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Abstract: We introduce the framework of noncooperative pregames and
demonstrate that for all games with su¢ciently many players, there exists
approximate (") Nash equilibria in pure strategies. Moreover, an equilib-
rium can be selected with the property that most players choose the same
strategies as all other players with similar attributes. More precisely, there
is an integer K, depending on " but not on the number of players so that
any su¢ciently large society can be partitioned into fewer than K groups, or
cultures, consisting of similar players, and all players in the same group play
the same pure strategy. In ongoing research we are extending the model to
cover a broader class of situations, including incomplete information.

Although this research was initated some time ago this is the …rst com-
plete “published” version. We would be grateful for any comments that might
help us improve the paper.

¤We are indebted to Robert Aumann, Sergiu Hart, Jean-Francois Mertens, Frank Page
and Unal Zenginobuz, and also to participants at presentations of this paper at Bogazici
University, Hebrew University Centre for Rationality and the Maastricht General Equilib-
rium conference, for comments..

yThis author is indebted to Sonderforschungsbereich 303 and to the University of Bonn
for hospitality and …nancial support during 1990-1991 when this research was initiated.
She is also grateful to a number of researchers who listened to intuitive discussions of the
results of this paper over the intervening years, especially Jurgen Eichberger.
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1 Introduction: Learning from similar indi-
viduals.

A society or culture is a group of individuals who have commonalities of
language, social and behavioral norms, and customs. Social learning consists,
at least in part, in learning the norms and behavior patterns of the society
into which one is born and in those other societies which one may join – our
professional associations, our workplace, and our community, for example.
Social learning may also include learning a set of skills from others that
will enable us to “…t into the society.” The society in question may be
broad as “Western civilization” or Canada, or as small as the Econometric
Society. If most people observe “similar” people and learn by mimicing other
individuals, then a stable society depends on the existence of an equilibrium
where most individuals who are similar choose the same strategies. If most
individuals learn from and mimic similar individuals, then the existence of
such equilibria is important; indeed, it is fundamental to the social sciences.

To ask whether equilibria where most players choose the same strategies
as similar players exist, we must …rst have an appropriate model. One of the
main contributions of the current paper is the introduction of a noncoop-
erative counterpart to the pregame framework of cooperative game theory.1
In cooperative game theory this framework has lead to a number of results,
especially results showing that large games with small e¤ective groups re-
semble, or are, competitive economies. It appears that our framework of
noncooperative games may be equally useful. In this paper, we demonstrate,
for all games with su¢ciently many players, existence of "-equilibria in pure
strategies and, with a more restrictive space of player types, existence of
"-equilibria in pure strategies where almost all players (that is, all except
at most some bounded and …nite number) choose the same strategy as all
su¢ciently similar players.

As in the cooperative pregame framework, we take as given a set of at-
tributes of players; here, these attributes index payo¤ functions. We require
two anonymity assumptions. The …rst is that payo¤s do not depend on the
identities of other players, only their attributes and, of course, the strategies
they choose. The second is that in when there are many (but still …nite
numbers) of players, then the actions of a small subset of players do not

1See, for example, Wooders (1983,1994) and Wooders and Zame (1984).
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signi…cantly a¤ect payo¤s of members of the complementary player set. We
require also some continuity conditions and demonstrate two main results:

Theorem 1: Existence. Given " > 0 there exists an integer ´(") with the
property that every game with at least ´(") players has an "-equilibrium
in pure strategies.

Theorem 2: Social conformity. When the set of player attributes can be
parameterized by the interval ­ = [0; 1] there is an integer L such that
the "-equilibrium can be chosen so that for some partition of ­ into
fewer than L intervals, f­`gL`=1; all players with attributes represented
by points in the same interval ­` play the same strategy.

To compare our noncooperative pregame framework to the cooperative
pregame framework, it is important to note a major and signi…cant di¤er-
ence. In the cooperative framework, the payo¤ to a coalition is …xed and
independent of the society in which that coalition is embedded. Although
this is possible within the current noncooperative framework, it is not built
into the model and thus may or may not hold. Noncooperative games de-
rived from a (noncooperative) pregame are parameterized by the numbers of
players of each type in the player set and may vary considerably depending
on the attributes of the players actually represented in the society. For exam-
ple, there may be little relationship between derived games where all players
have the same attribute, male for example, and games where some players
have a di¤erent attribute, female, for example. Moreover, even in the case
where all players are identical, there is no necessary relationship between a
game with n players and another with n + 1 players. That said, however,
it should be noted that asymptotically, only the distribution of players’ at-
tributes matters, that is, the games become anonymous. Just to be sure this
is clear, in games with many players, the percentages of males and females
is still relevant, but whether a male is called i or j is irrelevant and a few
males or females, more or less, is of no great consequence.

One interesting similarity between the two frameworks is that, in the
cooperative pregame framework, the condition of small group e¤ectiveness
plays an important role, cf. Wooders (1994).2 This condition dictates that

2A strong form of this condition, a sort of strict small group e¤ectiveness was originally
introduced in Wooders (1979) and earlier versions of that paper. For our pruposes here,
this form of small group e¤ectiveness is not useful. Neither is the ‘boundedness of marginal
contributions’ of Wooders and Zame (1984).
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all or almost all gains to collective activities can be realized by groups of
players bounded in size. An equivalent condition is that small groups are
negligible: in large cooperative games derived from pregames, small groups
are e¤ective if and only if small groups cannot have signi…cant e¤ects on ag-
gregate per capita payo¤ (Wooders 1993). The main substantive condition
of this paper can be interpreted as the negligibility of small groups of players;
that is, the e¤ects of the actions of any small set of players on the comple-
mentary set of players become negligible in games with many players. For
cooperative pregames with side payments, the condition of small group neg-
ligibility implies that large games are market games, as de…ned by Shapley
and Shubik (1969). The full implications of the condition for noncooperative
pregames have not been fully explored but we expect there to be many.

Our …rst result is actually a “puri…cation result,” showing that, for all
su¢ciently large games, every mixed strategy equilibrium generates a pure
strategy "-equilibrium. Our result di¤ers from puri…cation results in the lit-
erature in that prior papers all have a continuum of players (cf. Schmeidler
1973, Mas-Colell 1984, Khan 1989, Pascoa 1993,1998, Khan et al. 1997,
Araujo and Pascoa 2000). With a continuum of players, small group negli-
gibility is built into the framework and thus does not appear as a separate
assumption. Of course for a number of these results, it is easy to see that
one could consider a sequence of large …nite games with player distribution
converging to the distribution of player types in the given continuum, and
from the results for the continuum, establish existence of "-equilibrium in
pure strategies for all su¢ciently large games in the sequence. Our results
di¤er in that we are not restricted to one limiting distribution of player
types; our results hold for all su¢ciently large games derived from a non-
cooperative pregame. In particular, our results allow for the possibility that
there are player types who appear in arbitrarily small percentages in large
…nite games. An important part of our work is de…ning the model of non-
cooperative pregames and establishing that a set of conditions, especially
small group negligibility, that allow us to obtain our puri…cation result.

2 The Model. Noncooperative Pregames.
We …rst introduce the concept of a society, then strategies and the set of
‘weight functions’ derived from the possible strategies chosen by the members
of the society. We conclude by introducing the game corresponding to a
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society.

2.1 Societies.
We assume a compact metric space of player types ­. Let N be a …nite set
and let ® be a mapping from N to ­; called an attribute function: The pair
(N;®) is a society.

Let Z+ denote the set of non-negative integers. The pro…le of a society
(N;®) is a function ½(N;®) : ­ ! Z+ given by

½(N;®)(!) =
¯̄
®¡1(!) \N

¯̄

Thus, the pro…le of a player set tells us the number of players with each
attribute in the set. Let support(½(N;®)) denote the support of the function
½(N;®), that is,

support(½(N;®)) = f! 2 ­ : ½(N;®)(!) 6= 0g:

Let P (­) denote the set of all functions from ­ to ZT+ with …nite support.
Note that for each possible society (N;®) the pro…le of N is in P (­). Note
also that the sum of pro…les (de…ned pointwise) is also a pro…le.

Before introducing the game corresponding to any society, we require
some preliminary concepts.

Let S = fs1; ::::; sKg be a …nite set of pure strategies. Let ¢(S) denote
the set of mixed strategies. In each game ¡(N;®), each player will have the
strategy choice set ¢(S): The support of a mixed strategy ¾i is denoted by
support(¾i), where “support” is de…ned as above. A mixed strategy is called
pure if it puts unit weight on a single pure strategy.

A strategy vector is given by ¾ = (¾1; :::; ¾jN j) 2 £i2N¢(S) where ¾i
denotes the strategy of player i and ¾ik denotes the probability with which
player i plays pure strategy sk. We denote the set of all strategy vectors by
§. A strategy vector ¾ is called degenerate if for each i, for some k, ¾ik = 1;
that is, each player’s strategy is a pure strategy.

Given an attribute function ® (or a pro…le ½(N;®)) we de…ne a weight
function w(¢; ¢;®) (or w(¢; ¢; ½(N;®))) as a mapping from ­ £ S into R+

satisfying the conditions that
X

k

w(!; sk;®) = ½(N;®)(!):
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Thus, given an attribute function ®, a weight function is an assignment of
a non-negative real number to each attribute-strategy pair (!; s) so that the
sum, over strategies, of the weights attached to the pairs (!; s) equals the
number of players with that attribute. It follows that

X

k

X

!2support(½(N;®))

w(!; sk;®) = jN j :

It is convenient to also de…ne weight functions relative to strategy vec-
tors. Given an attribute function ® and a strategy vector ¾; de…ne a weight
function w(¢; ¢;®; ¾) relative to ® and ¾ by:

w(!; sk;®; ¾) =
X

i2N :®(i)=!

¾i(sk)

for each sk 2 S and for each ! 2 ­. We interpret w(!; s;®; ¾), as showing,
for each ! 2 ­, the ‘weight’ given to pure strategy sk in the strategy vector
¾ by players assigned type ! by ®. That is, given the society (N;®) and
the strategy vector ¾; w(!;sk;®;¾)½(N;®)(!) is the expected proportion of times strategy
sk will be played by players of type !: It is immediate that a weight func-
tion relative to an attribute function ® and a strategy vector ¾ is a weight
function, as de…ned above. In particular

X

k

w(!; sk;®; ¾) = p(N;®)(!)

for each ! 2 ­: Note that there may be many strategy vectors that generate
a given weight function relative to an attribute function. Let W® denote the
set of all possible weight functions for the society (N;®).

For a strategy p 2 ¢(S) and attribute !0 2 ­ we denote by Â(¢; ¢;!0; p)
the individual weight function.

Â(!; sk;!0; p) = pk if ! = !0 and

Â(!; sk;!0;m) = 0 otherwise.

for each sk 2 S, where pk denotes the probability pure strategy sk 2 S is
played, given the mixed strategy p.

We highlight a subset G® of the set of weight functions W®; those with
integer values; thus, a member g(¢; ¢;®) of G® is a weight function mapping
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­ £ S into the non-negative integers Z+;rather than the nonnegative real
numbers. If g(¢; ¢;®) 2 G® then there exists strategy vectors ¾ such that ¾i
is degenerate for all players i 2 N and g(¢; ¢;®;¾)(!) = g(¢; ¢;®)(!) for all
! 2 ­: Moreover, every degenerate strategy vector ¾ generates an integer-
valued weight function. Given the pro…le ½(N;®) and a degenerate strategy
vector ¾, the interpretation is that, for each attribute ! and strategy sk 2
S, g(!; sk; ®) denotes the number of players i in N with attribute ! whose
strategy ¾i places weight 1 on some pure strategy sk.

Given an attribute function ® and a strategy vector ¾ 2 § with cor-
responding weight function w(¢; ¢;®; ¾) 2 W®, let w¡i(¢; ¢;®; ¾) denote the
weight function in which player i’s contribution is not included. That is,

w¡i(!; s;®;¾) = w(!; s;®; ¾) ¡ Âi(!; s;!0; ¾i)

for all ! 2 ­; all s 2 S and for all i 2 N , where ®(i) = !0 and Âi(¢; ¢;!0; ¾i)
is the individual weight function of player i given attribute function ® and
strategy vector ¾. Let W®¡Âi denote the set of weight functions obtained
when player i’s contribution is not included.

2.2 The games ¡(N; ®):
With the above de…nitions now in place, we can now de…ne the games
¡(N;®): For any society (N;®), the game ¡(N;®) is given by

¡(N; v) = fS; h!(¢; ¢;½(N;®)); ! 2 ®¡1(N)g

where, for each i 2 N , h®(i)(¢; ¢; ½(N;®)) is a given payo¤ function mapping
¢S £W®¡Âi into R+.

Given an attribute function ®; a strategy vector ¾ and the corresponding
weight function w(¢; ¢;®; ¾) 2W®; the payo¤ of player i 2 N is given by

h®¡1(i)(¾i; w¡i(!; sk;®; ¾); ½(N;®)) 2 R+: (1)

The interpretation is that h!(¾i; w¡i(¢; ¢;®;¾); ½(N;®)) is the payo¤ to a
player i 2 N with ®(i) = !; in the game ¡(N;®); from playing the (possibly)
mixed strategy ¾i when the strategy choices of the remaining players are
represented by w¡i(¢; ¢;®; ¾). Note that payo¤ functions are parameterized by
the population pro…le ½(N;®) since di¤erent population pro…les correspond
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to di¤erent games. We make the standard assumption that the payo¤ to a
mixed strategy is the expected payo¤ from pure strategies, that is,

h!(p; w¡i(¢; ¢;®); ½(N;®)) =
X

k

pkh!(sk; w¡i(¢; ¢;®); ½(N;®)): (2)

Note that implicit in the de…nition of the payo¤ function there is an
anonymity assumption. For example, consider two players i; j 2 N; where
a(i) = ®(j); and two alternative scenarios. In the …rst scenario player i
plays pure strategy s1 and player j plays pure strategy s2. In the second
scenario, roles are reversed so that player i plays s2 and player j plays s1.
Then, assuming everything else remains the same, the payo¤ to a third player
i0 2 N is indi¤erent to this switch between i and j. This example is a special
case of a continuity assumption (continuity 1) below.

The standard de…nition of a Nash equilibrium applies. A strategy vector
¾ is a Nash equilibrium only if, for each i 2 N and for each pure strategy
sk 2support(¾i), it holds that

h®(i)(sk; w¡i(¢; ¢;®; ¾); ½(N;®)) ¸ h®(i)(t; w¡i(¢; ¢;®; ¾); ½(N;®)) for all t 2 S.

2.3 Large anonymous games
We now introduce the following assumptions about growing sequences of
games which together constitute a large anonymous game property. First,
without loss of generality we can suppose that the furthest distance between
any two points in ­ is less than one.

Observe that a pro…le f induces a probability measure j1j
kfkf on ­ where

each singleton set f!g is assigned the probability

jf(!)j
kfk ;

let us call this probability measure ¹(f ): Similarly, a weight function w in-
duces a probability measure j!(!;sk ;®)j

kwk = ¹(w(¢; ¢;®)) on ­ £ S where prob-

ability of a singleton set f(!; sk)g is j!(!;sk;®)j
kwk . We will apply the notion of

weak convergence in measure.3

3For discussion of the weak topology and the Prohorov metric, see, for example, Kirman
(1981).
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For two attribute functions ® and ®0 satisfying
P
®¡1(!) 6=0 j®¡1(!)j =P

®0¡1(!) 6=0 j®0¡1(!)j ; de…ne the metric dist as follows: First, let N be a
…nite set with jN j =

P
®¡1(!)6=0 j®¡1(!)j : List the points in the supports

of ® and ®0 with each point ! appearing as many times as its multiplic-
ity (for ®, this multiplicity is j®¡1(!)j and similarly for ®0). Label the
points in N; i = 1; :::; jN j ; so that the supremum of the distances be-
tween ®(i) and ®0(i) is minimized (where these distances are, of course,
with respect to the metric on ­). De…ne the distance between ® and ®0
as this supremum. For any two attribute functions ® and ®0 such thatP
®¡1(!) 6=0 j®¡1(!)j 6= P

®0¡1(!) 6=0 j®0¡1(!)j de…ne4

dist(®; ®0) =

¯̄
¯̄
¯̄

X

®¡1(!) 6=0

¯̄
®¡1(!)

¯̄
¡

X

®0¡1(!)6=0

¯̄
®0¡1(!)

¯̄
¯̄
¯̄
¯̄ :

Then dist is a well-de…ned metric. In fact, for attribute functions ® and ®0
satisfying

P
®¡1(!) 6=0 j®¡1(!)j = P

®0¡1(!) 6=0 j®0¡1(!)j, dist corresponds to the
Prohorov metric.5 Note also that given a player setN and attribute functions
® and ®0 de…ned onN , dist(®(i); ®0(i)) is well de…ned and indicates how much
the attributes of player i are perturbed by a change in the attribute function
from ® to ®0.

Throughout the following, let fNºg be a sequence of player sets with jNº j
becoming large as º becomes large and let f®ºg be a sequence of attribute
functions where ®º: N º ! ­: For ease in notation, let ffºg be the sequence
of pro…les where, for each º; we have fº = ½(N º; ®º):

We give two variants of a continuity property - the second implies the
…rst. These continuity properties are both formulated as Lipshitz conditions
on large games and are with respect to changes in attributes of players. Both
conditions dictate that if we change attributes of players in large player sets
only slightly, then for any given strategy vector, the change in payo¤s of
players is small. The second continuity cond¬t¬on states that in addition, if
we change the attribute of a player only slightly then the change in his own
payo¤ are small.

4Note that since j¢j is commonly used for these two functions and since no ambiguity
is likely to arise, we’ve used j¢j for two di¤erent purposes, both for the cardinal number of
a set and for absolute value.

5See, for example, Kirman in the Handbook of Mathematical Economics, pages 197-198.
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Continuity with respect to attributes: Given " > 0 there exists a simi-
larity parameter ±(") such that:

for any sequence of attribute functions f®ºg; where ®º : Nº ! ­ and
satis…es:

dist(®º(i); ®º(i)) < ±(") for all i 2 Nº and for all º;

and for any sequence of strategy vectors f¾ºg; weight functions fwº(¢; ¢;®º; ¾º)g
and fwº(¢; ¢;®º ; ¾º)g; and pro…les ff ºg where f

º
= ½(Nº ; ®º)::

Continuity 1 (with respect to the attributes of others):

lim
º!1

¯̄
¯h®º (i)(¾i; wº¡i(¢; ¢;®º; ¾º); fº) ¡ h®º (i)(¾i; wº¡i(¢; ¢;®º; ¾º); f

º
)
¯̄
¯ < "

for all ¾i 2 ¢(S) and for all i with ®º(i) = ®º(i).
(Note here that although the payo¤ functions of the players have been
changed – for each player j; ®º(j) changes to ®º(j), the actions of the
players remain unchanged. This is possible since a strategy vector lists
a strategy for each player i 2 N and the N remains unchanged – only
the payo¤ functions of the players in N have possibly changed, not
the set of players nor their strategies. Thus, if one …nds it reasonable
that the payo¤ functions of players are a¤ected only by the actions of
others and not their payo¤ functions, then this form of continuity is
very mild.6)

Continuity 2 (with respect to all attributes):

lim
º!1

¯̄
¯h®º (i)(¾i; wº¡i(¢; ¢;®º; ¾º); fº) ¡ h®º (i)(¾i; wº¡i(¢; ¢;®º; ¾º); f

º)
¯̄
¯ < "

for all ¾i 2 ¢(S) and all i.
6There are situations where individuals claim to be a¤ected by the feelings, loyalties

or thoughts of others, independent of their actions. In Arthur Miller’s celebrated book,
The Crucible, Rachel has been a pious woman, known for her good deeds and kind works,
all through her long life. But the witch hunters of Salem interpreted Rachel’s apparent
goodness as just a clever disguise to hide her love of the devil. Rachel was put to death as
a witch; for witch hunters, the private feelings of others and their thoughts are signi…cant.
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In continuity 1, we essentially only consider the changes in payo¤s, from
perturbing the attribute function, to players who keep the same attribute
type in both societies (Nº ; ®º) and (Nº ; ®º). In continuity 2, we consider
the change in payo¤s to players who themselves also have their attribute
type slightly perturbed between societies (Nº ; ®º) and (N º; ®º) and impose
continuity.

Our next condition ensures that in large games, payo¤s to individual
players depend on aggregate of the strategies chosen by others.

Convergence: Assume that ¹(fv) converges weakly to f as v ! 1 (in
the sense of weak convergence in measure). Let fwº(¢; ¢;®º ; ¾º)g be a
sequence of weight functions for some strategy vector ¾º 2 §. Assume
that limº!1 ¹(wv) = w exists. Then, for all i,

h®º (i)(p; wº¡i(¢; ¢;®º; ¾º); fº) converges as º ! 1

for all p 2 ¢(S).

Societies (N;®) and individual games ¡(N;®) derived from noncooper-
ative pregames have an anonymity property as noted previously; the game
¡(N;®) and the payo¤ h®(i)(¢; ¢; ½(N;®)) to an individual player i 2 N do
not depend on the names of other players, only on the pro…le of the player
set. To obtain our results we require some a further anonymity conditions on
payo¤ functions as the numbers of players in the games becomes large. For
our current results, we use the strong anonymity condition below. We also
indicate that there are other interesting forms of anonymity that may su¢ce
and present an example.

Anonymity: Assume that ¹(fv) converges weakly to f 2 P (­); with sup-
port f!1; :::; !Jg; as v ! 1. Also assume that f!1; :::; !Jg ½ support(fº)
for each º. Let fwº(¢; ¢;®º)g and fgº(¢; ¢;®º)g be sequences of weight
functions where wº and, respectively, gº are relative to attribute func-
tion ®º .

Strong anonymity: If, for each pure strategy sk 2 S, for some real num-
bers fµjk : j = 1; :::; Jg it holds that:

lim
º!1

wº(!j; sk;®º)
kwºk = lim

º!1
gº(!j; sk;®º)

kgºk = µjk; 7 (3)
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then:

lim
º!1

h®º(i)(p; wº¡i; f
º) = lim

º!1
h®º(i)(p; gº¡i; f

º)

for all p 2 ¢(S) and all i.8

Weak anonymity: If, for each pure strategy sk 2 S :

lim
º!1

wº(!; sk;®º)
fº(!)

= lim
º!1

gº(!; sk;®º)
fº(!)

= µk(!)

for all ! 2 ­; where the limits are pointwise; then:

lim
º!1

h®º (i)(s; wº¡i; f
º) = lim

º!1
h®º(i)(s; gº¡i; f

º)

for all s 2 ¢(S) and all i 2 Nº .

If preferences satisfy strong anonymity then, for games with many play-
ers, the payo¤ to a player depends only on his own strategy choice and the
proportion, relative to the total population of players, of each type playing
each strategy. Weak anonymity re…nes the de…nition of anonymity to apply
when players have scarce attributes; it requires that for all attributes, the
proportion of players playing each strategy must remain the same to leave
payo¤s approximately the same.

Note that in the de…nition of strong anonymity, for each º, it holds that
f!1; :::; !Jg ½ support(fº) but in general it may be that the supports of the
functions fº become in…nite as º becomes large. The de…nition of strong

8Note that we could have instead required that the measures ¹(fº) converged weakly
to some measure f with …nite support. We wish, however, to keep the requirement as
narrow as possible. Suppose, for example, in each society (Nº ; ®) all players are distinct
in the sense that fº(!) · 1 for all ! 2 ­ and for º. Let the ºth game have º players.
Suppose all the attributes of the players of the ºth game, for º > 2, are contained in the
interval [ 12 ¡ 1

º ; 1
2 + 1

º ]. Then lim fº (!)
kfºk = f(!) = 0 for all ! 6= 1

2 and f(1
2) = 1 so the

condition on the sequences of pro…les ffºg in the de…nition of strong anonymity is not
satis…ed. Nevertheless, ¹(fº) converges weakly in measure to f where f(!) = 0 for all
! 6= 0 and f(1

2) = 1:
Note also that we’re slightly abusing notation. More precisely, we should write f(S) = 1

for all measurable subsets S containing ! = 1=2 and f(S) = 0 otherwise. We believe,
however, that our approach simpli…es notation and makes reading easier.
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anonymity requires, however, while the player sets tend to become in…nitely
large, ‘in the limit’ the number of attributes represented in the population
tends towards a …xed, …nite subset of the attributes represented in the in-
dividual games. The actions of players with attributes represented in the
populations (N;®º) but in vanishingly small proportions do not have signi…-
cant e¤ects on the payo¤s of other players. Strong anonymity does not imply
that in our theorems we restrict attention to such sequences such as ff ºg; it
only implies that for such sequences the conclusion of the de…nition of strong
anonymity holds.

Given ! 2 ­, let the ball around ! with diameter ± be denoted B(!; ¾)
and de…ned by

B(!; ±) =
½
!¤ 2 ­ : dist(!; !¤) <

±
2

¾
:

3 Results.
We …rst state two useful lemmas. The …rst lemma applies to any game and
concerns approximation of mixed strategy vectors by degenerate strategy
vectors. The second lemma concerns limiting approximations for sequences
of games. With these two lemmas in hand, in the following subsection, we
next prove our puri…cation result and then, in the …nal subsection, we prove
our social conformity result.

3.1 Two lemmas.
We …rstly introduce some notation. We say a vector a = (a1; :::; aN ) ¸ b =
(b1; :::; bN ) if and only if ai ¸ bi for all i = 1; :::; N . Let ZK+ denote the set of
K dimensional vectors for which every element is a non-negative integer.

For any strategy vector ¾ = (¾1; ::; ¾N ), let M(¾) denote the set of vectors
m = (m1; ::;mN ) 2 ZKN+ such that, for each i 2 N :

(a) mi = (mi1; :::;miK) 2 ZK+ for i = 1; :::; N;

(b) kmik = 1 for each i and,

(c) mik = 1 implies ¾ik > 0:

14



Informally, M(¾) denotes a strategy vector with the property that each
player i is assigned, as a pure strategy, some strategy in the support of
¾i. If ¾ were a Nash equilibrium then in the strategy vector m, each player
is assigned a strategy in his best response function for ¾.

The lemma shows that given any choices of mixed strategies, (¾i, i =
1; :::; N), one for each player, we can select pure strategies mi for each player
so that each player’s pure strategy is a best response to the initially given
(possibly) mixed strategy choices and so that the total number of players
assigned strategy sk is within K of the total weight assigned to sk by the
initially given mixed strategy vector, that is,

¯̄
¯̄
¯
X

i

¾ik ¡
X

i:mik=1

mik

¯̄
¯̄
¯ < K: (4)

Actually, the result is somewhat stronger.

Lemma 1: For any strategy vector ¾ 2 ¢KN and for any vector g 2 ZK+
such that

P
i ¾i ¸ g; there exists a pure strategy vector m = (m1; :::;mjN j) 2

M(¾) such that:

X

i

mi ¸ g:

(To relate this to the interpretation above, choose g so that for each k =
1; :::; K,

P
i ¾ik ¡ gk · 1: Then, since

P
k
P
i ¾ik = jN j it holds that jN j ¡P

k gk · K. Note also that
P
k

P
imik = jN j : It follows that for each pure

strategy sk, (4) holds.)

Proof: Suppose the statement of the lemma is false. Then, there exists a
strategy vector ¾ = (¾1; :::; ¾i; :::; ¾N ) (where ¾i = (¾i1; :::; ¾iK) 2 ¢K for i =
1; :::; N) and a vector g 2 ZK such that, for any vector m = (m1; :::;mjN j) 2
M(¾) there must be at least one bk for which

P
imibk < gbk. For each vector

m 2 M(¾) let L be de…ned as follows:

L(m) =
X

k:gk¡
P
imik>0

Ã
gk ¡

X

i

mik

!

15



Select m0 2 M(¾) for which L(m) attains its minimum value over all
m 2 M(¾). Pick a strategy bk such that gbk ¡ P

im
0
ibk > 0.

Consider the sets In(bk); n = 0; 1; ::: de…ned as follows:

I0(bk) =
n
i 2 (1; :::;N ) : m0

ibk = 1
o
;

In+1(bk) = In(bk) [ fj 2 (1; :::; N) : for some k such that m0
ik = 1

and i 2 In(bk); ¾jk > 0 and m0
jk = 0g:

I0(bk) is the set of players who are assigned the pure strategy sbk by m0, that
is, if i0 2 I0(bk) then m0

i0bk
= 1. The set I1(bk)nI0(bk) consists of those players

who could have been assigned the strategy bk while following the assignment
rule of the Lemma, but were not, that is, if i1 2 I1(bk); then ¾i1bk > 0 but
m0
i1bk

= 0. (Note that I1(bk) contains I0(bk) and is the set of all players i for

whom ¾ibk > 0: In de…ning I2(bk) values of k 6= bk can play a role. That is,
there may be players in the set I1(bk) who are assigned some pure strategies
sk0 where k0 6= bk. For such a player i1, ¾i1k0 > 0, ¾i1bk > 0 and m0

i1k0 = 1. A
player i2 is in I2(bk)nI1(bk) if there is a player i1 2 I1(bk) and some sk0 such
that m0

i1k0 = 1, m0
i2k0 = 0 and ¾i2k0 > 0. And so on.

16



A picture may be useful.

i02 I0(bk) i12 I1(bk)nI0(bk) i22 I2(bk)nI1(bk) i32 I3(bk)nI2(bk) ¢ ¢ ¢
+ + + +
¾i0bk> 0
m0
i0bk

= 1:

¾i1bk> 0
m0
i1bk= 0

¾i2bk= 0
m0
i2bk

= 0:
¾i3bk= 0
m0
i3bk

= 0:

and for some k0;
¾i1k0> 0
m0
i1k0 = 1 :

For k0;
¾i2k0> 0;
m0
i2k0 = 0

For k0;
¾i3k0= 0;
m0
i3k0= 0:

and for some k00

¾i2k00> 0
m0
i2k00 = 1 :

For k00

¾i3k00> 0
m0
i3k00= 0

and for some k000
¾i3k0000> 0
m0
i3k000 = 1:

Figure 1

Any of the players in I1(bk)nI0(bk), in particular, i1, could have been assigned
the pure strategy bk (since ¾i1bk > 0) but instead i1 was assigned the pure
strategy k0. If we reassigned i1 to bk this may leave us a “shortfall” with
regard to the pure strategy k0. But we could re-assign i2 to play k0 (since
¾i2k0 > 0 and m0

i2k0 = 0). But this may leave us a shortfall with regard to
the pure strategy k00. And so on.

Ultimately, for some n¤ we must have In¤+1(bk) = In¤(bk). For the purposes
of illustration, suppose that n¤ = 2: This means that I2(bk) = I3(bk): Thus,
continuing to use Figure 1, there is no player j 2 NnI2(bk) for whom ¾jk00 > 0
and mjk00 = 0; we essentially reach the ‘end of the chain’. Note that there
may be a player j 2 NnI2(bk) for whom mjk00 = 1. More generally, there may

17



be players not belonging to the set In¤(bk) but who are allocated a strategy
represented in the set In¤(bk). Formally, the set of strategies used in the
construction of In¤(bk) is given below.

Let the set Sn¤(bk) be de…ned as follows:

Sn
¤
(bk) =

n
bk
o

[
n
k 2 (1; :::; K) : m0

ik = 1 for some i where i 2 In¤(bk)
o

For any k = 1; :::; K , k 6= bk; if there exists an player j 2 In¤(bk) such that
m0
jk = 1 and

X

i2N
m0
ik ¡m0

jk ¸ gk

we have the desired contradiction. In this case, there exists a set of vectors
m 2 M(¾) such that L(m) = L(m0)¡ 1. To illustrate, suppose for example,
that

P
i2N m

0
ik000 ¡m0

jk000 ¸ gk000 in the situation depicted in Figure 1. Then,
without violating the rules of the Lemma, we can reassign player i3 to strategy
k00, player i2 to strategy k0 and player i1 to bk. Thus, for all k 2 Sn¤(bk) it
holds that:

X

i2N
m0
ik · gk: (5)

(Note that m0
ik and gk are integers for all k.)

Since In¤+1 = In¤ (by the de…nition of In), however, there can exist no
j 2 (1; :::; N)nIn¤(bk) such that ¾jk > 0 for some k 2 Sn¤(bk), unless m0

jk = 1:
This implies that:

X

i2NnIn¤(bk)

m0
ik ¸

X

i2NnIn¤(bk)

¾ik

for all k 2 Sn¤(bk).
We also have, from the de…nitions of In(bk) and Sn(bk), that:

X

k2Sn¤(bk)

X

i2In¤(bk)

m0
ik ¸

X

k2Sn¤(bk)

X

i2In¤(bk)

¾ik:

18



This implies that:
X

k2Sn¤(bk)

X

i2N
mik ¸

X

k2Sn¤(bk)

X

i2N
¾ik ¸

X

k2Sn¤(bk)

gk

However:

gbk >
X

i2N
m0
ibk

and bk 2 Sn¤(bk): Thus, there must exist at least one k 2 Sn¤(bk) such that:

gk <
X

i2N
m0
ik:

This contradicts 5 and completes the proof.¨

Now that the proof of Lemma 1 is complete, let us summarize its strategy.
First, to appreciate how the sets In(bk) work consider set I1(bk) given by:

I1(bk) =
©
i 2 (1; :::; N) : ¾ibk > 0 and m0

ibk = 0
ª
:

If there exists an integer j 2 I1(bk) and k such that m0
jk = 1 and where:

X

i2N
m0
ik ¡m0

jk ¸ gk

then we can do the following: put m0
jk equal to zero and set m0

jbk = 1:
Essentially, the player j has been allocated to a strategy k where ‘it is not
needed’ and so we can take j away from k allocate it to strategy bk. This
reduces L by one contradicting that we choose the minimum possible L.

If this does not work consider the set I2(bk) as follows:

I2(bk) = I1(bk) [
½
j 2 (1; :::; N) : ¾jek > 0 and mjek = 0 for some
ek such that miek = 1 for some i 2 I1(bk)g

¾
:

If there exists a player j 2 I2(bk) and k such that mjk = 1 and:
X

i2N
mik ¡mjk ¸ gk:
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In this case, player j has been allocated to a strategy k where ‘it is not
needed’. However, ¾jbk = 0 and so we cannot allocate j directly to strategy
bk. Instead we …nd an intermediary i such that j can be allocated the strategy
of i and i can then be allocated the strategy bk. Formally, there must exist a
player i 2 I1(bk) and a ek 6= k 6= bk such thatm0

iek = 1, ¾jek > 0 and ¾ibk > 0. So,
putm0

jk to zero and m0
jek to one. Putm0

iek to zero andm0
ibk to one: The number

allocated to playing pure strategy sk falls by one, but this is no problem, the
number playing pure strategy sek remains the same and the number playing
pure strategy sbk increases by one. This reduces L by one.

For a general In(bk) the de…nition of In(bk) directly implies that if there
exists an integer j 2 In(bk) and pure strategy sk where mjk = 1 and:

X

i2N
m0
ik ¡m0

jk ¸ gk

then the distance gk ¡ P
im

0
ik = L > 0 could have been reduced by at least

1. That is, there must exist an integer j allocated to a k where ‘it is not
needed’ and a chain of at most n possible intermediaries whereby j can be
reallocated from playing pure strategy sk and some i allocated to playing bk.
Furthermore, along the chain players can replace one another to leave the
total number allocated to all strategies, except k and bk; constant.

Roughly, our next Lemma shows that, for any growing sequence of games,
if there is only a …nite number of types that appear in positive proportions
in the limit, then in the limit, strategy vectors can be puri…ed. Suppose,
as is standard in papers showing puri…cation of mixed strategy equilibria,
we had a continuum of players with a …nite number of types where type
!a appears in the proportion µak. Then the following result demonstrates
that we can approach the continuum puri…cation in large …nite games.9 But
it shows more. The games considered in Lemma 2 could have vanishingly
small percentages of players of some types. Our conditions ensure that these
players cannot signi…cantly e¤ect payo¤s to other players and are, in the
continuum limit, negligible.

9In fact, such a result was obtained in Rashid (1983).
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Lemma 2: Let ffvg be a sequence of pro…les satisfying the conditions given
in the de…nition of strong anonymity. Let f¾ºg a sequence of strategy vectors
and let fwºg be a sequence of weight functions where wº is relative to strategy
vector ¾º and attribute function ®º.

Assume the limº!1
³
wv(!j ;sk;®;¾)

kwvk

´
= µjk exists for all sk 2 S. Then there

exists a sequence fsºg of degenerate strategy vectors and a sequence fgºg
of integer-valued weight functions, where gº is relative to strategy vector sº
and attribute function ®º , such that:

1. for all sk 2 S and all !j 2 support(f);

lim
º!1

gº(!j; sk;®º ; sº)
kgºk = lim

º!1
gº(!j; sk;®º; sº) ¡ 1

kgºk = µjk

2. the strategy vector sº is such that sºi 2support(¾ºi ) for all i 2 Nº and

for all º.

Proof: Suppose the statement of the lemma is false. Then, there exists an
" > 0 such that for any sequence of degenerate strategy vectors fsºg,with
sºi 2 support(¾ºi ) for all i 2 N and all º, any corresponding sequence of
integer-valued weight functions fgºg and for any º there exists a º0 > º such
that:

¯̄
¯̄g
º0(!j; sk;®º0; sº0)

kgº0k ¡ µjk
¯̄
¯̄ > "

and / or:
¯̄
¯̄g
º0(!j ; sk;®º0 ; sº0) ¡ 1

kgº0k ¡ µjk
¯̄
¯̄ > "

for some !j 2 support( f) and some sk 2 S:
We derive the desired contradiction as follows:
For each º and for each k = 1; :::; K de…ne the integer gº(!j ; sk) as the

largest integer less than or equal to wº(!j; sk;®º; sº): Formally:

gº(!j; sk) = fx 2 Z+ : x = min
y2Z+

(y ¡ wº(!j; sk;®º ; sº)) and x · wº(!j; sk;®º ; sº)g
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The construction of g implies that:

1 ¸ wº(!j ; sk;®º ; sº) ¡ gº(!j; sk) ¸ 0

for all k = 1; :::;K and for all º. This implies, by Lemma 1, that there must
exist, for all º, degenerate strategy vectors sº with corresponding integer
valued weight functions gº such that:

1. sºi 2support(¾ºi ) for all i 2 Nº .

2. gº(!j; sk) + Lº ¸ gº(!j ; sk) ¸ gº(!j; sk) for all k = 1; :::; K; where
Lº 2 Z+ is de…ned for each º as:

Lº = fº(!j) ¡
KX

k=1

gº(!j; sk)

We note that Lº · K for all º. Thus:

jwº(!j; sk;®º; sº) ¡ gº(!j; sk)j · maxf1;K ¡ 1g
jwº(!j; sk;®º ; sº) ¡ gº(!j; sk) + 1j · maxf2;K ¡ 2g

Therefore, given that kfºk ! 1 as º ! 1; for any "1 there exists a º1 such
that for all º > º1 we have that:

max
½ jwº(!j; sk;®º; sº) ¡ gº(!j ; sk)j

kf ºk ;
jwº(!j; sk;®º; sº) ¡ gº(!j; sk) + 1j

kfºk

¾
< "1

However, if we select "1 2 (0; ") then for all º > º1:
¯̄
¯̄g
º(!j; sk)
kgºk ¡ µjk

¯̄
¯̄ < "

and
¯̄
¯̄g
º(!j; sk) ¡ 1

kgºk ¡ µjk
¯̄
¯̄ < "

which gives the desired contradiction.¨

22



3.2 Existence of "-equilibrium in pure strategies.
In the following Theorem, we demonstrate that, given " > 0 there is an
integer su¢cientlyh large so that every game ¡(N;®) has an "-equilibrium in
pure strategies. To obtain this result, at a point in the proof we arbitrarily
select a Nash equilibrium for each game in a sequence and show that if
there are su¢ciently many players, this Nash equilibrium can be used to
construct an "-equilibrium in pure strategies. Since the selection of the Nash
equilibrium was arbitrary, our result can be viewed as a puri…cation theorem
– in su¢ciently large games, every Nash equilibrium can be puri…ed.

Theorem 1: Given a real number " > 0 there exists a real number ´0(") > 0
such that for all societies (N;®), where preferences satisfying continuity 1,
convergence and strong anonymity, and where k½(N;®)k > ´("), the induced
game ¡(N;®) has an "-equilibrium in pure strategies. Moreover, for any
mixed strategy equilibrium there exists an "-puri…cation.

Proof: Suppose that the statement of the Theorem is false. Then there
is some " > 0 such that, for each integer º there is a society (Nv; ®v) and
induced game ¡(Nº ; ®º) with pro…le ½(N º; ®º) > º for which there does
not exist an "-equilibrium in pure strategies. For ease of notation, denote
½(Nº ; ®º) by fº . That is, for each induced game ¡(Nº ; ®º) there does not ex-
ist a degenerate strategy vector sº , with corresponding integer-valued weight
function gº(¢; ¢;®º ; ¾º) such that:

h®(i)(s; gº¡i(¢; ¢;®º ; ¾º); fº) ¸ h®(i)(t; gº¡i(¢; ¢;®º ; ¾º); fº)

for all t 2 S and for all i 2 N º where s 2support(¾ºi ).
Observe, however that the game ¡(Nv; ®v) has a mixed strategy Nash

equilibrium; this is an immediate application of Nash’s well known theorem.
Denote a Nash equilibrium (NE) of the game ¡(N v; ®v) by ¾v with the ap-
propriate weight function wv(¢; ¢;®º ; ¾º). Since ¾v is a Nash equilibrium, for
each v and for each i 2 Nv we have:

h®º(i)(¾vi ; w
v
¡i; f

v) ¸ h®º (i)(t; wv¡i; fv)

for all s 2 S and

h®º(i)(s; wv¡i; f
v) ¸ h®º(i)(t; wv¡i; f v)
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for all t 2 S and for all s 2support(¾ºi ).
Let ±

¡
"
8

¢
be the similarity parameter as de…ned by (Lipshitz) continuity

for a required payo¤ bound of "8 . Use compactness of ­ to write ­ as the
disjoint union of a …nite number of non-empty subsets ­1; :::;­A, each of
diameter less than ±. For each a, choose and …x a point !a 2 ­a.

We de…ne the attribute function ®º as follows, for all º and for all i 2 N º:

®º(i) = !a if and only if ®(i) 2 ­a

Given the weight function wº(¢; ¢;®º ; ¾º) relative to society (Nº; ®º) and
Nash equilibrium strategy vector ¾º let wº(¢; ¢;®º; ¾º) denote the weight func-
tion relative to ®º and ¾º .

For each a = 1; :::; A and for each k = 1; ::; K de…ne µºak as follows:

µºak =
wº(!a; sk;®º ; ¾º)

jN ºj

By passing to a subsequence if necessary assume that the limº!1 µºak = µak
exists for all a = 1; ::; A and all k = 1; :::; K.

By Lemma 2 there exists a sequence fsºg of strategy vectors and a se-
quence fgº(¢; ¢;®º ; sº)g of integer-valued weight functions relative to attribute
function ®º and the degenerate strategy vector sº, such that:

1. for all º and for all sk 2 S and all !a 2 ­,

lim
º!1

gº(!a; sk;®º ; sº)
kgºk = lim

º!1
gº(!a; sk;®º ; sº) ¡ 1

kgºk = µak (6)

2. for all º and for all i 2 Nº , sºi 2support(¾ºi ) :

Given the weight function gº(¢; ¢;®º ; sº), let gº(¢; ¢;®º ; sº) denote the in-
teger valued weight function relative to society (Nº ; ®º) and strategy vector
sº.

Consider the payo¤ to player i 2 Nº from changing the strategy vector
¾º to sº . We let f º¡i denote the pro…le of a society in which the attribute of
a player j 2 N ºnfig is given by ®(j) and the attribute of player i is given by
®(i).
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By continuity 1 and the choice of ± we have that there exists a º1 such
that for all º > º1:

¯̄
¯h®(i)º(t; wº¡i(¢; ¢;®º; ¾º); fº) ¡ h®(i)º(t; wº¡i(¢; ¢;®º; ¾º); f

º
¡i)

¯̄
¯

< "
8

for any t 2 S.
Given Lemma 2 and strong anonymity, we have that for any "2 > 0 there

exists a º2 such that for all º > º2:
¯̄
¯h®(i)º(t; wº¡i(¢; ¢;®º; ¾º); f

º
¡i) ¡ h®(i)º(t; gº¡i(¢; ¢;®º ; sº); f

º
¡i)

¯̄
¯

< "2

for any t 2 S. Set "2 2 (0; "4).
Again, using continuity 1 and the choice of ± we have that there exists a

º3 such that for all º > º3:
¯̄
¯h®(i)º(t; gº¡i(¢; ¢;®º ; sº); f

º
¡i) ¡ h®(i)º(t; gº¡i(¢; ¢;®º ; sº); fº)

¯̄
¯

<
"
8

for any t 2 S.
Thus, for any º > maxfº1; º2; º3g we have that:

¯̄
h®(i)º(t; wº¡i(¢; ¢;®º; ¾º); fº) ¡ h®(i)º(t; gº¡i(¢; ¢;®º ; sº); f º)

¯̄

·
¯̄
¯h®(i)º(t; wº¡i(¢; ¢;®º ; ¾º); f º) ¡ h®(i)º (t; wº¡i(¢; ¢;®º ; ¾º); f

º
¡i)

¯̄
¯

+
¯̄
¯h®(i)º(t;wº¡i(¢; ¢;®º; ¾º); f

º
¡i) ¡ h®(i)º(t; gº¡i(¢; ¢;®º ; ¾º); f

º
¡i)

¯̄
¯

+
¯̄
¯h®(i)º (t; gº¡i(¢; ¢;®º; ¾º); f

º
¡i) ¡ h®(i)º(t; gº¡i(¢; ¢;®º ; ¾º); fº)

¯̄
¯

< "
8 +

"
4 +

"
8 = "

2

for any t 2 S.
However, given that

h®(i)º(s; wv¡i(¢; ¢;®º ; ¾º); f v) ¡ h®(i)º (t; wv¡i(¢; ¢;®º ; ¾º); f v) ¸ 0
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for all s 2support(¾ºi ), for all i 2 N , for all t 2 S and for all º, this implies
that for º > maxfº1; º2; º3g:

h®(i)º (sºi ; gv¡i(¢; ¢;®º; sº); f v) ¡ h®(i)º (t; gv¡i(¢; ¢;®º; sº); f v)
¸ ¡

¯̄
h®(i)º(t;wº¡i(¢; ¢;®º; ¾º); fº) ¡ h®(i)º(t; gº¡i(¢; ¢;®º ; ¾º); fº)

¯̄
¡¯̄

h®(i)º (sºi ; gº¡i(¢; ¢;®º; ¾º); fº) ¡ h®(i)º(sºi ; wº¡i(¢; ¢;®º; ¾º); f º)
¯̄

¸ ¡ "2 ¡ "
2 = ¡"

which gives the desired contradiction
We note that the equilibrium mixed strategy vector with which we started

our proof was arbitrary. Thus, any mixed strategy can be "-puri…ed. (See,
for example, Aumann et. al. 1984).¨

3.3 Social conformity.
Besides permitting results such as Theorem 1 (and various extensions), our
framework has the advantage that it allows us to address, and provide new
formulations, of di¤erent questions than currently in the game-theoretic lit-
erature, as exempli…ed by the following result.

An important aspect of the following result is that the number of distinct
cultures required to partition the total player set into connected intervals,
with the property that all players in the same interval play the same pure
strategy, is bounded by a constant, J(")K; which is independent of the size
of the total player set.

Theorem 2: Assume that ­ = [0; 1], the unit interval. Given a real number
" > 0, for all societies (N;®), where:

1. Preferences satisfy continuity 2, convergence and strong anonymity.

2. For some …xed number B, for all ! 2 ­, j®(!)j · B.

there exists a real number ´1(") > 0, an integer J(") and a partition of ­ into
C · J(")K connected subsets f!cgCc=1 such that if N > ´1(") the induced
game ¡(N;®) has an "-equilibrium in pure strategies with the property that,
for each c = 1; :::; C, all players in ­c choose the same pure strategy.

Proof: Suppose not. Then, there is some "0 > 0 such that for each integer
º there is a society (N v; ®v) and induced game ¡(Nv; ®v) with pro…le f º,
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where kf ºk > º and for which no "-equilibrium satis…es the conditions of the
lemma.

We begin by noting that, by Theorem 1, for any "0 there exists a number
´0( 8

18"0) and º¤ such that if kfºk >
°°fº¤

°° ¸ ´( 8
18"0) the society (Nº; ®º) has

an 8
18"0-equilibrium in pure strategies. Denote an 8

18"0 equilibrium of society
(Nº ; ®º) by sº with corresponding weight function gº(¢; ¢;®º ; sº).

Given "0, let ±
¡ "0
18

¢
be the similarity parameter as de…ned by (Lipshitz)

continuity 2 for a required payo¤ bound of "018 . Use compactness of ­ to write
­ as the disjoint union of a …nite number of connected non-empty subsets
­1; :::;­J("0), each of diameter less than ±.

Assume, without loss of generality that for all º and for all i; j 2 Nº , if
®(i) < ®(j) then i < j:

For each º we rearrange the strategy vector sº in two stages:

1. Let Nºkl denote the number of players i such that ®(i) 2 ­l and sik = 1.
That is Nºkj denotes the number of players with attributes in the set
­l playing pure strategy sk with probability 1: Then for each j =
1; :::; J("0) starting with the minimum integer i 2 N such that ®º(i) 2
­j allocate players in ascending order to strategy 1 until Nº1j players
are allocate to strategy 1. Then move onto strategies 2; :::; K. This
procedure will clearly reallocate the assignment of strategies within
the partition ­j so that the weight within ­j to each pure strategy
remains the same.

2. We have still, however, yet to create connected subsets in which all
players use the same strategy. For example we may have B players with
attribute type ! where the …rst player is allocated to pure strategy sk
and the next B ¡ 1 players to pure strategy sk+1. So, the second part
of the reallocation is to allocate all those players with the same type
to a unique pure strategy that at least one player previously used. It
is relatively easy to see that the total number of people whose pure
strategy we may have to change in this second part of the reallocation
is less than or equal to (K ¡ 1)J("0)(B ¡ 1).

This reallocation can be used for all º to partition ­ into connected
subsets ­º1; :::;­ºC such that any two players i; j 2 ­ºc use the same pure
strategy. That is, given the 8

18"0-equilibrium sº we create a new strategy
vector sº such that if i; j 2 ­ºc then sik = sjk = 1 for some pure strategy
sk 2 S. We now consider the change in payo¤s from this reallocation.
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The …rst part of the reallocation process can be seen as mathematically
equivalent to changing the attribute types of players. That is, instead of
thinking of swapping, say, the strategies that players i and j use, we can
think of it as swapping the attribute types of players i and j while keeping
their strategies unchanged. Thus, stage 1 is mathematically equivalent to
creating a new society (Nº; ®º) satisfying dist(®º(i); ®º(i)) < ±

¡ "0
18

¢
for all

i 2 Nº . The weight function relative to strategy vector sº and society ®º is
given by gº(¢; ¢;®º ; sº). (We note that the pro…le of societies (Nº ; ®º) and
(Nº ; ®º) are equivalent to fº .) This interpretation and the choice of ± allows
us to make use of continuity 2 by arguing that there exists a º1 such that for
all º > º1:

¯̄
h®º(i)(t; gº¡i(¢; ¢;®º; sº); f º) ¡ h®º(i)(t; gº¡i(¢; ¢;®º; sº); fº)

¯̄
<

1
18
"0

for all t 2 S and for all i 2 N º.
Consider, now the second part of the reallocation in which at most …nite

number (K ¡ 1)L("0)(B ¡ 1) players change pure strategy. Assume this
changes the strategy vector to sº and the weight function to gº(¢; ¢;®º ; sº).
Because, only a …nite number of players change strategy, it can be shown,
using continuity 2 (or 1), strong anonymity and an argument analogous to
that in Theorem 1, that there exists a º2 such that for all º > º2:

¯̄
¯h®º(i)(t; gº¡i(¢; ¢;®º; sº); f

º
) ¡ h®º(i)(t; gº¡i(¢; ¢;®º; sº); f

º
)
¯̄
¯ < 4

18
"0

for all t 2 S and all i 2 Nº . The intuition is clear - there are only a bounded
and given number of players changing strategies - note that J("0) can be
…xed at say 1

± +1 - and so for large enough populations the strategies of these
players are inconsequential to other players. Thus for º > maxfº1; º2g:

¯̄
¯h®º(i)(t; gº¡i(¢; ¢;®º; sº); fº) ¡ h®º (i)(t; gº¡i(¢; ¢;®º ; sº); f

º
)
¯̄
¯ ·¯̄

¯h®º (i)(t; gº¡i(¢; ¢;®º ; sº); fº) ¡ h®º(i)(t; gº¡i(¢; ¢;®º ; sº); f
º)

¯̄
¯

+
¯̄
¯h®º (i)(t; gº¡i(¢; ¢;®º ; sº); f

º) ¡ h®º(i)(t; gº¡i(¢; ¢;®º ; sº); f
º)

¯̄
¯

< 1
18"0 +

4
18"0 =

5
18"0

for all t 2 S and all i 2 Nº .
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We began by noting that there exists a …nite º¤ such that for all º > º¤
there exits an 8

18"0-equilibrium in pure strategies sº and corresponding weight
function gº(¢; ¢;®º ; sº); implying that:

h®º(i)(s; gº¡i(¢; ¢;®º ; sº); fº) ¸ h®º(i)(t; gº¡i(¢; ¢;®º; sº); fº) ¡ 8
18
"0

for all t 2 S and all s 2support(sºi ) and for all i 2 N º.
This implies, for all º > maxfº1; º2; º¤g that:

h®º (i)(s; gº¡i(¢; ¢;®º; sº); f
º) ¡ h®º(i)(t; gº¡i(¢; ¢;®º; sº); f

º) ¸ (7)

¡
¯̄
¯h®º (i)(s; gº¡i(¢; ¢;®º; sº); f º) ¡ h®º(i)(s; gº¡i(¢; ¢;®º ; sº); f

º)
¯̄
¯ (8)

¡
¯̄
h®º(i)(s; gº¡i(¢; ¢;®º ; sº); fº) ¡ h®º(i)(t; gº¡i(¢; ¢;®º ; sº); f º)

¯̄

¡
¯̄
¯h®º(i)(t; gº¡i(¢; ¢;®º; sº); f º) ¡ h®º(i)(t; gº¡i(¢; ¢;®º; sº); f

º)
¯̄
¯

¸ ¡ 5
18
"0 ¡ 8

18
"0 ¡ 5

18
"0 = ¡"0

for all s 2support(sºi ) and for all i 2 Nº .
The above expression, however, gives the desired contradiction. To see

this we make two observations. Firstly, we repeat the analogy that swapping
the strategies of players is ‘equivalent’ to swapping their attribute types.
Thus, if stage 1 of the reallocation swaps the strategy of players i and j
the above shows that player j is at an "0-equilibrium. Secondly, we have to
consider the players who were allocated a new and di¤erent strategy in stage
2 of the reallocation. We recall that, say b · B; players were of the same
attribute type and at most b¡ 1 were reallocated a di¤erent strategy. How-
ever, this implies that at least one player i did retain their original strategy
sºi and so remain at an "0-equilibrium. Given the other b ¡ 1 players have
the same attribute type they must also be at an "0-equilibrium.¨

4 Conclusions
The noncooperative framework promises to be fruitful. First, the techniques
developed in this paper may be useful in other applications. One potential
application, currently in progress, is to games with incomplete information.
So far there appears to be no major obstacles to obtaining uniform large
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(but …nite) analogues of the sorts of results of Aumann et al. (1983). In
particular, note that Lemma 1 applies to any game and we conjecture that
an extension of our model to incomplete information would be obtained using
that Lemma similarly to how it is used in this paper. Indeed, it seems
that as long as we restrict to compact metric spaces and to the appropriate
Lipshitzian continuity conditions, analogues of Theorem 1 will continue to
hold.

Other possible applications concern the so called “Equivalence Principle”
of cooperative outcomes of large (“competitive”) exchange economies. In ex-
change economies with many players, the set of equilibrium outcomes, rep-
resented by the induced utilities of members of the economy, coincides with
the core of the core of the game generated by the economy and the value out-
comes; see Debreu and Scarf (1963), Aumann (1963, 1985). We conjecture
that when noncooperative games derived from pregames are required to sat-
isfy the conditions of this paper (satis…ed, in spirit, for exchange economies
for which the Equivalence Principle holds) and, in addition, the condition of
self-su¢ciency – that what a coalition of players can achieve is independent
of the society in which it is embedded – then analogues of the Equivalence
Principle can be obtained for large noncooperative games. More precisely, we
conjecture that under self su¢ciency, (approximate) strong equilibrium out-
comes are close to Pareto optimal and also treat similar individuals similarly
– that is, strong equilibrium outcomes have the equal treatment property.

Comparing our model with those for cooperative pregames, in spirit the
frameworks have signi…cant similarities. The cooperative pregame frame-
work, however, is not totally satisfactory. One shortcoming is that some of
the results depend on the framework itself (cf. Wooders 1994, Theorem 4,
relating small group e¤ectiveness and boundedness of average or per capita
payo¤). This, the inability of the pregame framework to treat widespread
externalities, and a desire to highlight what drives the results, led to the
introduction of ‘parameterized collections’ of games (cf. Kovalenkov and
Wooders 1999a, 1999b). We anticipate eventually that such a framework
will be introduced for noncooperative pregames.

A di¤erent direction of research may lead to more insight into social
norms and the di¢culties of achieving economic e¢ciency. When individuals
mimic similar individuals, the metric that they have on ‘similarity’ is crucial.
If a bright and highly capable young woman, living in some rural area of
Canada, for example, may aspire to occupations similar to those of the more
successful women in her community – nurses, bank clerks, school teachers,
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for example – rather than occupations similar to those of successful males
in her community with similar intellectual ability – doctors, bankers, school
principals, for example. It may be that if the ‘similarity metrics’ that people
use are biased to place too much weight on similarities of gender, race, color,
or religion rather than on similarities of ability, interests, and so on, there
may be (non-Nash) ‘stable equilibrium’ outcomes that are quite di¤erent than
Nash outcomes. Some of the motivation for developing the current model is
to explore such issues.

Related questions concern concepts of equilibrium based on imitation
and learning. Typically, such equilibrium outcomes are not Nash. This is,
in some senses, at odds with our Theorem 2 and its motivation. It may be
fruitful to investigate what sorts of learning and imitation dynamics would
lead to the sort of "-equilibrium shown to exist in Theorem 2.
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