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abstract

We describe a model of dynamic pollution abatement choices with heterogeneous
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1 Introduction

This paper investigates how subsidies to environment improving investment can be

used to overcome dynamic consistency problems in environmental policy choices, in

the presence of dynamic pollution abatement, heterogeneous agents, and governments

that pursue both e±ciency and distributional objectives.

There is ample evidence that pollution abatement is closely linked to investment

and innovation. Firms are committed to certain modes of production in the short

run, and changing production methods typically involves some investment in R&D

and new equipment (Carraro and Siniscalco, 1994; Popp, 1998). At the same time,

environmental taxes can generate unwanted distributional e®ects (Johnson et al., 1990;

Poterba, 1991; Jorgenson et al., 1992),1 which, due to information-related constraints,

cannot easily be undone through compensation.2

When policymakers care about distribution, the presence of dynamic abatement

decisions can give rise to a policy commitment problem. This is because, although

emission taxes are required to generate incentives for environmental innovation, once

innovation has taken place, a policymaker may ¯nd it optimal ex post to lower them

in order to minimize distributional impacts; as private agents recognize the ex-post

incentives the policymaker faces, the promise of high future emission taxes will not be

credible. This commitment problem will, in turn, force policymakers to achieve their

objectives by relying more heavily on investment subsidies, which are paid immediately

and therefore do not su®er from the same dynamic inconsistency problem that a®ects

emission taxes.3

While time inconsistency problems in tax policy choices have been examined in

some detail, especially with reference to capital income taxation (see, e.g., Fischer,

1980; Chari and Kehoe, 1990; Xiaodong, 1995), much of the existing literature on

policy commitment has focused on e±ciency considerations only. A recent exception

is Pearce and Stacchetti (1997), who analyze time-consistent taxation in a context

where a government is interested both in e±ciency and equity. Dynamic inconsistency

problems in environmental policies have also so far received relatively little attention

in the literature. Biglaiser, Horowitz, and Quiggin (1995) examined dynamic permit

regulation when ¯rms can behave strategically against the regulator; in their structure,

emission permits are time inconsistent, but the inconsistency problem can be solved by

the use of emission taxes. Marsiliani and RenstrÄom (1998) have analyzed the role of tax

earmarking of environmental taxes to overcome dynamic inconsistency in environmen-

tal taxes. More recently, Gersbach and Glazer (1999) have examined the \investment

hold-up" problem when output reductions are socially undesirable and regulators can-
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not commit to a certain level of stringency in environmental regulation. But, to the best

of our knowledge, the implications of distribution-related time-consistency constraints

for the choice between taxes and subsidies have not been explored before.

In the next section, we describe a two-period model of pollution abatement with

heterogeneous agents having di®erent consumption requirements of a polluting good.

Pollution abatement takes the form of an alternative production method which requires

a special, additional investment in the ¯rst period, with the associated rents being dis-

persed unequally between the two agents' types. In the model, environmental policies

a®ect distribution both through the consumption side of the economy|via their im-

pact on the price of the polluting good|and through the production side|via their

e®ects on pro¯ts from abatement activities.

Section 3 examines the optimal choice of emission tax or abatement subsidy. Both

generate incentives for pollution abatement, and both have an adverse distributional

e®ect, due to the government's inability to disperse revenues so as to compensate

losers. Because of these distributional e®ects, the second-best optimal level of emission

taxation|even when the government can commit to future policies|will lie below

the e±cient level. But in the absence of a commitment mechanism, the presence of

a ¯rst-period, abatement-related, private investment choice gives rise to a dynamic

inconsistency problem in policy choices, which results in the time-consistent choice of

emission taxes lying below the second-best choice.

Section 4 analyses the policymaker's problem when abatement incentives can also be

a®ected by a subsidy to abatement-related investment (rather than to abatement itself).

This is a less e±cient instrument in comparison with an emission tax or abatement

subsidy|because it distorts input choices|but it may be superior on distributional

grounds; consequently, even when commitment is possible, a second-best policy will

involve a mix of emission taxes and investment subsidies. If, however, commitment is

not possible, the time-consistent choice will involve a level of investment subsidization

which departs from the second-best choice. Nevertheless, we ¯nd that, if abatement

technologies exhibit constant elasticity and pro¯t shares are identical across the two

agent types, the consistent and inconsistent optimal policies will coincide; otherwise,

the comparison between the consistent and inconsistent subsidy is generally ambiguous.

It is only when distributional e®ects stem uniquely from the distribution of abatement

related pro¯ts, and emission taxes and abatement subsidies are substitute instruments

at the margin from the point of view of the policymaker, that the consistent subsidy, as

conjectured above, will unambiguously lie above the corresponding inconsistent choice.
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2 A Model of Dynamic Abatement Choices

This section describes a stylized model of dynamic abatement choices with heteroge-

neous agents. There are two time periods, 1 and 2. Two goods are produced in the

second period, a clean good and a pollution generating good. Each unit of the latter

generates one unit of emissions, and can be produced at a constant marginal cost of

unity. Thus, if the government levies an emission tax of t per unit of emissions, its

gross-of-tax price is

p = 1 + t: (1)

2.1 Investment and Abatement

There exists an alternative method for producing a perfect substitute of the polluting

good without generating emissions, but this involves a marginal cost in excess of unity

and requires an additional investment, N , in period 1. Let V be the amount of the

good produced using this clean technology, and suppose that its production in period

2 requires one unit of income (as its \dirty" counterpart does), plus an additional cost

which depends positively on V and on the unit (opportunity) cost of N , denoted with

q.4 Thus, the long-run cost of producing an amount V can be written as

bc(V; q) = V +H(V; q): (2)

In order to develop our argument, we will assume technologies to be homothetic|i.e.,

such that the cost minimizing optimal combination of N and other inputs for given

prices is independent of the level of abatement V|and costs to be isoelastic (i.e., the

output elasticity of marginal abatement costs, ´ ´ HV V V=HV , is constant) and convex

in V (HV V > 0). This implies the following representation:

H(V; q) ´ h(q)V 1+´; (3)

where ´ > 0, h0(q) > 0, h00(q) < 0. Note that Hq = h0(q)V 1+´ > 0 represents

compensated demand; thus concavity of h(¢) corresponds to the standard requirement
that the compensated own-price e®ect, Hqq, be negative. Homotheticity also implies

HqV > 0. Finally, we shall also assume h(¢) to be isoelastic, implying that ! =

h00(q)q=h0(q) is constant.

Using Shephard's Lemma, and employing subscripts to denote derivatives, the in-

direct demand for N is given by

fN(V; q) = Hq: (4)
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Since each unit of the \clean" good can sell at a price of p, the revenue from producing

and selling V units is pV , and the associated pro¯ts are

¦(V; p) = tV ¡H(V; q): (5)

The ¯rst-order condition for an interior pro¯t-maximizing choice of V is

t¡HV = 0; (6)

Convexity of H(V; q) in V guarantees that the second-order conditions for an optimum

are satis¯ed.

Condition (6) simply states that pollution abatement will take place up to the

point where marginal abatement costs equal the marginal bene¯t from abatement (the

tax). Notice that if t = 0, we have V = 0, meaning that no abatement will take

place. Condition (6) de¯nes V and indirectly N|via (4)|as functions bV (t; q) and
cN(t; q) ´ fN [ bV (t; q); q] of t and q. Comparative statics e®ects are:

@ bV
@t

=
1

HV V
> 0; (7)

i.e. the amount of pollution abatement increases with the tax;

@ bV
@q

= ¡@
cN
@t

= ¡HqV
HV V

< 0; (8)

i.e. the amount of pollution abatement decreases with the price of investment, and the

amount of investment increases with the tax;

@cN
@q

= Hqq ¡ (HqV )
2

HV V
< 0; (9)

i.e. investment is negatively related to its price.

The above analysis describes the \long-run" choice by producers. If we focus,

instead, on the \short-run" choice of V|made in the second period after a certain

level of N has been installed in the ¯rst period|then the short-run cost of producing

an amount V becomes

bbc(V; q;N) = V +H[V; q¤(V;N)]¡ [q¤(V;N)¡ q]N; (10)

where q¤(V;N) is the shadow price of N , which is the value that solves

cN [V; q¤(V;N)] = N: (11)
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The second-period optimal choice of V is then characterized by the interior ¯rst-

order condition

t¡HV + (N ¡Hq)
@q¤

@V
= 0: (12)

Condition (12) de¯nes V as an implicit function
bbV (t; N) of t and N . Note that

@q¤

@V
= ¡HqV

Hqq
; (13)

i.e. the shadow price of investment increases with the level of abatement. The other

comparative statics e®ects are as follows:

@
bbV
@t

=
1

HV V + ¡
; (14)

where

¡ ´ @ [(N ¡Hq)HqV =Hqq]
@V

= ¡(HqV )
2

Hqq
> 0; (15)

and

@
bbV

@N
=

1

HqV
> 0: (16)

It is straightforward to establish the following result (all proofs are given in the

Appendix):

Lemma 1: The short-run abatement response to a marginal increase in the emission

tax, @
bbV =@t, is less than the long-run response, @ bV =@t.

The above result follows from basic principles: abatement choices are more in°exible

in the short-run, when investment cannot adjust. This is the mechanism at the heart

of the policy inconsistency problem that we describe in the next section.

2.2 Consumption and Damage

There are equal numbers of two consumer types, A and B, living in the second period.

Consumers of each type are endowed with exogenous income levels respectively equal

to Y A, Y B. We assume that in the second period individuals must consume ¯xed given

amounts, XA = ±AX, XB = ±BX (±A+±B = 1), of the pollution generating commodity
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(or of its clean substitute), with the rest of their disposable income being available for

consumption of the other good.5 Each of the two consumer groups receives a share µi

(i = A;B; µA + µB = 1) of the pro¯ts from abatement activities. Although stylized,

the above speci¯cation captures the two main channels through which environmental

policies a®ect distribution, namely, di®erences in consumption patterns and di®erences

in income patterns.

Environmental emissions are equal to

E = X ¡ V ; (17)

and tax revenues from emission taxes are

R = tE: (18)

We assume that these are returned to the two consumer groups in lump-sum fash-

ion and in equal shares. This assumption re°ects the idea that tax policies must be

anonymous and that there exists no feasible, incentive-compatible means of identifying

the two consumer types.6 In this speci¯cation there are no other taxes and no public

spending. Thus, our analysis abstracts from any \double-dividend" considerations|

whereby, in the presence of a revenue requirement ¯nanced by distortionary taxes, the

social marginal value of environmental tax revenues exceeds unity.

Consumers are also a®ected directly by environmental emissions. Because we wish

to focus on the distributional e®ects of abatement activities|leaving aside any direct

distributional impacts associated with di®erent preferences for environmental quality

across consumers|we assume that the valuation of damage is the same for all individ-

uals, and equal to

D(E)=2; (19)

with D0 > 0 and D00 > 0. We also adopt an additive formulation for the impact

of damage from emissions, where utility can be written as e®ective consumption of

goods other than the polluting good|which is equal to income, gross of pro¯ts and

tax revenues received and net of the cost of purchasing the required amounts of the

polluting good, XA and XB|minus environmental damage:

U i = Y i + µi¦¡ p±iX + [R¡D(E)]=2; i = A;B: (20)

In the next two sections, this simple model structure is used to investigate the role

of alternative tax-based incentive mechanisms, and their implications for policy choices

when policy commitment is infeasible.
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3 Consistent and Inconsistent Policy Choices: Emission Taxes

3.1 The Policymaker's Problem

Suppose that the only instrument available to the policymaker is an emission tax, and

that, without loss of generality, the cost of investment is unity, i.e. q = 1.

We shall assume that policymaker's objective is the maximization of a symmetric,

strictly concave social welfare function:7

W = W (UA; UB): (21)

Maximization of W by choice of t yields
"µ
1

2
¡ ±A

¶
X ¡

µ
1

2
¡ µA

¶
V +

D0(X ¡ V )¡ t
2

@ bV
@t

#
@W

@UA

+

"µ
1

2
¡ ±B

¶
X ¡

µ
1

2
¡ µB

¶
V +

D0(X ¡ V )¡ t
2

@ bV
@t

#
@W

@UB
= 0; (22)

where V = bV (t; 1). The ¯rst two terms in the square brackets of each of the two terms
on the left-hand side of (22) re°ect distributional e®ects stemming from nonuniform

consumption and ownership patterns. If ±i = µi = 1=2; i = A;B, these two terms

disappear and the remaining terms imply t = D0(E), the e±cient choice.

Throughout the rest of our analysis, we shall also maintain the following assump-

tion:

Y A ¡ ±AX = Y B ¡ ±BX: (23)

This is a normalization condition, whose role is to ensure that in the absence of environ-

mental emissions there is no independent redistributive role to play for environmental

taxes; formally, (23) implies that, if D0(E) = 0, a choice of t = D0(E) = 0 results in

UA = UB, and is thus optimal according to (22); i.e., in the absence of damage, the

optimal tax would be zero.

In the second period, once investment decisions have been made and N is ¯xed,

social welfare maximization yields
2
4

µ
1

2
¡ ±A

¶
X ¡

µ
1

2
¡ µA

¶
V +

D0(X ¡ V )¡ t
2

@
bbV
@t

3
5 @W
@UA

+

2
4

µ
1

2
¡ ±B

¶
X ¡

µ
1

2
¡ µB

¶
V +

D0(X ¡ V )¡ t
2

@
bbV
@t

3
5 @W
@UB

= 0; (24)
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where V =
bbV (t; N). In an equilibrium where investors anticipate policy choices, N will

also satisfy the \rational-expectations" condition

N = cN(t; 1): (25)

This says that N will be chosen in the ¯rst period on the basis of the anticipated

tax rate t, resulting in a choice of abatement level which coincides with the optimal

\long-run" choice for the given t, i.e., V = bV (t; 1).
Thus, the only di®erence between (22) and (24) is in the expressions @ bV =@t and

@
bbV =@t, re°ecting the di®erence between short- and long-run responses of pollution
abatement to tax changes: condition (24) identi¯es the consistent (i.e., subgame per-

fect) optimal choice of tax, bbt, while (22) characterizes the inconsistent choice, bt, which
can only be an equilibrium outcome if the policymaker can credibly commit to it in

period 1. If ±i = µi = 1=2 (i = A;B), the ¯rst-best choice of t = D0(E) will also satisfy

(24), and thus will be time-consistent, but if there are distributional impacts from the

tax, the consistent and inconsistent optimal rates will diverge.8

3.2 Comparison of Consistent and Inconsistent Policy Choices

In order to compare the two outcomes, we can express ±B as 1¡ ±A and µB as 1¡ µA,
and rewrite (22) and (24) as

D0(X ¡ V )¡ t
2

@ bV
@t

Ã
@W

@UA
+
@W

@UB

!

=
·µ
±A ¡ 1

2

¶
X ¡

µ
µA ¡ 1

2

¶
V

¸ Ã
@W

@UA
¡ @W

@UB

!
; (26)

and

D0(X ¡ V )¡ t
2

@
bbV
@t

Ã
@W

@UA
+
@W

@UB

!

=
·µ
±A ¡ 1

2

¶
X ¡

µ
µA ¡ 1

2

¶
V

¸ Ã
@W

@UA
¡ @W

@UB

!
: (27)

Let us ¯rst focus on the case µA = µB = 1=2, ±A 6= ±B. First notice that @ bV =@t > 0
and @

bbV =@t > 0. If ±A > 1=2, because of (23) a choice of t > 0 implies UA < UB, and
so @W=@UA > @W=@UB; if, on the other hand, ±A < 1=2, we have UA > UB, implying

@W=@UA < @W=@UB; either way, the right-hand side of both (26) and (27) will be
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positive, implying that, due to the presence of a distributional objective, both the

consistent and the inconsistent optimal tax rates lie below the social marginal damage

D0(E). The same is true if µA 6= µB, and ±A = ±B = 1=2. If both µA 6= µB, and

±A 6= ±B, however, we cannot exclude that both the consistent and the inconsistent

optimal tax rates could lie above D0(E).

When D0(E) > t, however, it can be shown that the inconsistent choice unambigu-

ously lies below the consistent choice:

Proposition 1: If only demand shares or if only pro¯t shares are unequal across indi-

viduals, the consistent choice of emission tax lies below the inconsistent choice.

Thus, when the distributional impacts of emission taxation arise exclusively from

either the production side or the consumption side of the economy, they will not only

cause the welfare maximizing tax to lie below the e±cient level, but also cause a

policy commitment problem, resulting in a time-consistent choice of tax lying below

the corresponding second-best level.

If distributional e®ects on income and consumption are both simultaneously present,

no general conclusion is possible. This is because, when both ±A 6= ±B and µA 6= µB, an
increase in the tax above the e±cient level t = D0(E) could improve income distribution

(if, for example, ±A > ±B and µA > µB) at the expense of e±ciency.9 Consequently,

the post-investment optimal policy could involve a higher tax than the second-best

consistent policy.

Note that in this model, where the demand for the pollution generating good is ¯xed,

an emission tax with ±A = ±B = 1=2 is equivalent to a scenario where ±A 6= ±B and

where an abatement subsidy (a subsidy to V ) is used in place of an emission tax: this is

because an abatement subsidy is distributionally neutral with respect to di®erences in

consumption patterns, although it will still generate distributional e®ects if abatement

pro¯ts shares are unequal. Thus, the above analysis also implies that, if only demand

shares are unequal across consumers, both the consistent and inconsistent choice will

coincide with the e±cient abatement subsidy. But if pro¯t shares are unequal, the

consistent choice of abatement subsidization will be less than the inconsistent choice.

4 Subsidies to Environmental Investment

In principle, emission taxes, if feasible, are a perfectly adequate means of generat-

ing appropriate incentives to reduce environmental emissions, whether abatement is
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achieved through technical innovation or otherwise (Baumol and Oates, 1988). Yet,

we observe many countries providing other inducements, typically in the form of direct

tax incentives for environment-related investment.10 It is well understood that such

policies are not ¯rst-best as they distort input choices. Furthermore, tax incentives

tend to be imperfectly targeted, due to the impossibility of distinguishing between

true environment-related investment and other forms of investment, and di®erentiat-

ing tax preferences according to the speci¯c environmental impacts of di®erent types

of investment (typically a single rate of subsidy is used for all qualifying forms of

investment).

In some of the environmental literature, the use of investment incentives for inno-

vation, either in isolation or in combination with emission taxes, has been associated

with the existence of non-competitive environments. Ferrante (1996), for instance, has

developed a model with environmental externalities, technical change, and Cournot

competition. His main ¯nding is that a subsidy to research and development either

alone or together with an emission tax would be superior to an emission tax only. A

similar argument is developed by Kim and Chang (1993). In contrast, in this paper

we characterize the use of investment subsidies as re°ecting distributional concerns.

4.1 The Policymaker's Problem

Suppose that abatement choices can also be in°uenced by a subsidy to environmental

investment, N , paid in the ¯rst period (when investment occurs) at a rate s. Then the

net-of-subsidy price of investment becomes

q = 1¡ s: (28)

Accordingly, the pro¯t-maximizing choice of N and V will depend on s as well as on

t. Net tax revenues become

R = tE ¡ sN: (29)

Given (28), the functions for V and N de¯ned by condition (6) now also involve s.

The relevant comparative statics e®ects are as follows:

@ bV
@s

= ¡@
bV
@q

=
HqV
HV V

> 0; (30)

subsidization;

@cN
@s

= ¡@
cN
@q

= ¡Hqq +
(HqV )

2

HV V
> 0; (31)
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i.e. clean production and investment both increase with the level of investment subsi-

dization.

The ¯rst-order conditions for an interior welfare-maximizing choice of t and s are

b­t ´
"µ
1

2
¡ ±A

¶
X ¡

µ
1

2
¡ µA

¶
V +

D0(X ¡ V )¡ t
2

@ bV
@t

¡ s

2

@cN
@t

#
@W

@UA

+

"µ
1

2
¡ ±B

¶
X ¡

µ
1

2
¡ µB

¶
V +

D0(X ¡ V )¡ t
2

@ bV
@t

¡ s

2

@cN
@t

#
@W

@UB
= 0;(32)

and

b­s ´
"
¡

µ
1

2
¡ µA

¶
N +

D0(X ¡ V )¡ t
2

@ bV
@s

¡ s

2

@cN
@s

#
@W

@UA

+

"
¡

µ
1

2
¡ µB

¶
N +

D0(X ¡ V )¡ t
2

@ bV
@s

¡ s

2

@cN
@s

#
@W

@UB
= 0: (33)

The subsidy is a second-best instrument as it distorts input choices in abatement

activities: with ±i = µi = 1=2 (i = A;B), a ¯rst-best choice will involve t = D0(X ¡V )
and s = 0. If, however, there are distributional e®ects from taxes, a solution to (32)-

(33) will generally involve s 6= 0, and so tax incentives to investment will have a role
to play in a second-best environmental policy mix.

As for the case where subsidies are not available, little speci¯c can be said when

µA 6= µB, ±A 6= ±B. When µA 6= µB, ±A = ±B or µA = µB, ±A 6= ±B, one can verify that,
when s = 0 and for the level of t that satis¯es b­t = 0, the expression b­s is positive,11

implying that the consistent choice of s will rise above zero. For s > 0, however, the

sign of b­ts ´ @ b­t=@s is ambiguous, implying that the consistent tax can fall or increase
relative to a scenario where s = 0 (and it is indeed possible to ¯nd examples where this

occurs). Thus, the presumption that, when either pro¯t shares or consumption shares

are unequal, the consistent optimal policy choice will involve substitution of emission

taxes with investment subsidies is not generally valid.

The reason for this ambiguity is as follows. An increase in the level of subsidy

directly encourages abatement and thus reduces the need for emission taxes, which

should then result in lower taxes. But from (7), we have @2V̂ =(@t@s) > 0, implying

that an increase in the subsidy also raises the responsiveness of abatement choices to

marginal tax increases, making them relatively more attractive to the policymaker.

Although, this is only a \second-order" e®ect (appearing in the expression for b­ts), in
principle it can more than o®set the negative \¯rst-order" e®ect on the optimal level
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of tax, making the tax and subsidy complementary rather than substitute instruments

from the perspective of the policymaker.

If we now focus on a time-consistent policy choice sequence, then, given s and N ,

a second-period optimal choice of t identi¯ed by the necessary ¯rst-order condition

bb­t ´
2
4
µ
1

2
¡ ±A

¶
X ¡

µ
1

2
¡ µA

¶
V +

D0(X ¡ V )¡ t
2

@
bbV
@t

3
5 @W
@UA

+

2
4

µ
1

2
¡ ±B

¶
X ¡

µ
1

2
¡ µB

¶
V +

D0(X ¡ V )¡ t
2

@
bbV
@t

3
5 @W
@UB

= 0: (34)

The optimal choice of subsidy prior to the choice of N taking place is then found as

the solution to the problem of maximizingW subject to (34) and to the forward-looking

condition (25); this yields the necessary condition

bb­s ´ b­s + b­t
bb­ts
bb­tt

= 0; (35)

where
bb­tt ´ @

bb­t=@t. In conjunction with (34) and (25), the above identi¯es an optimal,
time-consistent choice of emission tax and investment subsidy.12

Note that, if we totally di®erentiate (34) with respect to t and s, we obtain

dbbt
ds
= ¡

bb­ts
bb­tt
; (36)

which is the negative of the ratio that appears on the right-hand side of (35). Thus,

the consistent optimal choice of investment subsidization depends on how the subsidy

a®ects the second-period consistent choice of t at the margin. In turn, since the de-

nominator is negative (from the second-order conditions for an optimum), the sign of

(36) agrees with the sign of
bb­ts. When

bb­ts < 0, the tax and the subsidy are marginal
substitutes, i.e., a marginal increase in the tax induces a decrease in the consistent

optimal level of emission taxation; otherwise, the opposite will be true.

4.2 Comparison of Consistent and Inconsistent Policy Choices

When µA = µB, a second-best policy choice will generally involve a non-zero invest-

ment subsidy.13 However, it can be shown that in this case the two sets of ¯rst-order

conditions become equivalent, implying that the consistent and inconsistent choices

coincide:
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Proposition 2: When the pro¯ts from abatement activities are uniformly distributed

across consumer groups, the optimal time-consistent mix of emission taxes and invest-

ment subsidies coincides with the inconsistent choice.

Thus, when pro¯ts shares are equal across consumers (meaning that distributional

e®ects arise only from the consumption side of the economy), not only does an invest-

ment subsidy have a distributional role to play, but it e®ectively eliminates the need

for policy commitment. The reason for this result can be more easily understood if

one compares the expressions for (32) and (34). The term (s=2)@N̂=@t in (32) rep-

resents a marginal e±ciency cost associated with tax-induced changes in investment,

which is due to the subsidy driving a wedge between the social and private cost of

investment. This term, however, is absent from the short-run optimality condition

(34)|under which N is constant|making tax increases relatively more attractive ex

post (i.e., after N has been installed) on e±ciency grounds. In the constant elasticity

case with µA = µB, for the second-best level of subsidy that satis¯es (33), this posi-

tive e®ect exactly o®sets the ex-post incentive to reduce emission taxes because of the

lower tax responsiveness of short-run abatement choices. As a result, the consistent

and inconsistent choices are the same. E®ectively, the presence of the subsidy makes

marginal increases in emission taxes distortionary ex ante but not ex post, which can

be exploited to bring credibility to the long-run second-best policy choice.

If pro¯t shares are unequal, on the other hand, the above equivalence between the

consistent and inconsistent optimal policy mix will not hold even in the isoelastic case.

Furthermore, the comparison between the two solutions is generally ambiguous. The

only case for which it is possible to obtain an unambiguous prediction is when µA 6= µB
and ±A = ±B,14 and when the tax and subsidy are substitutes:

Proposition 3: If the consistent optimal policy choice involves positive subsidization

of investment, and if the consumption of the polluting good is uniformly distributed

across consumers and the tax and subsidy are policy substitutes at the margin, then,

were commitment feasible, the policymaker would ¯nd it optimal to raise the tax and

to lower the subsidy in comparison with the consistent choice.

The wording used in the above statement should make it clear that this is only

a local result, characterizing the policymakers' incentives \around" the inconsistent

choice. Under mild monotonicity conditions, this result also applies to the comparison

between the consistent and inconsistent choice, i.e., the inability to commit to second-
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period taxes will result in a higher subsidy and a lower tax relative to the second-best

choice.

This outcome can be illustrated with the help of a simple parameterized example.

Let X = 1=2, Y B = 1, Y A = 3=2, D(E) ´ E, h(q) ´ 2q1=2, ´ = 1, W (UA; UB) =

UAUB. The ¯rst-best, e±cient choice is t = D0(E) = 1, s = 0. Suppose that µA =

µB = 1=2 and ±A = 1 (with ±B = 0); then, the inconsistent and consistent optimal

choices are both bt = bbt ¼ 0:46 and bs = bbs ¼ 0:61.15 With Y B = Y A = 1, ±A = ±B = 1=2

and µA = 1 (µB = 0), the inconsistent optimal choice is bt ¼ 0:89 and bs ¼ 0:11; while

the consistent choice is bbt ¼ 0:85 < bt and bbs ¼ 0:17 > bs.16

Intuitively, the di®erence between this latter case and the case with equal pro¯t

shares lies in the fact that subsidies have here a direct e®ect on distribution (since

they directly a®ect pro¯ts and hence the distribution of income), whereas with µA =

µB the distributional e®ect of subsidies is only indirect (through their impact on tax

choices). Formally, when µA 6= µB, (33) involves an additional negative term (¡(1=2¡
µA)N(@W=@UA) ¡ (1=2 ¡ µA)N(@W=@UB)= ¡(1=2 ¡ µA)N(@W=@UA ¡ @W=@UB) <
017), re°ecting a direct distributional cost of marginal subsidy increases. This, in

turn, leads to a lower second-best subsidy, and, hence, to ex-ante tax increases having

a lower marginal e±ciency cost (the term (s=2)@N̂=@t in (32)) in comparison with

ex-post marginal tax changes. As a result, the second-best subsidy is insu±cient to

eliminate incentives to lower taxes ex post, and a commitment problem remains.

Finally, if both distributional e®ects are present, i.e. µA 6= µB and ±A 6= ±B, or

if taxes and subsidies are viewed as complementary instruments by the policymaker

at the margin, the nature of the consistent solution relative to the ¯rst-best e±cient

policy cannot be characterized in general. Furthermore, the relationship between the

consistent and inconsistent choices becomes ambiguous, and it is thus possible for the

consistent subsidy to lie below the inconsistent one, with the reverse applying to the

tax. This possibility can again be illustrated using our previous parameterized example.

If we make ±A = 1 and µA = 1 (with Y B = 1, Y A = 3=2, ±B = 0 and µB = 0), we

obtain bt ¼ 0:58, bs ¼ 0:52; and bbt ¼ 0:62 > bt, bbs ¼ 0:47 < bs, i.e. the consistent subsidy
lies below the corresponding inconsistent level.

To summarize, if investment subsidies are used, and the distributional e®ects of

taxes are restricted to the demand side, consistent and inconsistent policies choices

will coincide. Otherwise, consistent and inconsistent choices will diverge, but the con-

ditions under which the consistent choice of subsidy is unambiguously higher than the

corresponding inconsistent level|with the reverse being true for the tax|are quite

restrictive, even in a model which, admittedly, is already quite restrictive. A more gen-
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eral model, incorporating, for example, endogenous demand choices, income e®ects, or

general substitution patterns between environmental quality and private consumption,

would introduce additional dimensions of choice and, potentially, additional sources of

ambiguity.

5 Concluding Remarks

This paper has examined how investment subsidies could be used to alleviate distribution-

related commitment problems in environmental policies, when pollution abatement has

a dynamic dimension.

Investment subsidies may be used in conjunction with emission taxes or abatement

subsidies in order to o®set the distributional e®ects of ¯rst-best policies. Furthermore,

when distributional impacts only involve the consumption side of the economy, our

analysis suggests that investment subsidies, thanks to their distortionary e®ects on

long-run investment choices, may be able to fully eliminate the need for policy com-

mitment. In contrast, when environmental taxes and subsidies a®ect the distribution

of income, a dynamic consistency problem in environmental policy choices remains,

and the attainment of a second-best policy mix is hindered by a government's inability

to commit to future taxes.

Our simple model structure could be extended in several directions. As we have

already mentioned, the demand for the polluting good could be made endogenous, and

the implications of budgetary constraints in the presence of other distortionary taxes

could be considered.18 Our model could also be augmented by an explicit formalization

of incentive-constrained compensation schemes and political choice mechanisms, and

our analysis extended to an in¯nite-horizon setting.19 Finally, a government's inability

or unwillingness to commit could be given a formal foundation as an optimal response

to uncertainty about the damage associated with environmental emissions, whereby

there exists a positive \option value" in delaying commitment until new information

becomes available.

Before concluding, a few remarks are in order with respect to a key premise of our

analysis, namely that commitment to future policies is not feasible. Is there indeed

a commitment problem in environmental policy making? Experience in both the US

and elsewhere|with a tough environmental policy stance by political candidates and

incumbents often being followed by a softer line ex post|seems to suggest that credi-

bility is indeed a problem for environmental regulators. One could argue, however, that

mechanisms for committing to future taxes are available. A possible approach, which
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is now widely adopted in matters of monetary policy, is to appoint an independent

body, relatively detached from the short-run °uctuations of the political process, and

transfer decision-making authority to it. Other institutional mechanisms for achieving

commitment may relate to the budgeting process, e.g., if revenues from environmental

taxes are pre-committed or earmarked (Marsiliani and RenstrÄom, 1998).

International agreements may also be instrumental in achieving commitment. There

has been considerable debate on the need for international coordination of environmen-

tal policies in the presence of transboundary e®ects or \eco-dumping" through trade

and investment. The European Carbon Tax proposal which was tabled in the early

1990s (Agostini et al., 1992; Carraro and Siniscalco, 1993) was a re°ection of this de-

bate. Plans for a unilateral but coordinated European response to global warming were

subsequently shelved in favour of a global treaty approach, which has resulted in the

December 1997 Kyoto agreement, and whereby individual countries agree to country-

speci¯c emission cuts to be achieved by independent national policies. Given that such

a coordinating agreement has now been reached, is there any scope left for European

countries to delegate competence on environmental policy to the center? Our analysis

suggests that the answer may be yes. A European carbon tax may still be needed as

a means of overcoming a policy commitment problem faced by national governments:

without delegation to a centralized and independent institution, emission taxes as a

means to support the Kyoto agreement could be fragile.

But even if means of commitment are available, there may be other reasons why they

are not used. First, in the presence of technology shocks or other forms of uncertainty

(e.g., about the costs and bene¯ts of environmental protection), it may be desirable

for environmental regulation to remain °exible. Furthermore, even if commitment is

desirable and institutionally feasible, it may not be politically feasible. Commitment

to certain policies e®ectively involves their removal from the political process; if there

is disagreement among voters about the desirability of environmental policies, their

removal from the electoral debate could damage the very political parties that have

been elected on a relatively more environmentally focused platform, by weakening their

chances for re-election. Thus, due to the still limited degree of political consensus on

environmental issues, this separation may be di±cult to achieve at this point.

Notes
1Distributional e®ects are particularly signi¯cant in the case of greenhouse emissions, less

so with other types of emissions.
2For example, achieving compensation through lump-sum transfers (so as not to interfere
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with abatement incentives) would require full information about individuals' characteristics.
Pirttila (1997) rationalizes the practical di±culties of implementing compensation mecha-
nisms as stemming from asymmetric information and adverse selection. Brett and Keen
(1997) view earmarking of environmental taxes|which is practiced both in the United States
and in some European countries|as a means of getting around the di±culties associated with
compensation.

3Parry (1998) examines the e±ciency implications of introducing environmental subsidies
when tax distortions are present.

4As will be discussed later, q can vary depending on the presence of investment subsidies;
for the time being, we shall take q as exogenous.

5Assuming a ¯xed level of demand for the polluting good will su±ce for establishing our
results. As we note later, the endogenization of demand choices would introduce further
dimensions of choice that would combine with those described in our analysis.

6In a model with explicit information-related constraints, this would correspond to the ex-
treme scenario where the optimum mechanism is one that supports a pooling equilibrium; in
less extreme cases, separation may be feasible but costly, implying that incentive-compatible
optimal schemes may involve less than full compensation. We should note that in the ab-
sence of any restrictions on the form of compensation (i.e., under an arbitrary non-linear
mechanism), a second-best solution may not call for the disruption of production e±ciency|
which in this context means selecting the Pigouvian level of taxation (Cremer and Gahvari,
1999)|but this will not generally be the case under more restrictive schemes.

7This objective can alternatively be interpreted as re°ecting political support in a proba-
bilistic voting framework (see, for example, Coughlin and Nitzan, 1981).

8Formally, the consistent choice is a subgame perfect equilibrium strategy for a three-stage
game where ¯rst investment decisions are made and then the policymaker selects a tax rate,
after which ¯rms reduce emissions; whereas the inconsistent choice is an equilibrium strategy
for a game structure in which the order of actions for the ¯rst two stages of the game is
reversed.

9This implies that the distribution of welfare is not necessarily monotonic in t (since, by
construction, with t = 0 utility levels are identical across consumers, and, in a neighborhood
of t = 0, utility levels are becoming more unequal as t increases).
10Industrialized countries that o®er tax incentives for pollution control investments include

Japan, Korea, Taiwan, France, Germany, Netherlands, and Canada. Such incentives consist
mainly of accelerated depreciation, investment credits, partial expensing, exemptions and
deferrals. See, for example, Jenkins and Lamech (1992) and OECD (1994).
11This can be shown by solving for D0(X ¡V )¡ t from (32) and substituting the resulting

expression into (33).
12The consistent choice is a subgame perfect equilibrium strategy for a four-stage game

where the subsidy is selected before ¯rms invest (in the ¯rst period), and the tax rate is
selected before ¯rms abate (in the second period); the inconsistent choice is an equilibrium
strategy for a scenario where both the subsidy and the tax are selected ¯rst.
13When pro¯t shares are identical, an abatement subsidy can achieve a ¯rst-best outcome.

As we discussed in the previous section, such a subsidy is equivalent to an emission tax with
±A = ±B; hence, if we also have µA = µB, an abatement subsidy generates no distributional
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e®ects and there is no need for an investment subsidy (when ±A = ±B and µA = µB a choice
of t = D0(X ¡ V ) and s = 0 solves both sets of ¯rst-order conditions).
14As mentioned above, this case is also equivalent to a scenario where abatement subsidies

are used; in this scenario, as long as µA 6= µB, the direct subsidy will be supplemented by an
investment subsidy.
15All numerical values were found using numerical optimization techniques.
16Although we ¯nd that the sign of the expression @bbt=@s at an optimum with µA = µB is

ambiguous, we have performed systematic sensitivity analysis with a constant-elasticity-of-
substitution social welfare function and did not encounter any case where the expression is
positive.
17If (1=2 ¡ µA) > 0 then UA < UB, implying (@W=@UA ¡ @W=@UB) > 0; similarly,

(1=2 ¡ µA) < 0 implies (@W=@UA ¡ @W=@UB) < 0.
18In practice, revenue consideration are likely to be important for the choice of policy

instruments: since subsidies generate a negative revenue, the presence of a premium on
public funds would make them less attractive.
19The distributional impacts of emission taxes stem in part from the existence of short-term

adjustment costs (e.g., the displacement of workers from adversely a®ected sectors), and are
therefore less severe over the long run.
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Appendix

Proof of Lemma 1: Since ¡ > 0, we have

@
bbV
@t

=
1

HV V + ¡
<

1

HV V
=
@ bV
@t
: (37)

Proof of Proposition 1: For a given ¯xed level of N , social welfare can be written

as a function of N and the tax rate t, i.e.
ccW (t; N). If we allow the choice of N to

respond to changes in t, we can write
ccW [t; cN(t; 1)] ´ cW (t), and

cWt =
ccW t +

ccWN
cNt: (38)

The second-order conditions for (22) and (24) to identify an optimum are

ccW tt < 0; (39)

cWtt =
ccW tt + 2

ccWNt
cNt +

ccWN
cNtt < 0: (40)

Consider a convex combination of cW (t) and ccW (t; N):

®cW (t) + (1¡ ®)ccW (t; N); (41)

with 0 < ® < 1. Suppose we maximize the above by choice of t. The ¯rst-order
condition for an interior optimum is

®cWt(t) + (1¡ ®)ccW t(t; N) = 0: (42)

Combining (42) with the forwarding-looking condition N = cN(t; q), and totally di®er-
entiating (42) and re-arranging terms yields

@t

@®
=

ccW t ¡ cWt

®cWtt + (1¡ ®) bbGtt
; (43)

where

bbGtt =
ccW tt +

ccW tN
cNt = cWtt ¡ (ccW tN

cNt +
ccWN

cNtt): (44)
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Using (22) and (24), the numerator of (43) can be written as

ccW t ¡ cWt = ¡ccWN
cNt =

D0(X ¡ V )¡ t
2

Ã
@W

@UA
+
@W

@UB

! 0
@@

bbV
@t

¡ @ bV
@t

1
A : (45)

By Lemma 1, @ bV =@t > @ bbV =@t. This implies that, ifD0(X¡V )¡t > 0, (45) is negative,
and, since cNt is positive (from (8)), that

ccWN is also positive. Di®erentiation of (22)

with respect to N gives
ccW tN > 0, while di®erentiating (8) it can be readily seen that

Ntt > 0. Since cNt and
ccWN are also both positive, we can conclude that

bbGtt is negative,
and so is the denominator of (43). Hence @t=@® > 0. Condition (42) says that the

optimal tax is given by bbt when ® = 0, or bt when ® = 1. Since @t=@® > 0 for 0 < ® < 1,
we can conclude that bt > bbt.

Proof of Proposition 2: For bt to be equal to bbt, the ¯rst-order conditions (32) and
(34) must be equivalent. With µA = µB, from (33), we ¯nd the optimal subsidy to be

s =
[D0(X ¡ V )¡ t] @ bV =@s

@cN=@s
: (46)

Substituting this into (32), and using (34), one ¯nds that equivalence between condi-
tions (32) and (34) implies

@ bV
@t

¡ @
bbV
@t

=
@ bV
@s

@cN=@t
@cN=@s

: (47)

Using (7), (14), (30) and (31), it can be readily seen that the above equivalence condi-
tion is indeed satis¯ed in the constant-elasticity case.

Proof of Proposition 3: Subtracting (34) from (32) and rearranging yields

b­t ´ 1

2

Ã
@W

@UA
+
@W

@UB

! 8
<
:[D

0(X ¡ V )¡ t]
0
@@

bV
@t

¡ @
bbV
@t

1
A+ s

@cN
@t

9
=
; : (48)

If s > 0, given that @ bN
@t
> 0 and D0(X ¡ V ) > t (from (32)), and given Lemma 1,

this expression is always positive. From (35), the optimal consistent choice of subsidy

implies
bb­s = 0, and hence

b­s = ¡b­t
bb­ts
bb­tt
: (49)

Since b­t > 0, a positive
bb­ts implies b­s > 0.
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