
The Benefits of a Long Engagement: From Contextual
Design to The Co-realisation of Work Affording Artefacts

Mark Hartswood, Rob Procter,
 Roger Slack, James Soutter, Alex Voß

Division of Informatics
University of Edinburgh

2 Buccleuch Place, Edinburgh
mjh|rnp|rslack|jsoutter|av@cogsci.ed.ac.uk

Mark Rouncefield
Department of Computing

University of Lancaster
Lancaster, LA1 4YR

m.rouncefield@lancs.ac.uk

ABSTRACT
This paper critically examines the contextual design
methodology advanced by Holtzblatt and Beyer. We argue
that contextual design provides ‘thin description’ compared
with the ‘thick description’ of ethnomethodologically
informed ethnographies and that this impoverishes its
claims to perspicuous description. As a way of addressing
the limitations of contextual design, we propose co-
realisation, a methodology that requires a long engagement:
i.e. a longitudinal commitment from designers to building a
shared practice with users. The paper concludes with two
case studies of doing co-realisation.

Keywords
Contextual design, co-realisation, ethnography

INTRODUCTION
The question of how to incorporate ethnomethodologically-
informed analyses of work practice into IT system design
and implementation processes has been the subject of
considerable debate. One approach that has been widely
advocated is contextual design [1]. We argue, however, that
contextual design stops short of applying the full
implications of ethnomethodology for IT systems design. In
keeping with Button’s suggestion “... that ethnography can
be trailed into the world of design in a harder fashion than
our enthusiasm currently permits.” ([3] p. 330), we have
been exploring the potential of ‘co-realisation’, a synthesis
of participatory design and ethnomethodology.
In this paper, we critically examine contextual design’s
methodological claims and contrast them with those of co-
realisation. We conclude with brief illustrations of co-
realisation in practice taken from two case studies.

CONTEXTUAL DESIGN
Before moving on to a critique of contextual design, it is
important to explicate its central contours. Holtzblatt
defines contextual design as: “A set of techniques to be
used in a customer centred design process with design

teams. It is also a set of practices that help people engage in
creative and productive design thinking with customer data
and it helps them co-operate and design together.”
(Holtzblatt quoted in [6], p. 313). She lists the steps of
contextual design as follows: contextual inquiry – talking to
people as they do their work; interpretation and modelling
with cross-functional teams; consolidation of information
gained through previous steps; visioning about work
practices and the development of storyboards; user
environment design – using storyboards to develop ‘a
software floor plan (that drives) the user interface design’.
From Holtzblatt’s comments, it would appear that
contextual design developed out of a concern with usability
and the work of participatory designers such as Kyng and
Ehn. It would also appear that one of the motivations was
dissatisfaction with “all this qualitative stuff” ([6]) in terms
of how it came to be sidelined. It would seem that the
method attempts to blend qualitative approaches
(fieldwork) with the process vocabularies of more
traditional software engineering methodologies.
Contextual design does do some things correctly: most
important of these is the stress on understanding context in
systems design. Thus, contextual design is an improvement
over traditional ‘over the wall’, context ignorant
methodologies and we would applaud the need to take users
into account in the building of any IT system. Keeping the
eyes of designers focused on the context is important, but in
one sense, contextual design is at the mercy of its own
process models in that they reify the world in terms of data
to be used for design. Such models seem to us a means of
terminating an already all too brief 'engagement with users
in favour of some trans-situational ‘ontology’. This is not
the only drawback, however, of contextual design’s lack of
interest in a ‘long engagement’ with users. A new system
may change the work and so raise new requirements. In
such circumstances, IT systems and the work practices they
are intended to support need to co-evolve, but contextual
design never gets to grips with the ‘lived’ reality of being a
user of the new system. Yet, we argue, it is precisely this, as
IT systems and artefacts penetrate more deeply into
organisations and work settings, that IT design and
development methodologies must strive to achieve. This is
what co-realisation sets out to do.

 1

CO-REALISATION
Co-realisation calls for creating a shared practice between
users and IT professionals that is grounded in the lived
experience of users and a commitment to ‘stick around and
see what happens’ once a new IT system or artefact is
deployed [4,8]. Co-realisation’s goal is to achieve a
situation where users and IT professionals can
spontaneously shift the focus of their attention between the
different phases of the system/artefact lifecycle, even to the
extent that these cease to exist as separable activities. It
seeks to bring about a context for IT design and
implementation work where, as Büscher, Mogensen and
Shapiro [2] have put it, “… effort shifts fairly smoothly
between implementing or adjusting previously decided
possibilities, picking up on the host of small problems that
arise during work, coping with the unanticipated
consequences of previous actions, talking to individuals …”
Co-realisation aims to enable users to grow into technology:
it is minimally invasive, preserving the advantages of
technology for work life while refraining from engaging in
gratuitous technological interventions or dubiously
predicated work redesign efforts. Crucial to this is
membership which can only be afforded to IT professionals
by their ‘being there’ in the workplace along with users.
The term ‘membership’ here means having the
competencies to know ‘how things go on around here’ and
how work gets done. It does not call for IT professionals to
‘learn the trade’ so as to be able to do it.
Through creating a shared practice, co-realisation seeks to
capitalise on user-led processes of ‘design-in-use’. “This
requires crossing boundaries both within technology
production and between technology production and use ... If
technologies are to be made useful, practitioners of other
forms of work must take up the work of design ... that is
appropriating the technology so as to incorporate it into an
existing material environment and set of practices.” [7]
Given the right choice of technologies, co-realisation can
assume the characteristics of ‘bricolage’ – i.e., the rapid
assembly and configuration of ‘bits and pieces’ of software
and hardware [2] – led by users acting within their own
workplaces.
Co-realisation emphasises tightly coupled, ‘lightweight’
design, development and evaluation techniques that can be
easily and rapidly customised to create new systems and
artefacts for evaluation in use. Co-realisation therefore has
synergies and interesting parallels with agile software
development methods -- such as ‘just-in-time’ requirements
analysis (see, e.g, [5]) -- that have recently emerged as
radical alternatives to conventional software engineering
processes. For example, both co-realisation and agile
methods stress that the functionality delivered should only
be what is needed, and that functionality should accrete and
track work practices.
The essential practical step for co-realisation is how to
organise ‘being there’ through taking the technical work of

design and development into the user’s workplace. We have
been exploring the realities of doing co-realisation in case
studies set in two quite different work settings [4,8].

THE TOXICOLOGY WARD
We have been pursuing co-realisation in the busy
toxicology ward of a large hospital [4]. The toxicology
ward provides a specialised inpatient service that allows for
joint medical and psychiatric assessment of patients
following a suspected self-harm incident, for example, a
drug overdose. One of the toxicology ward’s functions is to
determine the need for further psychiatric and social care,
referring patients on as appropriate to other services. This
work is carried out by the psychiatric assessment team.
The project began with a six month period of
familiarisation with work practices through fieldwork. The
aim was to build relationships and understanding, an
essential predicate for taking on the role of ‘IT facilitator’1.
In the manner of more conventional participatory design
projects, design work then began with a series of group
meetings, supplemented when their schedules allowed, by
meetings with individuals. These centred on the discussion
of a series of potential IT applications, including a resource
database of information about services and contact details
of other professionals involved in patients’ care, the use of
speech recognition, and a minimal electronic patient record
system that could be used to recall basic information about
previous attendance.
Use of speech recognition was seen as a candidate solution
to a particular sort of problem, namely that of ‘improving
communication’ with general practitioners and other
professionals who subsequently take charge of the patient’s
care. At face value, the chosen speech recognition system
appeared to offer a good solution to this problem,
suggesting in its specifications that it is “faster than typing”
and that “dictating at 140 – 160 words per minute, a person
produces a three page document in less than six minutes”.
The idea of a speech recognition system implicitly promises
the possibility of speech transformed effortlessly into text
on the screen (which can be far from the case) and the
possibility of improved service provision as a consequence.
Accuracy and direct input are seen as the main features of
the system together with the notion that it would take
pressure off overworked secretaries and improve the
accuracy of the letters sent out by the clinic. Thus there are
sound reasons why the system might be introduced in the
clinic, which originate with the psychiatric assessment
team, and the role of the IT facilitator is to make the system
work.
Despite an initial conception of a computer system as a
congenial means of producing letters, the speech

1 We have adopted this term for the situated IT

designer/developer since it stresses the many and varied
roles implied by ‘being there’.

 2

recognition system is actually prone to the sorts of errors
ascribed to human transcribers. So, while the promise of a
technology may be clear, its use in practice may occasion
risks and hazards for those who will make use of it: time
may be lost when trying to produce a letter using speech
recognition, work may be lost if there are problems with the
system itself, the delivery of patient letters may be made
error prone in specific sorts of ways. There are also various
sorts of commitments that have to be made: to actually sit
down and grapple with the system during what are often
busy working days for the assessment team, to undergo the
periods of training required to become familiar with the
system and to enable the system to recognise their voice.
These commitments are set against the risk that the
‘experiment’ itself may come to nothing; using the system
may in the end not turn out to be a viable means of
producing letters in the fashion hoped for.
Development was characterised by the IT facilitator doing
development work in the workplace during times when the
assessment team would be undertaking assessments and
using the technologies that were under development. Thus
the IT facilitator was in a position to see the various IT
‘solutions’ in use in and as part of team member’s routine
activity. In this way the IT facilitator was at hand to advise
about use of the system, to troubleshoot problems, to
discuss possible enhancements and to have an eye for how
components of the system are actually used in practice as
and when such opportunities arise. Furthermore, by making
‘being there’ a priority in this way the facilitator was able to
demonstrate a commitment to producing technologies that
are in ‘working order’, that is, technologies that afford the
work of the psychiatric assessment team.
The team encounter a number of problems in the use of the
system, the main one being the inaccuracy of the
recognition, this leads to a disjuncture between the
anticipated benefits of the system and the system in use, so
much so that it becomes a point to celebrate when one
member gets a whole sentence correct: “that worked –
unbelievable – I managed a whole sentence”. The
inordinate amount of time spent using the system means
that it is a technology that is found to be difficult to use, and
often without any immediate benefits – indeed users can
often be seen to ‘struggle’ or ‘grapple’ with the software.
With use more serious faults emerged: the system has a
propensity to crash and a number of work arounds are
introduced in order that the work of dictating letters might
continue. The presence of the facilitator is also important,
as the facilitator acts as a guide and trouble-shooter, as well
as a repository of collective memory for the ‘proper’
procedure and for workarounds.
Over time, routine use of the speech recognition system
dropped off. Members cite the cumbersome nature of the
system and the inaccuracies as central to its abandonment in
favour of typing letters. Our method, however, treats this as
an opportunity as opposed to a risk and the agility of co-

realisation means that such switches can occur. The switch
to typing is not so much a risk to be managed but a
practical, situated, members’ choice of a work-affording
artefact.

ENGINECO
Work in the control room of EngineCo’s manufacturing
plant (producing diesel engines) involves various tasks like
monitoring the production process, adjusting parameters,
translating between the production process and the work of
various other professionals (e.g., quality control), and being
involved in continuous re-organisation and optimisation
activities that are required to constantly match the plant’s
working to outside requirements [8]. Because of this mix of
tasks, some of which require constant attention, there are
few opportunities for control room workers to participate in
systems development activities that are shaped along the
more traditional lines of project work. Although the social
relations in this setting are actually quite favourable in that
IT professionals are located on-site and communicate with
control room workers on a regular basis, most of the
development activities take place outside the control room
and workers do not play a role in them. The traditional
break-off point between requirements analysis and design
with all its attendant problems (e.g., a lack of
responsiveness) is maintained.
The IT facilitator’s activities in this setting aim at making
the development activities visible to and accessible for the
workers and involving them in the development activities as
much as is feasible. The facilitator involved in this project
maintains a sustained presence in the control room
(currently about four days a week) and works on a number
of systems that are used in control room work, most
prominently an electronic shift book application. Work on
IT systems in this project is occasioned by the everyday
activities in the control room. In one instance, the facilitator
observed a worker’s use of the Internet Explorer to browse
XML-formatted log files that are generated by a particular
system. Since there was no mechanism in place for
formatting the file, the display was quite difficult to read.
The IT facilitator became interested in this and offered to
try to come up with a solution that would display the same
data in the form of a table. Using off-the-shelf components,
a solution was created within a single day. The solution was
far from perfect but it allowed workers to look at the data in
a much easier to read format. Far more important, however,
is that this quick-n-dirty solution occasioned a discussion
(involving control room workers, the facilitator, and other
IT professionals) about the general usefulness of such an
application, possible extensions of it, of how this would
mesh with working practices, and what the effort/benefits
tradeoffs might look like.
The log files are routinely used to trace the trajectory of
individual engines or to trace occurrences of a particular
error or problem situation. An extension was created over
the course of the next days that allows workers to search for

 3

 4

occurrences of error codes and messages, or to find all
engines that have been worked on, on a particular day. The
development work took place within the control room,
occasioning many discussions about what the system should
look like and how it would be worked with. Importantly,
possible tradeoffs and shortcuts were discussed and
negotiated in context and they were immediately put to the
test by applying the system in the actual work setting. An
example is that the search function does not allow workers
to formulate queries of arbitrary logical form but it is
restricted to a simple conjunction of instances. It was
determined through in-situ discussion and “tinkering with
the system” that generic logical operators were not
immediately needed (although they were seen to be
generally useful) and thus a temporary trade-off was made
between development costs and immediate benefits.
Another discussion of effort/benefit evolved around the
question of how often people would have to deal with those
log-files and one of the IT workers said that she thought
that it would be needed in the future since the system
writing the logs was under constant development. This
points to the fact that co-realisation is part of a wider
context of systems development and use in the organisation,
and that it is ideally suited to cover the issues that are left
unaddressed by more formalised processes of IT design.

CONCLUSIONS
The problematic nature of contextual design requires that
those seeking to design, develop and evolve IT systems
cooperatively look elsewhere. As a candidate solution, we
have described co-realisation, a method of design and
implementation that treats user involvement as a sine qua
non. This is not simply because of some ‘political’
preference for user involvement but because we believe that
the development of work affording systems requires close
cooperation between all parties and not simply a process
redesign method that seeks to understand in order to
replace.
Co-realisation capitalises on membership, examining the
working division of labour and use of artefacts therein. It
enables members working together to assess the potential of
off-the-shelf technologies and to develop work affording
systems shielded from the imperatives of premature closure
found in ‘traditional’ systems development methodologies,
and to abandon what evidently become false starts. It gives
non-IT professionals first-hand access to the development
process, taking seriously the ideas of participatory design.
Most importantly, co-realisation enables accountability of
design activity.
Co-realisation attends to the design of work and work
affording artefacts as a pair – the way that the system is
designed is reflexively related to the configuration of work
and it is possible for members to suggest changes in both
system and practice. That is to say, the system and the work
are potentially co-realised in a reflexive relationship: one
can change the system and change work practice –
something that we find problematic in the work of process

driven work such as that offered in contextual design. The
point is that contextual design takes a superficial look at
work practice and aims to develop new systems based on
this. We cannot see that the rather brief engagement allows
contextual designers to become members, let alone to have
the sense whereby they can do the kinds of work we have
described above. Again, this speaks to our feeling that the
ethnographic dimension of contextual design is a ‘ticket’ as
opposed to a thoroughgoing ethnographic engagement of
the kind that ethnographers (even those who espouse quick
and dirty ethnographies) would recognise.
Finally, it is possible to say that work reconfiguration and
the implementation of IT systems go hand in hand in
contextual design. This may be what is demanded in some
As we have demonstrated in our case studies, the need in
many instances is surely to afford work as opposed to
reconfiguring it. With this principle firmly in mind, co-
realisation recognises the inevitability of change and
regards it as an integral component of creating work
affording systems.

ACKNOWLEDGEMENTS
We would like to thank staff from North British Hospital
and EngineCo for their participation. This work is funded
by the UK EPSRC and the Dependability Inter-disciplinary
Research Collaboration (DIRC).

REFERENCES
1. Beyer, H. and Holtzblatt, K. Contextual Design:

Defining Customer-Centred Systems. Morgan
Kaufmann Publishers, 1998.

2. Büscher, M., Mogensen, P. and Shapiro, D. Bricolage as
a Software Culture. Proceedings of the COSTA4
Workshop on Software Cultures (Vienna, Dec. 1996),
Technical University of Vienna.

3. Button, G. The ethnographic tradition and design.
Design Studies, vol. 21(4), July, 2000

4. Hartswood, M., Procter, R., Rouchy, P., Rouncefield,
M. and Sharpe, M. Being There and Doing IT in the
Workplace: A Case Study of a Co-Development
Approach in Healthcare. Proceedings of Participatory
Design Conference, (NY, Dec. 2000), p. 96-105.

5. Martin, R. eXtreme Programming Development
Through Dialog. IEEE Software, 17 (4), 2000.

6. Preece, J., Rogers, Y. and Sharp, H. Interaction Design:
beyond human-computer interaction. John Wiley &
Sons, 2002.

7. Suchman, L. Located Accountabilities in Technology
Production. In D. MacKenzie and J. Wajcman (eds.)
The Social Shaping of Technology (2nd Ed.), Open
University Press, 258-265, 1999.

8. Voß, A., Procter, R., Williams, R. Innovation in Use:
Interleaving day-to-day operation and systems
development. Proceedings of Participatory Design
Conference, (NY, Dec. 2000), p. 192-201.

	ABSTRACT
	Keywords

	INTRODUCTION
	CONTEXTUAL DESIGN
	CO-REALISATION
	THE TOXICOLOGY WARD
	ENGINECO
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

