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Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed
diffusive and pulsed coupling
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We study the synchronization dynamics for a system of two Hodgkin-Huxéy) neurons coupled diffu-

sively or through pulselike interactions. By calculating the maximum transverse Lyapunov exponent, we found
that, with diffusive coupling, there are three regions in the parameter space, corresponding to qualitatively
distinct behaviors of the coupled dynamics. In particular, the two neurons can synchronize in two regions and
desynchronize in the third. When excitatory and inhibitory pulse coupling is considered, we found that syn-
chronized dynamics becomes more difficult to achieve in the sense that the parameter regions where the
synchronous state is stable are smaller. Numerical simulations of the coupled system are presented to validate
these results. The stability of a network of coupled HH neurons is then analyzed and the stability regions in the
parameter space are exactly obtained.
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I. INTRODUCTION diffusively coupled oscillators which exhibited chaotic be-

I o havior in the absence of coupling. This was revealed by a
Synchronous oscillations of neuronal activity have bee

"Stability analysis performed around the synchronized state of
observed at all levels of the nervous system, from the braint-he syé,tem ysis p 4

stem to the cortex. The ubiquitous nature of neural oscilla- Our goal is to examine whether similar results can be

tions has led to the belief that they may play a key role ing, 4 in hiophysical neuronal models, such as the Hodgkin-
|nfo_rma}t|on processing. For examplez synchronized 9ammgy ;xjey (HH) model. Indeed, numerical experiments reported
oscillations have been related to object representdtldn by many authors show that when two systems of the HH type
and synchronized neural activity in the somatosensory corteX;q coupled, they seem to synchronize. Moreover, it has been
has been proposed as a mechanism for attentional SeleCtiﬁ'émonstraté@] that, in the absence of delay, syr’mhroniza—
[2]. . . . tion takes place for arbitrary initial conditions for a large
Frqm a theoretical point of View, the pr.oblem of under- class of equations including HH models. For delayed inter-
sf[andlng how synchronlzed oscillations arise hgs been COl4ictions, however, an analytical approach to global stability is
sidered for a variety of systemisee[3] for a review. For 4 ¢ reach, and only local results can be obtained. Here we
neuronal systems, theoretical results are usually obtained u%’pply the approach used [8] to study the stability of the
der several simplifying assumptions including instantaneougy  -hronous solutions of coupled HH equations as a function

Interactions. However, time delgys are mhert_ent IN NEUrongjt e coupling strength and time delay. Although the results
transmissions because of both finite propagation veloc[tles ile obtained are only local, they are still helpful and infor-
fhative with regards to understanding the mechanisms of

synchronization. Moreover, they can be used to reveal re-
) . ions of the parameter space where two neurons cannot syn-
achieved when such temporal delays are not negligh&. Y P P y

: | ?hronize, regardless of their initial respective conditions.
Indeed, it has been suggested that time delays can actually =4 +vo HH neurons coupled diffusively, we found two
facilitate synchronization between distant cortical areas. i

__distinct regions in the parameter space where the synchro-
The study of network models has shown that delayed in- - P P y

. . ; nized dynamics is stable, and one region where it is not
teractions can Ieaq to interesting and unexpecteq phenomeg?able_ These results, based upon the calculation of the maxi-
[7]. For example, i8] the authors showed that time delays

ind hronized periodi lati . work um transverse Lyapunov exponent, were then confirmed by
can induce synchronized periodic oscillations in a network of, | o rical simulations.

The results above are found for neurons with diffusive
couplings. Pulse coupled neurons, on the other hand, occur
*Electronic address: e.rossoni@sussex.ac.uk far more frequently in the nervous syst¢f®]. Here an ap-
"Electronic address: jianfeng.feng@warwick.ac.uk proach to tackle the problem of pulse coupling is developed,

synaptic transmission at chemical synapfék It is thus
important to understand how synchronization can b
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which enables us to carry out a general investigation on thate for describing an electrical synapse. For the sake of sim-
stability of synchronized firing of the HH neurons. Our re- plicity, we consider symmetrical coupling. The system is de-
sults indicate that whether inhibitory or excitatory interac-scribed by

tions can more easily stabilize synchronous firing depends on .

the quantities we look at. This contrasts with most published V; = lion(V;,S) + lexq+ € Vj(t—=7) = Vi], i,j=1,2, |#i,

results where it is claimed that inhibitory interactions are (3)
more effective in inducing synchronizati¢see, for example . . . ) )
[11]). where € is the coupling strength;=0 is the time delay in

Finally, we consider networks of HH neurons and deter-the interaction, and the gate variables follow equations simi-
mine the parameter regions where synchronous oscillatioddr to Eq.(2).
are found to be stable. Results using similar techniques have A synchronous statlr our system is a solution of E(3)
appeared in a few other recent publicati¢fg,13, but, to ~ such that
the best of our knowledge, no results on neuronal models _
have been reported. Although in the current paper we confine (V1(1),,(1) = (V2(0,%(1) @
ourselves to considering the HH model, our approach can bior all timest. This state lies on theynchronizatioomanifold
adopted to investigate more detailed biophysical models ofV,,s,)=(V»,s,), which is invariant due to the symmetry of
neurons which may, for example, include a wider repertoirghe equations. Given asymmetric initial conditions, we say

of ion channels. that the systensynchronizesf Eq. (4) holds asymptotically.
It follows from the definition that, for a synchronous state,
Il. MODELS we have
For a description of the neuronal dynamics we use the V= lion(V,8) + o+ e V(t = 7) = V],
Hodgkin-Huxley (HH) model,
. SV -s
o1 §=——— 5
V= ZlloVimh + Lo, ® V) ©
In the absence of delay, the equations above reduce to Egs.
. mM-m - h.M-h . nJV)-n (1) and (2), thus, for any value of the bifurcation parameter
= ) = wVv) = o\ ) lexo €ach neuron in a synchronous state will behave as if the

interaction were absent. In particular, for,>1,, the two
where C is the membrane capacitandé,is the membrane coupled neurons, once synchronized, will fire periodically as
potential, if they were isolated. In the presence of delay, on the other

hand, the behavior of a neuron entrained in a synchronous

lion( VM, 0,1) = = gria?h(V = Viga)dt = gent'(V = Vit state can be radically different from that of a neu>r/on in iso-

-gu(V-Vp) lation. It can be shown that single units displaying a chaotic
behavior can be recruited into synchronized periodic oscilla-
ions, or periodic oscillators can exhibit synchronized chaos
hen coupled.

For the synchronous state to be stable, all motions trans-
. N ; ) , ) verse to the synchronization manifold must asymptotically
following, we will indicate the “gate variables” collectively damp out. To examine this, we first reformulate the problem
by the vectors=(m,h,n), ?nd putC=1. using a more precise notation. By defining’

Forle,<1,~6 uAlcm” the systen(l) and(2) has aglo- =y 'm hn)ande=(e,0,0,0, the system is rewritten as
bally attracting fixed point: if excited, the neuron fires a
single action potential and then returns to the resting state. X =F(X) + e - (Xit-n-X), i,j=1,2, j#i (6
Periodic solutions arise &t,=1,, through a saddle-node bi-
furcation. Forl; <l ex<1,~9.8 uA/cm?, the system has two and the synchronous sta¥dt) is defined as a solution of
attractors, a fixed point and a limit cycle, and the neuron .
starts showing oscillations of small amplitude around the X =F(X) + e - (X(t=7) = X) (7)

resting potential. Ale,=1, the unstable branch of the peri- \hereF is defined by Eq(5). We now introduce the trans-
odic solutions dies through an inverse Hopf bifurcation, anderse vectoX | =X2-X* and linearize the systes) around
for lo> 1, the system has only one attractor which is a limit he synchronous state, to obtain

cycle. In this region, the neuron fires repetitively.

is the total ionic current, and,,; is an externally applied

current which we will assume to be constant. For a detaile
definition and values of the parameters in the model at a
temperature 6.3 °C, we refer the reader[1d,15. In the

X, =IX(M) X, —e - (X (t=7) +X,) (®)

A. Diffusive coupling where the matrixJ=DF(-) is the Jacobian df. The stability
We start by considering two identical neurons, repre-of the synchronous state is now related to the Lyapunov ex-
sented by the variable¥;, s, i=1,2, coupled linearly via ponents associated with the systé8p Because of the delay
their membrane potentials. This type of coupling, usuallyterm, the system considered is a functional differential equa-
referred to in the literature afiffusivecoupling, is appropri- tion with an infinite number of Lyapunov exponents. The
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1501 G11=G2=0, G1p=Gy=¢, (1)
. 1001 and the interaction term is given by
=
E 5071 — _
> o4 H(X):(H]JO!OIO:(5(xl_xl)®(xz_x2)1ovoyo-
(12)
-50 ; ‘ ‘ ‘ ‘
0 10 20 30 40 50 Linearizing the motion around the synchronous state, we ob-
1 Time (ms) tain in the transverse direction,
X =F(X) + & - H(X(t-7), (13

£ 091 X, =J(X(@1) - X, — &, - DH(X(t-1) - X, (t-7). (14)

Note that, in this case, the synchronous state depends on the
coupling even in the absence of delay. Also, because of the

20 0 20 40 60 80 100 120

V (mv) nature of the interaction, we have to deal with singular terms
in DH. In particular we have
FIG. 1. Solution of Hodgkin-Huxley model forlgy
=10 ,U,A/sz.. (Upper panel By setting.a threshold for.th.e m§m- H; - 5/()(1_;1)@()(2_;2) (15)
brane potentialV=V=50 mV, dashed ling we cannot distinguish Xy
between the upward and downward crossings evéndsver panel nd
The two crossing events can be discriminated if an additionafa

threshold for them-variable is introduced. H, — —
X = 5(X1_X1) 5(X2_X2), (16)
2

synchronous state is stable if all the Lyapunov exponents are ) o o
negative. This condition is ensured if thenaximum whered' is the derivative of the delta function in the sense of

Lyapunov exponent can be calculated and it is shown to bdistributions. Although both terms are highly singular, fortu-
negative. nately a numerical solution of the linearized system is still

possible. When a forward Euler scheme is used to solve Egs.
B. Pulse coupling (13) and(14), the two “hard” terms are integrated as

Although numerous examples of electrical synapses have At o _
been described in the nervous system of invertebrates and A=f O(M(t' -7)-m)&' (V(t'-7)-V)V (t' - n)dt’
lower vertebrates, the most widespread interaction mecha- t
nism among the neurons in the mammalian brain relies on (17
pulselike release of neurotransmitters following action po-
tentials. In order to apply the approach described above té‘”d
this case, the pulselike interaction must be first put into a t+At o _
convenient mathematical form. In particular, the interaction B=J a(m(t’ =) -m)S(V(t' =7)-V)m_ (t'-7)dt’.
term must be expressed as a function of the variables of the t
presynaptic neuron. Hence we consider the following model: (18

V= lion(Vi,S5) + lexe €8(V(t = 7) —V)@(mj(t -D-m, Let us consid_er the terr first. Since the sy§tem crosses the
9) m-threshold,m, and theV-threshold,V, for different values
of t, we have that for all the intervals containing the zeros of

where O(+) is the Heaviside function, anth is a suitably the argument of¥’, the rest of the integrand is regular. In
chosen constant. Due to thedependent factor in the inter- particular, for all the intervals containing the upward cross-
action term, it is possible to select either the upward or théng times we will have
downward threshold crossing event, as it is evident from AL
considering a projection of the spike trajectory on them A:f 5’(V(t’—r)—V)VL(t’—r)dt’
plane(see Fig. L In particular, the interaction term in Eq. t
(9) will differ from zero only when the membrane potential .
crosses the threshold from below. —_ Vi)

The system is formulated as follows: |V(ti)|

2

I [t+f,t+r+A](ti)

s i ; . where{t;} indicates the upward crossing times previous, of
X'=F(X)+ % GjH(X!(t-7), 1=1.2, (10) andl is the indicator function. On the other hand, during the
A a downward crossing events we will haye=0.

where X'=(V;,s),i=1,2,G=[Gj] is the coupling matrix As for termB, it is easy to show that, once the “driving”

given by systemX(t) has settled on the attractor, the integrand is al-
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ways null, so we can assuni=0 for all times during inte- death will only be observed in the region of bistability
gration. <lex<l,. Note that, because of the terng\Xt), the region
of bistability of the model with self-interaction is different
Il. RESULTS from that of the isolated model, thus explaining why the
. . . .quenched oscillations can be observed also in the other cases
All the differential systems have been integrated numeri- - cidered here. In the region between the two boundary

cally using a forward Euler scheme with a time step of,. . : . :
10 us. A standard technique to calculate the Iarges{mes’ this state is locally attractive for the dynamics of the

Lyapunov exponent) |, consists in averaging the exponen- complete.system, thus_ we see couplgd neurons recm_)rocally
tial growth rate of the vectoX , along the trajectory16]. suppressing their oscillations. Occasionally, depending on

Alternatively, as suggested [8], the finite time estimate the initial conditions and the choice of the parameters, we
observed the coupled system desynchronizing and settling in

an antiphase locked oscillatory stésee Fig. 3 upper right
The “hot-spot” near the upper left corner of Fig. 2 is indica-

. _ ) tive of a different attractor on the synchronous manifold,
can be used, provideliis a reasonably long time. However, which looks like that shown in Fig. 8ottom lefy. In this

os: ;clcl’ut?r?I tfgshpr\c/)ic?dufr? tbo(bzat)?r?rr]\etto;rror;b:acziuﬁebc;f thé“:'ase, the time delay is such that the current pulse, due to the
os: at 9 ebta' Odob 0 L'd . st?]a f a " ore refiable self-interaction, is delivered too late to switch the system to
estimale Is obtained by considering the function the resting state, yet too early to anticipate the onset of the

A 1
A (T)= ?. log|X , (T)| (19

1t next spike. However, we found that these oscillations are

&) = ;f log|X | (t')[dt". very easily destabilized, and the complete system is attracted

0 to the antiphase locked state. Finally, in the region above the

Indeed, we have asymptotically upper boundary line, the synchronous state is again oscilla-
tory, although the firing rate is now almost twice as much as

&(t) = const. +)\—lt + O(E) that of the isolated neurons. This is due to the self-interaction
2 t pulse which follows each spike, which now is delivered suf-

from where the maximum Lyapunov exponent can be estificiently late, and with a sufficient amplitude, to overcome
mated. refractoriness and anticipate the occurrence of the following

spike (see Fig. 3 bottom right

In Fig. 4 we depicted the period of the oscillatiors,
observed by simulating the coupled system. The figure has to

For the case of diffusive coupling, we have considered @&e viewed together with Fig. 2. Below the unstable region,
range of values for the applied current stimulyg=7, 10, the values reported correspond to the period of the synchro-
15, and 20uA/cm?. For all these values, the isolated neu-nous oscillations. In the regiofmiddle) where the synchro-
rons fire periodically. Simulation results show that is al-  nous state is not stable, the observed period is that of an-
ways negative on the semiaxis=0,e>0), regardless of the tiphase locked solutions. The points whare0 (that appear
amplitude of the current stimulus considereste Fig. 2 as dark blue “holes” in the graphmark the values of the
Therefore two identical HH neurons with symmetrical cou-parameters for which quenched oscillations were observed.
pling will always synchronize in the absence of delays, nan the upper region, a mixed phenomenon is observable, with
matter how small the coupling is. This result is consistenthe seemingly random occurrence of synchronized and an-
with what was shown if9]. As expected|\ | increases tiphase locked states. This plot shows clearly the sudden
monotonically with e, indicating that the system synchro- drop of the period across the lower boundary line, which
nizes more rapidly with stronger coupling. marks the onset of an attractive antiphase locked oscillatory

The (e,7) space is characterized by a predominance oftate in the entire system’s phase space. The predominance of
stable solutions. However, the plot of Fig. 2 reveals threesolutions with T#0 demonstrates that although quenched
distinct regiongleft panel, Fig. 2, which correspond to dif- oscillations (the “holes” atT=0) are locally stable in this
ferent behaviors of the solutions of the coupled syst8m  region, the antiphase locked state has a much larger basin of
Direct simulations revealed that in the region at the bottomattraction. For longer delays, we observe instead a mixture of
of each graph, the synchronous state is represented by ordiwo phases corresponding to synchronous and antiphase
nary oscillations, and that this state is globally attractivelocked oscillations, which indicates that the actual synchro-
Therefore, in this region, two neurons will eventually syn-nization, for these values of the coupling parameters, is
chronize, regardless of their initial phase. However, the synkargely dependent on the initial conditions of the system.
chronous state, and its stability, change withn particular, In summary we presented a systematic study for two dif-
when 7 is increased above the first boundary line, the amplifusively coupled HH neurons, in terms of the Lyapunov ex-
tude of the limit cycle on the synchronous manifold is sud-ponent and confirmed by direct simulations. It is generally
denly reduced, and we observe the phenomenon of oscilla&asy to synchronize two neurons due to the nature of inter-
tion death(see Fig. 3 upper left In order to display this actions. We also presented mATLAB program (http://
behavior, the neuron must still have a stable resting stateyww.informatics.sussex.ac.uk/users/er28/synchronization/
albeit with a small basin of attraction. Therefore oscillationto demonstrate the results presented here.

A. Diffusive coupling
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FIG. 2. (Color onling Stability of synchronized oscillations for a system of two HH neurons with diffusive couplRight) Color
intensity represents the maximum transverse Lyapunov expangni) the (7—e€) space(Left) Similar to the right figures, but it represents

the region of stabilityblue) and unstable regiorised in the (7—€) space. Results were obtained fgg=7, 10, 15, and 2@.A/cm? (from
top to bottom.
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FIG. 3. lo=7 uAlcm?. Upper left: The phenomenon of “oscillation death” for an HH neuron with delayed self-interdetdh22,
7=3.3 m9. Upper right: Antiphase locking for two HH neurons with delayed interaction0.58, 7=5.33 m$. Bottom left: Oscillatory
behavior in the synchronous state is recovered after increasing time(del@yl5, 7=7.1 mg. Bottom right: Self-interaction can anticipate
firing if coupling is large enough to overcome refractorinéss0.5, 7=7.1 m3.

B. Pulse coupling chaos. For all the cases considered, the observed behavior

. ] was found to be consistent with the calculated Lyapunov
Figure Ha), shows the maximum transverse Lyapunov eX-exponent.

ponent of the systenil3) and (14), as a function of(e, 7). We observed that, when the synchronous state is stable,
Here we considered also negative values 66 represent a the type of attractor that lies outside its basin of stability
reciprocal inhibitory coupling. depends on the sign of the coupling. In particular, if the

Figure §b) and (c), also shows two “sections” at=—-4  coupling is positive, the solution is attracted onto a phase-
and 4 mV. In order to validate these results, we considerefbcked statg(Fig. 6 upper right, whereas for negative cou-
the behavior of the solutions of the syst¢h8) and(14) for  pling a chaotic attractor seems to be pregese Fig. 6 bot-
different values of e, 7). First, we set arbitrary initial condi-  tom righy. Also we noticed that the two branches around the
tions on the synchronous manifold; =X, and let the sys- minimum in Fig. 6(bottom lefy correspond to a change in
tem settle onto the attractor. After a transient, the system ighe structure of the attractors around the synchronous mani-
displaced out of the synchronous manifold by an instantafold. In particular, for the left branch the synchronous state is
neous perturbation oy, V;—V;+6V, and then it is left to  very stable, as if it was the only attractor in the whole space,
evolve unperturbed. In Fig. 6 we reported some of the calwhile for the right branch the stability of the synchronous
culated trajectories projected onto thé;,V,) plane. These state is lost by being attracted onto a seemingly chaotic state.
plots illustrate the qualitatively distinct behaviors that are Finally, we can now address the issue of whether inhibi-
observed for different values @fand 7, including synchro- tory or excitatory interactions can facilitate synchronization.
nization, phase locking, antiphase locking, and possiblén the literature, it is often reported that inhibitory, but not

061904-6



STABILITY OF SYNCHRONOUS OSCILLATIONS IN A.. PHYSICAL REVIEW E 71, 061904(2005

5 {o.15
: {o.1
8 i
7 ¥ Ead 10.05
iEEicEE i i e iy
—_ 6 _0
[2]
é 5
c -0.05
4 =
3 1-0.1
2 -0.15
)
11 A B I B
@ ° 0.2 0.4 06 08 1
a 8 =
0251 g2
i 021
0.15
116 0.1
0.05-
114 —
€ s -0.05-
- 112
4 ~ -0.11
3 , l1o -0.151
2 -0.21
1 18 -0.25 : ; . .
g ®) ° ° « () 5 20
5 O 0.2 0.4 0.6 08 1 )
(b) € 0.25 .
0.21

FIG. 4. (Color online The periodT of the oscillations as ob-
served in a system of two diffusively coupled HH neurons. Results .15
were obtained fota,=10 uA/cm? (top) andlg=20 uA/cm? (bot-
tom). For fixed parameters, the initial state is chosen randomly and
the quenched stateniddle region is represented by a “hole” in the 0.05-
figure, comparing with Fig. 2.

0.14

excitatory interactions, can synchronize two neurons, a resul _ . |
that is based upon analysis of the leaky integrate and fire
model. Our results tell us that, for the HH modedtth exci- -0.11
tatory and inhibitory interactions can synchronize neuronal 0151
activity. Figure 7a), does show that in terms of the magni- ’ B =shmi
tude of the Lyapunov exponent, inhibitory interactions have -0.21
a more negative value and so it is more stable in this sense . . ‘ .
in agreement with results in the literature. However, when g 5 10 15 20
we look at the sign of the Lyapunov exponent, we have a(® T (ms)
totally different scenario. With excitatory interactions the re-
gions in which t_he.Lyz_ipunov. expongnt are negative are blgfor a system of two HH neurons with pulse coupling. Color inten-
ger than that with inhibitory interactiorj&ig. 7(b)]. In fact, sity represents the maximum transverse Lyapunov exponenin
Fhe avergged sigf\) is always positive when the interaction ,q (7-¢) space. Results were obtained fQg=10 xA/cm2. (b)
IS negative. The maximum transverse Lyapunov exponant, as a function of
time delay fore=—-4 mV. The inset shows a blowup around the
maximum.(c) The maximum transverse Lyapunov exponant, as
Now we consider a system containing an arbitrary numbeg function of time delay foe=4 mV.
of neurons with general coupling topologies. This can be

FIG. 5. (Color onling (a) Stability of synchronized oscillations

C. Synchronization in time-delayed networks

061904-7



ROSSONIet al.
100 100
< 50 50
£
>" o 0
50 50
0 50 100 0 50 100
100 100
< 50 50
£
o
> o 0
50 50
0 50 100 0 50 100
v, (mv) v, (mV)

FIG. 6. Examples of trajectories in th&-V, plane which cor-
respond to different dynamical behaviors: synchronizattop left;
e=3 mV, =8 m9; antiphase locking(bottom left, e=4 mV, 7
=13 m9; phase-lockingtop right,e=—2 mV, 7=8 m9; and chaos
(bottom righte=—4 mV, r=11.6 m3. The system is initialized on
the synchronous manifold and left to evolve freely until an instan-

taneous perturbation is applied which disrupts the symmetry of the  0-2

solution. The trajectories in the;-V, reveal different kinds of at-

tractors, which are manifest when the synchronous manifold is de-3

stabilized. For positive couplin@upper panels once displaced out
of the synchronous manifold, the system gets attracted to a phas
locked oscillatory state; for negative couplifigwer panelg the

system shows aperiodic oscillations which are indicative of a seem- -0.21

ingly chaotic(strange attractor.

done following the scheme used by Pecora and Cdrtdll
Given a system oN interacting HH neurons, with coupling
matrix G,

X' =F(X) + 2 GyH(XI(t - 7) (20)
j

the stability problem, originally formulated in &4N dimen-
sional space, can be reduced to the study of the system

E(t) = IX ()&M) + (a+iBDH(X(t— ))&t - 1), (21)

where a+if is an eigenvalue ofs, in general complex-
valued, and¢ is a four-dimensional perturbation vector. To
ensure that the synchronized stXte=X is a solution of the
dynamics, we require that

> G;=0, i=1,...N. (22)
j

By separating into the real part, and imaginary parg;, we
get

& =J(X)& + aDH(X )&~ BDH(X )&, (23)

§=J(X)§ + aDH(X,)&,+ BDH(X )&, (24)

where &, =& (t—7) and & _=&(t—7). For a given value of,

PHYSICAL REVIEW E 71, 061904(2005
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FIG. 7. (a) Average of\, over re[0,20] ms; and(b) average
of sign\ |) over 7<[0,20] ms.

mum Lyapunov exponemnk ; ., from Egs.(23) and (24).
This function is known as the master stability function and
defines a region of stability of the synchronous oscillations in
terms of the eigenvalues of the coupling matrix. Given a
particular network topology and a value of the time delay,
the synchronous state will be stable if, and only if, all the
eigenvalues of the coupling matrix lie in the region of stabil-
ity indicated by the master stability function.

The plots of Fig. 8 show the results obtained for the dif-
fusive coupling case, for an external stimulus b&f;
=10 uA/cm? and different values of the delay. The stability
region becomes smaller as the delay increases. It is interest-
ing to compare the results in the current section with that in
Sec. Il A. It is easily seen that we have two eigenvalues for
two HH models with diffusive coupling: one ia=-2¢,p
=0 and the other ix=0,8=0. To apply the results in the
previous section to the case in this section, we see that the
second eigenvalue lies on the boundary of the stable and
unstable region. Nevertheless, a more detailed analysis tells

we can considet, 8 as parameters and estimate the maxi-us that in fact the results cannot be applied to the cases
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FIG. 8. (Color online Upper panel: Master stability function at1 ms(a) and 7=2 ms(b), for a system of diffusively coupled HH
neurons. The lines are isoclines for the constant maximum Lyapunov exponent. Bottom panel: Master stability fumettomatc) and
7=10 ms(d), for a system of diffusively coupled HH neurons. The lines are isoclines for the constant maximum Lyapunov exponent.

considered in Sec. Ill A. The interaction term in Sec. Il A the literature. We also note that the stability region for the
does not vanish, but it is zero due to the constré@® for  synchronization state gets smaller with increasing delay
the systen{20). Of course, the results presented in Fig. 8 are
general enough for an arbitrary interaction matrix satisfying
the constraint22).

In Fig. 9 we depicted the results for the pulse coupling We presented a systematic study of the synchronization
case, obtained for the same valueslgf and = as for the properties of groups of neurons coupled with diffusive or
diffusive coupling case above. Again it is worth noting thatpulse delayed interactions. In particular, for two HH neurons
the dynamics considered here actually differ from that con<oupled diffusively, we found that there are three distinctive
sidered in the previous section, since we require X)&;; regions where different behaviors are observable. For two
=0. Since real neurons are either excitatory or inhibitory, weHH neurons with pulse coupling, it is found that excitatory
have that, for fixedj, G; must have the same sign, either coupling tends to synchronize more easily their activity. Not
positive or negative, for ail. However, for a system of two surprisingly, gap junction, rather than pulse coupling, has a
neurons, it is impossible to implement such a couplingwider parameter region where neuronal activity can be syn-
scheme if we exclude self-interaction, so the results preehronized. That could be easily understood from the general
sented here are totally different from what we discussed irlynamics: electrical coupling tends to minimize both sub-
the previous section, as in the case of diffusive coupling. It ighreshold and suprathreshold dynamics, while pulse coupling
very interesting to observe that the constrgi2®) requires acts only when a spike is fireGuprathreshold Finally, a
that the total excitatory and inhibitory inputs to each neurorfew general results on the stability of synchronized oscilla-
be balanced, a condition which is extensively discussed itions in networks of HH neurons are presented.

IV. DISCUSSION

061904-9
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FIG. 9. (Color online Master stability function at=1 ms(a), 7=2 ms(b), 7=5 ms(c), andr=10 ms(d), for a system of pulse coupled
HH neurons. The lines are isoclines for the constant maximum Lyapunov exponent.

Theoretical studies such as the one we presented heregions where a system of neurons will synchronize, then
have a number of limitations. For example, we have to reoutside these regions the system will desynchronize. Besides,
quire that the neurons be identical in order to perform outthe current results concerning the dynamics of networks of
analysis, which is obviously an oversimplification of real neurons, combined with the approach we presentddah
neuronal networks. For a network of nonhomogeneous netcan be easily extended to analyze networks of neuronal mod-
rons, it is more realistic to consider phase synchronizationsels with random interactions such as in microcolumn net-
Also, we do not expect that exact synchronization holds invorks[18,19.
the presence of noise, and jitters in real neurons may totally
change the_res_ults presented here. One pan_also argue that ACKNOWLEDGMENTS
desynchronization rather than synchronization might be
more important for information processing in the nervous J.F. was partially supported by grants from UK
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