiphase locked oscillatory
state in the entire system’s phase space. The predominance of
solutions with TÞ0 demonstrates that although quenched
oscillations sthe “holes” atT=0d are locally stable in this
region, the antiphase locked state has a much larger basin of
attraction. For longer delays, we observe instead a mixture of
two phases corresponding to synchronous and antiphase
locked oscillations, which indicates that the actual synchro-
nization, for these values of the coupling parameters, is
largely dependent on the initial conditions of the system.

In summary we presented a systematic study for two dif-
fusively coupled HH neurons, in terms of the Lyapunov ex-
ponent and confirmed by direct simulations. It is generally
easy to synchronize two neurons due to the nature of inter-
actions. We also presented aMATLAB program shttp://
www.informatics.sussex.ac.uk/users/er28/synchronization/d
to demonstrate the results presented here.
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FIG. 2. sColor onlined Stability of synchronized oscillations for a system of two HH neurons with diffusive coupling.sRightd Color
intensity represents the maximum transverse Lyapunov exponent,l', in thest−ed space.sLeftd Similar to the right figures, but it represents
the region of stabilitysblued and unstable regionssredd in the st−ed space. Results were obtained forIext=7, 10, 15, and 20mA/cm2 sfrom
top to bottomd.
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B. Pulse coupling

Figure 5sad, shows the maximum transverse Lyapunov ex-
ponent of the systems13d and s14d, as a function ofse ,td.
Here we considered also negative values ofe to represent a
reciprocal inhibitory coupling.

Figure 5sbd and scd, also shows two “sections” ate=−4
and 4 mV. In order to validate these results, we considered
the behavior of the solutions of the systems13d ands14d for
different values ofse ,td. First, we set arbitrary initial condi-
tions on the synchronous manifold,X1=X2, and let the sys-
tem settle onto the attractor. After a transient, the system is
displaced out of the synchronous manifold by an instanta-
neous perturbation onV1, V1→V1+dV, and then it is left to
evolve unperturbed. In Fig. 6 we reported some of the cal-
culated trajectories projected onto thesV1,V2d plane. These
plots illustrate the qualitatively distinct behaviors that are
observed for different values ofe andt, including synchro-
nization, phase locking, antiphase locking, and possible

chaos. For all the cases considered, the observed behavior
was found to be consistent with the calculated Lyapunov
exponent.

We observed that, when the synchronous state is stable,
the type of attractor that lies outside its basin of stability
depends on the sign of the coupling. In particular, if the
coupling is positive, the solution is attracted onto a phase-
locked statesFig. 6 upper rightd, whereas for negative cou-
pling a chaotic attractor seems to be presentssee Fig. 6 bot-
tom rightd. Also we noticed that the two branches around the
minimum in Fig. 6sbottom leftd correspond to a change in
the structure of the attractors around the synchronous mani-
fold. In particular, for the left branch the synchronous state is
very stable, as if it was the only attractor in the whole space,
while for the right branch the stability of the synchronous
state is lost by being attracted onto a seemingly chaotic state.

Finally, we can now address the issue of whether inhibi-
tory or excitatory interactions can facilitate synchronization.
In the literature, it is often reported that inhibitory, but not

FIG. 3. Iext=7 mA/cm2. Upper left: The phenomenon of “oscillation death” for an HH neuron with delayed self-interactionse=0.22,
t=3.3 msd. Upper right: Antiphase locking for two HH neurons with delayed interactionse=0.58, t=5.33 msd. Bottom left: Oscillatory
behavior in the synchronous state is recovered after increasing time delayse=0.15,t=7.1 msd. Bottom right: Self-interaction can anticipate
firing if coupling is large enough to overcome refractorinessse=0.5, t=7.1 msd.
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excitatory interactions, can synchronize two neurons, a result
that is based upon analysis of the leaky integrate and fire
model. Our results tell us that, for the HH model,both exci-
tatory and inhibitory interactions can synchronize neuronal
activity. Figure 7sad, does show that in terms of the magni-
tude of the Lyapunov exponent, inhibitory interactions have
a more negative value and so it is more stable in this sense,
in agreement with results in the literature. However, when
we look at the sign of the Lyapunov exponent, we have a
totally different scenario. With excitatory interactions the re-
gions in which the Lyapunov exponent are negative are big-
ger than that with inhibitory interactionsfFig. 7sbdg. In fact,
the averaged signsld is always positive when the interaction
is negative.

C. Synchronization in time-delayed networks

Now we consider a system containing an arbitrary number
of neurons with general coupling topologies. This can be

FIG. 5. sColor onlined sad Stability of synchronized oscillations
for a system of two HH neurons with pulse coupling. Color inten-
sity represents the maximum transverse Lyapunov exponent,l', in
the st−ed space. Results were obtained forIext=10 mA/cm2. sbd
The maximum transverse Lyapunov exponent,l', as a function of
time delay fore=−4 mV. The inset shows a blowup around the
maximum.scd The maximum transverse Lyapunov exponent,l', as
a function of time delay fore=4 mV.

FIG. 4. sColor onlined The periodT of the oscillations as ob-
served in a system of two diffusively coupled HH neurons. Results
were obtained forIext=10 mA/cm2 stopd andIext=20 mA/cm2 sbot-
tomd. For fixed parameters, the initial state is chosen randomly and
the quenched statesmiddle regiond is represented by a “hole” in the
figure, comparing with Fig. 2.
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done following the scheme used by Pecora and Carrollf17g.
Given a system ofN interacting HH neurons, with coupling
matrix G,

Ẋ i = FsX id + o
j

GijH„X jst − td… s20d

the stability problem, originally formulated in a 43N dimen-
sional space, can be reduced to the study of the system

j̇std = J„Xstd…jstd + sa + ibdDH„Xst − td…jst − td, s21d

where a+ ib is an eigenvalue ofG, in general complex-
valued, andj is a four-dimensional perturbation vector. To
ensure that the synchronized stateX i =X is a solution of the
dynamics, we require that

o
j

Gij = 0, i = 1, . . . ,N. s22d

By separatingj into the real partjr and imaginary partji, we
get

j̇r = JsXdjr + aDHsXtdjrt − bDHsXtdjit, s23d

j̇i = JsXdji + aDHsXtdjit + bDHsXtdjrt, s24d

wherejrt=jrst−td and jit=jist−td. For a given value oft,
we can considera, b as parameters and estimate the maxi-

mum Lyapunov exponentl',max from Eqs. s23d and s24d.
This function is known as the master stability function and
defines a region of stability of the synchronous oscillations in
terms of the eigenvalues of the coupling matrix. Given a
particular network topology and a value of the time delay,
the synchronous state will be stable if, and only if, all the
eigenvalues of the coupling matrix lie in the region of stabil-
ity indicated by the master stability function.

The plots of Fig. 8 show the results obtained for the dif-
fusive coupling case, for an external stimulus ofIext
=10 mA/cm2 and different values of the delay. The stability
region becomes smaller as the delay increases. It is interest-
ing to compare the results in the current section with that in
Sec. III A. It is easily seen that we have two eigenvalues for
two HH models with diffusive coupling: one isa=−2e ,b
=0 and the other isa=0,b=0. To apply the results in the
previous section to the case in this section, we see that the
second eigenvalue lies on the boundary of the stable and
unstable region. Nevertheless, a more detailed analysis tells
us that in fact the results cannot be applied to the cases

FIG. 6. Examples of trajectories in theV1-V2 plane which cor-
respond to different dynamical behaviors: synchronizationstop left;
e=3 mV, t=8 msd; antiphase lockingsbottom left, e=4 mV, t
=13 msd; phase-lockingstop right,e=−2 mV, t=8 msd; and chaos
sbottom righte=−4 mV, t=11.6 msd. The system is initialized on
the synchronous manifold and left to evolve freely until an instan-
taneous perturbation is applied which disrupts the symmetry of the
solution. The trajectories in theV1-V2 reveal different kinds of at-
tractors, which are manifest when the synchronous manifold is de-
stabilized. For positive couplingsupper panelsd, once displaced out
of the synchronous manifold, the system gets attracted to a phase-
locked oscillatory state; for negative couplingslower panelsd, the
system shows aperiodic oscillations which are indicative of a seem-
ingly chaoticsstranged attractor.

FIG. 7. sad Average ofl' over tP f0,20g ms; andsbd average
of signsl'd over tP f0,20g ms.
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considered in Sec. III A. The interaction term in Sec. III A
does not vanish, but it is zero due to the constraints22d for
the systems20d. Of course, the results presented in Fig. 8 are
general enough for an arbitrary interaction matrix satisfying
the constraints22d.

In Fig. 9 we depicted the results for the pulse coupling
case, obtained for the same values ofIext and t as for the
diffusive coupling case above. Again it is worth noting that
the dynamics considered here actually differ from that con-
sidered in the previous section, since we require thato jGij
=0. Since real neurons are either excitatory or inhibitory, we
have that, for fixedj , Gij must have the same sign, either
positive or negative, for alli. However, for a system of two
neurons, it is impossible to implement such a coupling
scheme if we exclude self-interaction, so the results pre-
sented here are totally different from what we discussed in
the previous section, as in the case of diffusive coupling. It is
very interesting to observe that the constraints22d requires
that the total excitatory and inhibitory inputs to each neuron
be balanced, a condition which is extensively discussed in

the literature. We also note that the stability region for the
synchronization state gets smaller with increasing delayt.

IV. DISCUSSION

We presented a systematic study of the synchronization
properties of groups of neurons coupled with diffusive or
pulse delayed interactions. In particular, for two HH neurons
coupled diffusively, we found that there are three distinctive
regions where different behaviors are observable. For two
HH neurons with pulse coupling, it is found that excitatory
coupling tends to synchronize more easily their activity. Not
surprisingly, gap junction, rather than pulse coupling, has a
wider parameter region where neuronal activity can be syn-
chronized. That could be easily understood from the general
dynamics: electrical coupling tends to minimize both sub-
threshold and suprathreshold dynamics, while pulse coupling
acts only when a spike is firedssuprathresholdd. Finally, a
few general results on the stability of synchronized oscilla-
tions in networks of HH neurons are presented.

FIG. 8. sColor onlined Upper panel: Master stability function att=1 ms sad and t=2 ms sbd, for a system of diffusively coupled HH
neurons. The lines are isoclines for the constant maximum Lyapunov exponent. Bottom panel: Master stability function att=5 msscd and
t=10 mssdd, for a system of diffusively coupled HH neurons. The lines are isoclines for the constant maximum Lyapunov exponent.
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Theoretical studies such as the one we presented here
have a number of limitations. For example, we have to re-
quire that the neurons be identical in order to perform our
analysis, which is obviously an oversimplification of real
neuronal networks. For a network of nonhomogeneous neu-
rons, it is more realistic to consider phase synchronizations.
Also, we do not expect that exact synchronization holds in
the presence of noise, and jitters in real neurons may totally
change the results presented here. One can also argue that
desynchronization rather than synchronization might be
more important for information processing in the nervous
system.

In spite of these limitations, our results are interesting in
several respects. For example, if we can figure out the exact

regions where a system of neurons will synchronize, then
outside these regions the system will desynchronize. Besides,
the current results concerning the dynamics of networks of
neurons, combined with the approach we presented inf12g,
can be easily extended to analyze networks of neuronal mod-
els with random interactions such as in microcolumn net-
works f18,19g.

ACKNOWLEDGMENTS

J.F. was partially supported by grants from UK
EPSRCsGR/R54569d, sGR/S20574d, and sGR/S30443d.
D.M. was supported by U.S. National Institutes of Health
Grants No. MH070498 and No. MH71620.

FIG. 9. sColor onlined Master stability function att=1 mssad, t=2 mssbd, t=5 msscd, andt=10 mssdd, for a system of pulse coupled
HH neurons. The lines are isoclines for the constant maximum Lyapunov exponent.
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