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(Palfrey and Rosenthal, 1983,1985) have the problem of multiple equilib-

ria, some of which seem unreasonable. How can the counter intuitive high

turnout equilibria be explained? Palfrey and Rosenthal (1985) suggest

that the main reason is that strategic uncertainty is too low in a com-

plete information model. We show that this is not the main problem with

these equilibria{ incomplete information may exacerbate the problem of

multiple equilibria. We propose a very intuitive criterion based on voter

learning to distinguish reasonable equilibria. This paper makes precise the

sense in which the high turnout equilibria in the Palfrey-Rosenthal model

are not robust. We show how the model can be used to qualitatively

explain several phenomena observed in reality.
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1 Introduction

Downs (1957) pointed out a basic paradox in voting theory: the fact that large

numbers of people vote is contradictory to the idea of a rational voter who takes

the costs of voting into account. Rational voters must realise that the probability

of their being pivotal is very small in a large electorate (hence the bene�ts of

instrumental voting are very small) so that they would be better o� abstaining.

Is this borne out by a game theoretic model with rational voters? Palfrey and

Rosenthal (1983,1985) examined this issue in two models, one with complete

information and one with incomplete information. They found that even in the

simplest model with complete information (two candidates, two types of voters,

symmetric equilibria) there was a problem of multiple equilibria. In particular,

even in the simplest case with an equal number of the two types of voters in

the population and restricting attention to symmetric mixed strategy equilibria

they found two types of mixed strategy equilibria for costs in the interval (0; 1=2)

{ one with low turnout (as expected) but one with substantially high turnout.

They claimed that this high turnout equilibrium was very unsatisfactory because

it \has the unappealing feature that there is another equilibrium with almost

no one voting. Apparently the only reason the upper one can be sustained is

that the two electorates are of the same size so that for q very close to 1, the

probability of a tied election is very high. Again, the result rests on the fact

that in equilibrium there is essentially no strategic uncertainty." (Palfrey and

Rosenthal, 1985) Of course, we do not see any reason why this argument should

apply only to the high turnout equilibrium.1.

They claim that moving to the corresponding incomplete information game

gets rid of this high turnout equilibrium. Indeed, in their model of the incom-

plete information game, they show that with some assumptions on the type of

uncertainty allowed, the only symmetric mixed strategy equilibrium that sur-

vives is the low turnout one.

While we agree with Palfrey and Rosenthal (1985) that the low turnout equi-

librium is the more appealing one, we argue that the reason they cite may not

be the most compelling one. There is a sense in which the high turnout equi-

libria are not robust { they require precise beliefs about what other voters are

doing in equilibrium. This paper attempts to make this claim more precise. We

show that removing some of the assumptions on voter uncertainty of the Palfrey

1When analysing the general game where the size of the two electorates is di�erent they

still get some \quasi-symmetric mixed-pure strategy equilibria"which have high turnout even

as the size of the electorate increases. But all symmetric totally mixed strategy equilibria

have the property that as the size of the electorate increases the turnout decreases.
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Rosenthal (1985) incomplete information model leads to multiple equilibria even

in the incomplete information case. We show that introducing voter learning

about equilibrium (i.e. considering the dynamics of reaching a Nash equilibrium

by boundedly rational agents) in a very simple and natural way would lead to

the low turnout equilibria in their example. It would rule out the high turnout

mixed strategy equilibria. The argument for this example is close to the risk

dominance arguments of Harsanyi and Selten (1988).

We introduce the model of voter learning in Section 2, then we consider the

complete information game in Section 3 and the incomplete information game

in Section 4. Section 5 concludes.

2 The Model

We use the model due to Palfrey and Rosenthal (1983, 1985) (henceforth PR).

There is a total of N voters in the population, and there are two alternatives: 1

and 2. The voting rule is Simple Majority Rule: in case of tie either 1 is chosen

or a coin toss takes place. There are two groups of voters: T1 (with N1 voters

who prefer 1) and T2 (with N2 voters who prefer 2) and all voters belong to

one of these groups. Voting is costly and the cost of voting is the same for all

voters = c. Voters have full information. Voters thus decide whether to vote

(participate) or not { if they vote they always vote sincerely (i.e. for their best

candidate).

Let R represent the expected net bene�t from voting , p the probability of being

pivotal, C the (same across voters) cost of voting, B the bene�t from voting i.e.

the di�erence between the bene�ts of i's more preferred alternative winning as

opposed to the less preferred one, and D a �xed bene�t from the act of voting

(civic duty).

Then we have: R = pB � C + D. Let c = C � D, the �xed net cost of

voting. We can normalise so that only the ratio of cost per unit bene�t matters:
R
B
= p� c

B
:W.l.o.g let B = 1.

We consider Nash equilibria of this game.

Let the probability for player i to choose to vote be qi. Then (q�i ; q
�
2 ; :::; q

�
n)

is a mixed strategy Nash equilibrium, if for all i voting and non-voting give

the same expected payo�, given the mixed strategies of other players: let ni1

and n
i
2 denote the number of votes received in equilibrium by alternative 1

and 2 if player i is not included. So, we have that 0 < q
�
i < 1 i� Prob( i is

pivotal)(1� ci)+ (1�Prob(i is pivotal))(0� ci) = 0. Also i is pivotal whenever

jni1�n
i
2j � 1: This gives the following equation if the tie-breaking rule is a coin
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toss: c = [Prob (ni1 = n
i
2 � 1)+Prob(ni1 = n

i
2)](1=2): As Palfrey and Rosenthal

(1983) show, there are many Nash equilibria to this game: they can be divided

into two categories: the �rst where all voter's probabilities of voting are strictly

between 0 and 1 is called a Totally Mixed Strategy Equilibrium (TMSE). The

equilibria in this category have the property that as electorates become large,

the probability of voting becomes smaller. The other category has all voters in

one group using a mixed strategy while in the other group, voters are divided

into two subgroups, one in which voters de�nitely abstain and the other in which

voters de�nitely vote. This does not have the property that turnout becomes

smaller as the size of the electorate becomes larger. The problem with this

equilibrium, according to PR, is that it is very fragile and requires very precise

beliefs about the number of votes each alternative will receive. If there is too

much uncertainty in equilibrium then the probability that the election is close

approaches zero as the electorate size increases.
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2.1 An Example with N1 = N2 :

Let us demonstrate �rst the problem that arises with Nash equilibria in a simple

example where costs are equal for all voters and N1 = N2. Assume that we have

the coin toss tie breaking rule. Let N1 = N2. The symmetric mixed strategy

equilibrium is denoted q which satis�es the following equation:

2c =
X

k=0;:::;N1�1
CN1�1;kCN1;kq

2k(1� q)2N1�2k�1 (1)

+
X

k=0;:::;N1�1
CN1�1;kCN1;k+1q

2k+1(1� q)2N1�2k�2

If 0 < c < 1=2 then this equation has either no solution, 1 solution or two.

We can plot a graph (as in PR, 1985) to see the equilibria and how they change

as N becomes large:

c_min

3

q

c

FIGURE 1

q_H

q_L

The example shows that as the cost increases beyond cmin there are two types

of mixed strategy equilibria: one where almost everyone votes (denoted q�H) and

one with almost no one voting (denoted q
�
L). In addition there is a pure equi-
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librium in which everybody votes! Thus the complete information model can

generate a symmetric mixed strategy high turnout equilibrium. This equilib-

rium looks implausible for several reasons: among other things it would predict

that abstention decreases when the cost of voting increases,which is rather coun-

terintuitive behaviour.

As we mention above (see Introduction) PR, 1985, claim that the high turnout

equilibrium is not robust in that they arise because of the fact that there is

almost no strategic uncertainty in the complete information model.

We claim that this is not the main problem with the high turnout equilibrium.

In fact the problem of multiple equilibria remains in the incomplete information

model: it will be shown below (see Section 4) that unless the amount of uncer-

tainty is quite large (probably too large to be observed in concrete applications),

not only does one still get three equilibria near the original ones but, in certain

cases, many more may appear. Palfrey and Rosenthal obtain uniqueness in the

incomplete information game only when uncertainty on the cost is high enough.

We claim, instead, that the main problem with the equilibria other than the

low turnout one is that they are inconsistent with reasonable models of voter

learning such as �ctitious play. We suggest, in this paper an alternative way to

select the voting equilibria that gives the \good" prediction even in the case of

an equal number of voters in the two electorate. There is a very intuitive reason

why the high turnout equilibrium is not a robust one, and this is true regardless

of whether the game is of complete information or not. This is because of its

stability properties with respect to learning dynamics. But �rst we will describe

our model of voter learning.

3 Dynamics: Single Elections

3.1 Complete Information

Consider the PR example above. Let N1 = N2 = N and as before let q denote

the probability that a voter participates in the election and c the cost of voting.

Let f(q) denote the probability of being pivotal (computed above in (2) with

the coin tossing tie breaking rule). Then, as before the best reply is to vote

if f(q) � 2c > 0 and abstain in the opposite case with equality corresponding

to indi�erence between the two strategies. We assume that people learn the

equilibrium through a process of \continuous �ctitious play". A voter starts by

conjecturing a q, e.g. the share of the population who voted on the last election

or the result given by a poll (we assume N is not too small so that the empirical
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observation of this quantities is a reasonable estimator of q) and checks whether

the inequality before tells her to go to vote (or to abstain). She realizes that

everybody will do the same and so expects the correct q to be higher (lower).

Once she has adjusted q she checks again what is her best reply and so on. We

assume that everyone begins with the same q and everyone adjusts in the same

way. This is consistent with Palfrey-Rosenthals' focus on symmetric equilibria.

If this process converges to some point q�, she will apply the corresponding

mixed strategy.

With a large population the in
uence of each voter is very small so that players

would play myopically. The type of learning by adjustments is the standard one

assumed in several contexts such as e.g. neural networks. The details can be

speci�ed in several di�erent ways, for example see Fudenberg and Levine (98).

In general they can all be described by the di�erential equation2:

dq

dt

= K(q; c) (2)

and sign K(q; c) =sign(f(q)� 2c) This is the Monotonicity property assumed in

Kandori-Mailath-Rob (93)(henceforth KMR).

The functional form of K(q) depends on the particular model of learning. How-

ever our result holds for all of them that satisfy the assumptions on K(q). We

assume that the function dq

dt
(:) satis�es continuity at any initial point t0; q0,

hence there exists a unique solution for any initial q0, for all t 2 R: The solu-

tion of this equation for any initial condition, q(q0; t) is continuous. Now, we

examine the the behaviour of the dynamics on the strategy space. The basic

intuition is that points which are the limit of q(t) as t goes to in�nity should be

the outcomes of the learning process that are likely to be seen in concrete cases.

To be more precise we will introduce some de�nitions taken mostly fromWeibull

(1995): To begin with let q(q0; t) be the solution of the di�erential equation (2)

with initial condition q(0) = q0, we : Let q(q0; t) 2 X = [0; 1];8t 2 R, i.e. the

state variable q is a symmetric mixed strategy (the same for all players).

De�nition 1: A state q
� 2 X is said to be Lyapunov stable if every neighbourhood

B of q
�
contains a neighbourhood B

0
of q such that q(q0; t) 2 B for all q0 2

B
0 \X and t � 0.

Intuitively a state is Lyapunov stable, or just stable, if no small perturbation

away from it induces a movement away from it.

De�nition 2: A state q
�
is asymptotically stable if it is Lyapunov stable and

2if the adjustment steps are small enough, taking a discrete adjustment process would give

essentially the same results
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exists a neighbourhood B
�
such that the following holds for all q0 2 B

� \X :

limt!1q(q0; t) = q
� (3)

A point that is not aymptotically stable will be called unstable. While

stability requires that there be no pull away from the state, asymptotic stability

requires in addition that there be a local pull towards it as well.

De�nition 3: Basin of attraction of state q
�
: is the set of points q0 2 C :

q(q0; t)t!1 ! q
�
:

Intuitively, the basin of attraction of q� is, the set of initial conjectures q0 2 C

that, with learning, will lead to q�.

Recall that equilibrium 1 in Figure 1 (also Figure 2 below) is the low turnout

mixed strategy equilibrium,q�L, 2 is the high turnout mixed strategy equilibrium,

q
�
H , and 3 is the pure strategy full turnout equilibrium. Now we can state

Proposition 1:

Proposition 1: For any learning dynamics of type (2) Equilibria 1 and 3 will be

asymptotically stable, while equilibrium 2 will always be unstable.

We refer to the appendix for the (elementary) proof, here is an informal

discussion: If c > 1 or c < cmin any trajectory trivially converges to the unique

equilibrium which is the zero turnout or the full turnout equilbria respectively.

When cmin < c < 1 the qualitative behaviour of the dynamic is as in Figure 2

below:
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c_min

3

c

q2 2

FIGURE 2

1

c_0 1/2

1/2

0

1

cost

q

Any trajectory starting in the interval [0; q2) (its basin of attraction) converges

to equilibrium 1, therefore it is stable ; equilibrium 2 is unstable, no trajectory

leads to it; equilibrium 3 (the pure strategy equilibrium where everyone turns

out) is stable with basin of attraction (q2; 1). Moreover, the basin of attraction

of 1 is larger than that of 3 for any cost higher than cmin, and as c increases

the basin of attraction for equilibrium 3 shrinks.

Considerations about the size of the basin of attraction allow us to improve

the predictions of the model: for a stable equilibrium to have a large basin of

attraction means having many initial conditions leading to it and so has a high

probability of being observed.

So the prediction of the model in case of a single election is that equilibrium

2 will never be observed, equilibrium 1 will be observed with high probability

and equilibrium 3 has a smaller chance to appear (if N is moderately large this

probability goes to zero very fast).

The case where N1 = N2 is easy to analyse since it involves one-dimensional

dynamics. We could extend the analysis to look at both the asymmetric equi-

libria of the game with N1 = N2 and also to consider equilibria of the general

game with N1 6= N2. We have the following examples, in this regard. The

learning model is now generalised to: dqi
dt

= Ki(q1; q2; c) for i = 1; 2, where
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sign Ki(q1; q2; c) = sign (fi(q1; q2) � 2c). K(�) is a function with continuous

partial derivatives. This is a non-linear two dimensional system, but we can

use the Linearisation theorem. qi can denote the (di�erent) strategies of two

players who are identical orthe symmetric strategies of two players who belong

to di�erent groups (when N1 6= N2). PR point out that the asymmetric strat-

egy equilibria when N1 = N2 disappear in large electorates. In our example,

we see that the dynamics forsmall N show cycles, i.e they are stable but not

asymptotically stable.

Lets look at asymmetric equilibria of the game with N1 = N2 = 2: We take

an example from PR (83). N1 = N2 = 3 and cost = 20
81

< cmin: The equilbria:

q1; q2 = (2=3; 1=3) and q1; q2 = (2=3; 1=3).

The equations for these are:

2c = f1(q1; q2) = (1� q1)
2(1� q2)

3 + 3(1� q1)
2
q2(1� q2)

2+

6q1q2(1� q1)(1� q2)
2 + 6q1(1� q1)q

2
2(1� q2) + 3q21q

2
2(1� q2) + q

2
1q

3
2

(for the �rst group { for the second group just permute q1 and q2.)

This gives the the Jacobian with the following terms:

J11 = �2(1�q1)(1�q2)3�6q1q2(1�q2)2+6(1�q1)q22(1�q2)+2q1q
3
2 , J12 =

�6q2(1�q2)(1�q1)2+6q1(1�q1)(1�q2)2�6q1(1�q1)q22+6q21q2(1�q2)+3q21q
2
2 ;

J22 = �J11 and J21 = 6q21q
2
2 � J12:

With the �rst set of solutions, we get J11 = �51
81

, J12 = 84
81

and J21 = �60
81

So the eigenvalues are not real numbers and have zero real parts.

Next we consider an example with N1 6= N2. We consider a TMSE in

this casewhich turns out to be unstable: N1 = 2; N2 = 3: Let q1; q2 denote a

symmetric TMSE. The mixed strategy equilibrium involves: f1(q1; q2) = (1 �
q1)(1 � q2)

3 + 3(1 � q1)q2(1 � q2)
2 + 3q1q2(1 � q2)

2 + 3q1q
(
21 � q2) = 2c; and

f2(q1; q2) = (1�q1)2(1�q2)2+2q1(1�q1)(1�q2)2+4q1q2(1�q1)(1�q2)+2q21q2(1�
q2) + q

2
1q

2
2 = 2c where f1(q1; q2) represents the probability of being pivotal for

type 1 players and f2(q1; q2) for type two players. The Jacobian matrix J has the

following elements: J11 = (1�q2)[3q22�(1�q2)2], J12 = 3(2q22�2q1q
2
2+q1�2q2),

J21 = 4q2 � 2q1 � 4q22 + 4q1q
2
2 , J22 = �2 + 2q2 + 4q1 + 4q21q2:

The asymptotic stability properties at any solution therefore depend on

whether the eigenvalues are both negative or not at this solution. Let c = 1=4.

Real solutions for q1 and q2 are: (0:4; 0:6) and (0:83; 0:16): The eigenvalues

�1; �2 are given by

�(a11 + a12) +�
p
(a11 + a22)2 � 4a22a11 � a12a21

2
:
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On calculating these eigenvalues for the two solutions above: the �rst solu-

tion has �i =
0:71+�

p
0:5�4(1:3)
2

(no real roots) and the second:�i =
1:55+�

p
76:4

2
:,

which has one positive solution-hence there is a positive eigenvalue. Hence the

totally mixed equilibrium is unstable, at least for small values of N1; N2: The

expression above for F (q1; q2) is too complicated to permit us to evaluate the

properties of it as N1; N2 become large, but we can use a Poisson approxima-

tion introduced by Myerson (98,99)in the more general case with population

uncertainty.

3.2 Incomplete Information

We capture uncertainty by a model of incomplete information about costs. Each

voter i has a cost of voting ci which is private information to him. Let the cu-

mulative distribution of costs be denoted F (c) and for simplicity we assume the

distribution to be the same between the two groups. We look for the Bayesian

Nash equilibria of this game (as in PR 1985). Each voter then has a decision

rule that speci�es whether to vote or not as a function of his own cost ci. It is

easy to see that in any symmetric Bayesian equilibrium a voter votes if his cost

is below a certain threshold level, c�. Thus a (symmetric) Bayesian equilibrium

is a cost level c� such that 2c� = f(q(c�)), with the corresponding q� = F (c�):
This corresponds to the equilibrium outcome in the game of complete informa-

tion where all voters have cost c� and vote with probability q� = F (c�). Note

that, althought it is natural to assume that players choose the cost level c�, this

is equivalent, for symmetric equilibria, to choosing q�. All dynamics in terms

of one variable can be easily translated in dynamics in terms of the other. So

let C(q) represent the inverse of q(c) = F (c). Then we need 2C(q�) = f(q�).

In the graph below (Figure 3), this equilbrium is given by the point where the

distribution function intersects the curve f(q)=2, which shows the probability

of being pivotal (as in Figures 1 and 2 above).
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q

C(q)

f(q)

1

0

FIGURE 3

Palfrey and Rosenthal (1985) show that under some assumptions there is

only one intersection and the intersection converges to the point q = 0 as N

becomes large. As is evident from the graph, however, everything depends on the

shape of the distribution function F (c) (or its inverse C(q). The assumptions

they make are: (1) F (c) is continuous on (�1;1), (2) F (0) > 0 and (3)

F (1) < 1.

The �rst assumption is rather natural and corresponds to assuming that the

probability distribution of c has no atoms. Assumption 2 is quite realistic also,

i.e. that there is a positive probability that cost will be negative (civic sense will

prompt some people to vote regardless of their assessment about being pivotal.

However, the last assumption is stronger: it implies that there is a positive

probability that a voter would not show up even if he were sure to be pivotal.

It is also not innocuous and Palfrey and Rosenthal have an example where

relaxing this assumption takes us back to the problem of multiple equilibria in

the complete information case (see Figure 3). Moreover, there seems to be an

implicit assumption that F (c) is not too wiggly: Figure shows a case where

the curvature of F (c) can change quite fast so that many additional equilibria

are introduced. Note that such a multimodal probability distribution is not

so pathological: it could model a population made of di�erent groups each

with di�erent costs and with small variance within a group. Thus, incomplete
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information does not solve the problem of multiple equilibria, sometimes it even

introduces more of them, some of which have high turnout and our intuition

suggests that they should be \non-robust" in some sense.

To achieve this we now consider learning as before: dq

dt
= K(q); with sign(K(q)) =

sign(f(q)� 2c(q)). We can isolate the stable equilibria as being the ones where

C(q) intersects f(q) from below. These are the equilibria 1,3 and 5 in Figure 4.

c_min

1

2
3 4

5

q

C(q)

f(q)

FIGURE 4

More formally we state this in the next Proposition:

Proposition 2: Let the graphs of C(q) and f(q) be in a generic position (this

means that they intersect transversely i.e. 2c(q) � f(q) = 0 ) d=dq(2c(q) �
f(q)) 6= 0 ), then the asymptotically stable points are those such that d=dq(2c(q)�
f(q)) � 0.

The proof is the same as for Proposition 1.

In the same way as in proposition 2, it is not hard to see that if N is large

the only equilibrium with a large basin of attraction, containing at least the

interval [0; 1=2], is 1 { the low turnout equilibrium. All the others are either

unstable, i.e. with zero probability, or metastable, i.e. with a small basin of

attraction, whose size goes to zero when N goes to in�nity. In the next section

we do a similar analysis of the behaviour of equilibria when the parameters of

the model are allowed to vary.
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4 Comparitive Statics

We now investigate how equilibria change when the distribution of c varies; For

simplicity we shall assume that the c are uniformly distributed on the interval

[c� s; c+ s], so that we have two parameters the average c and a measure of the

dispersion s. Other distributions, such as the Gaussian, can be discussed in the

same way and give qualitatively similar results (see the discussion at the end of

the section). A uniform distribution corresponds to an F whose graph is shaped

as in Figure 5.

q

C(q)

f(q)

FIGURE 5

C(q)
C(q)

C(q)

1

2

3
G

H
D

B

G

H

The intersections with the curve studied before give the equilibria. It should

be geometrically intuitive, and it is easily proved, that if s is large enough

so that the slope of the line GH is less than the slope of the arc BD at D,

there is only one equilibrium, (see Figure 5). This slope can be computed

explicitly (N�1
2

). This tells us that the condition for such a behaviour is that

s � (N � 1)=2. Note that this is a very large value for s, for plausible values of

N . In this range of s the unique equilibrium corresponds to nobody voting if

c� s > 1=2, everybody voting if c+ s < 1=2 and a percentage of voters that is

a smoothly decreasing function of c in the cases in between, in good agreement

with intuition. This corresponds to the case studied by Palfrey and Rosenthal.

The more realistic case of small (or rather not enormous), s , i.e. s < (N�1)=2,

is more interesting and presents several analogies with the case of complete

information , that corresponds to s = 0. For any s, let c(s) be the value of c

such that the line GH is tangent to the curve BD. Note that c(s) is equal to

cmin for s = 0 and increases monotonically to 1/2 when s = (N � 1)=2. It is

14



also clear from the picture that c < 1=2� s. We now have, as in the complete

information case, three cases: 1) For c < c(s) there is one equilibrium with q = 1

(everybody votes) (shown by area A in Figure 6) 2) For c(s) < c < 1� s there

are three equilibria: the previous one, that is stable, an unstable one with large

q and a stable one with a low q, with a large basin of attraction, (shown by area

B in Figure 6) which makes the q = 1 equilibrium stable at �rst and then makes

it disappear when 3)c+ s > 1=2 and there is only one low turnout equilibrium

(shown by area C in �gure 6) . The domain in the c; s plane corresponding to

the three cases is shown in Figure 6.

1/2

1/2

c_min

c(s)

1/2-s

c

s

A

B

C

Most of our discussion applies to other distributions as well provided they are

regular enough. Note however that the tangency between the F curve and the q

curve may not be unique in particular cases, such as costs concentrated around

a �nite number of values, this would make the jump in the hysteresis cycle split

into the composition of several smaller ones.
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5 Repeated Elections

5.1 Complete Information

We mentioned earlier that the low turnout equilibrium has a large basin of

attraction. This remark becomes crucial in the following extension of the model:

suppose that elections are repeated regularly: we can index elections with i =

0; 1; 2; 3; :::, all other elements ofthe model being the same as before. Now,

at election i, voters begin the learning process at qi0. This depends on the

turnout in the preceding election qi�11 in the following (non-deterministic) way:

q
i
0 is a random variable uniformly distributed on the interval [q; q] with q =

maxf0; q� Æg and q = minf1; q+ Æg with Æ a small positive number that gives

a measure of the possible mistakes in ascertaining the turnout. in this way we

get a random dynamical system, actually a Markov chain since the system is

time independent, whose states are the stable Nash equilibria, 1 and 3. The

behaviour is given by proposition 2:

it Proposition 2: If the number of voters is larger than N0(Æ), the limit distri-

bution of the outcomes qi1 is concentrated on equilibrium 1.

Proof in Appendix.

Note that the precise form of the probability distribution of the qi0 is, to a

large extent, irrelevant to the result. As before we give an informal discussion

of the result: using a terminology borrowed from mechanics, equilibrium 3 is

called "metastable". Intuitively the fact that the basin of attraction has positive

measure but is very small means that if there are random disturbances, the

equilibrium will be stable for a while but after a suÆcient long time we should

observe a jump out of it towards equilibrium 1 (think of a golf ball in a bowl in

a shaky train coach).

A consequence of metastability is that, if elections are repeated, equilibrium 3

tends to jump to equilibrium 1 after a long sequence if the cost is below 1 but

higher than a certain value value 1=2 > cmin. If the cost is not in this range

there is only one equilibrium .

Note that, in all cases, equilibria with positive probability predict a nonde-

creasing q when c decreases, as intuition suggests. It is interesting to investigate

further what happens when the cost, or the interest in the outcome, changes

from one election to the other. In this case it is natural to ask that the �ctitous

play dynamics starts at the percentage of voting of the last election. As before,

to simplify the discussion and isolate the di�erent e�ects we will assume that

there are no mistake , i.e. that Æ is zero. This allows us to see how q varies

as a function of c. Suppose at some time we are given c = c0 and we are in
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equilibrium 1. Then suppose that the introduction of electronic voting,for in-

stance, causes c to decrease so that that the predicted e�ect is a little increase of

turnout (see Figure 2). But when c decreases below cmin, the mixed equilibria

disappear and we suddenly fall in the basin of attraction of equilibrium 3, so

q suddenly jumps up, i.e. at c = cmin and below, equilibrium 3 is the only

stable equilibrium. The equilibrium will tend to persist for a while even if cost

increases again until we reach the point where c = 1=2 and the only equilibrium

possible is the pure strategy one, where nobody votes; alternatively even if c

stays below 1 but over 1=2, in the "very long run" we will see q jumping down.

This is phenomenon is known as hysteresis or "memory" of the system, and ex-

plains why the same values of parameters can cause the emergence of di�erent

equilibria, depending on the initial state.3 Again we refer to the Appendix for

rigorous statements and proofs. Thus, we should observe phenomena of this

type: in countries where there has been a large turnout in preceding elections

one expects large turnout in the next election too even if cost has (moderately)

increased or interest for the candidates has diminished. When a critical cost

level is reached, or after a sequence of many elections, turnout will suddenly

jump down and stay low even when cost decreases back to the original one. Our

model, and in particular hysteresis, can be used to see what happens when the

cost c is changed by introduction or removal of voting laws. For example: ab-

stention is high in the U.S.A. and has been signi�cantly lower in countries such

as Belgium and Italy, even though there is no reason to expect signi�cant dif-

ferences in cost of voting or interest in the elections. An explanation of this fact

might be as follows: in the past Belgium and Italy had laws against abstention

that made c quite low, so equilibria were high turnout equilibria.The abolition,

or lack of enforcement, of such laws has moved the state to the segment of

higher cost but persistence of large q; in U.S.A. where there have never been

such laws the more stable low turnout equilibria are observed. Metastability

gives an explanation of another phenomenon often observed: in old democracies

(countries with a long history of voting, with approximately the same c) like

the USA abstention is often high. This may not stem from the closeness of the

electoral platforms (or high cost of voting) or indi�erence of the voters about

the issues, which is a common (and a little tautological) explanation. To see

what happens in our model, assume that c is between 1=2 and 1.If this is the

case even if one starts with high turnout equilibria, random 
uctuations will

make them eventually jump down to low turnout equilibria.

In the incomplete information case, the low turnout equilibrium has a large

3We thank Jonathan Cave for pointing out this interesting feature of the model.
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basin of attraction that increases with c making �rst the q = 1 equilibrium

metastable and then making it disappear when 3) c + s > 1 and there is only

one, low turnout equilibrium. The domain in the c; s plane corresponding to

the three cases are shown in Figure 6.

One would see the same phenomena of hysteresis as in the complete information

case when one moves back and forth on a line crossing the regions as AB does.

6 Conclusions

In this paper we showed how considerations based on learning dynamics and

stability can select the intuitive equilibria in the Palfrey and Rosenthal (1985)

model without having to resort to ad hoc arguments. In this way it is also

possible to give the model some predictive value.

Usually it is very hard to test models of this type because parameters such as

the cost of voting or the measure of the interest in a candidate are not directly

measurable with reasonable con�dence. It is not even clear what should be the

right N to take: people may get utility from their candidate winning just in

their province or state or even their electoral college, i.e in much smaller units

than the whole country. Another reason that may alter the size of N is given

by the tendency people have of thinking of the electorate as being composed of

groups of individuals of the same size (e.g. women voters, ethnic minorities etc)

whose electoral behaviour coincide, so that in this case one should think of N

as the number of these types. It should be obvious that in such cases asking for

quantitative predictions is meaningless; on the other side, since our model gives

some sharp qualitative predictions (jumps , hysteresis, long time drifting away

from metastable equilibria) that are very robust with respect to the parameters

involved, it makes the Palfrey and Rosenthal model more apt to be tested in

this way. One could even get deduce from a sequence of electoral behaviours

something about the shape of the distribution of the c0s, for instance a case

in which a gradual change of c would introduce several severe jumps in the

turnout should point to the existence of a multimodal distribution, as described

at the end of the last section, while a unique jump would be evidence of a more

homogeneous electorate as far as costs are concerned.
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Appendix

Proof of Proposition 1: Let q1 and q2 represent the equilibria 1 and 2 respec-

tively. We show that any trajectory beginning in the interval [0; q2] converges

to q1, thus [0; q2] is the required neighbourhood B
� for equilibrium 1, i.e. q1,

and any trajectory beginning in [q2; 1] converges to equilibrium 3 , i.e. to q = 1;

hence the required neighbourhood for equilibrium 3, B� is [q2; 1].

Consider �rst a path starting in the interval [0; q2], i.e. q(q0; t) 2 [0; q2]. By

equation (2), q(:; t) is an increasing continuous function of t in this part of the

domain, and remains so upto q1. Hence q(:) must converge to q1: The other

direction is the same. �

Proof of Proposition 2: Since any point is [0; q2] converges to equilibrium 1

and any point in [q2; 1] converges to equilibrium 3, the transition matrix of the

Markov Chain is given by: "
p11 p13

p31 p33

#

where p11 is the probability that qi0 2 [0; q2), the basin of attraction for

equilibrium 1, if qi�11 = q1; p31 is the probability that qi0 2 (q2; 1], the basin of

attraction of equilibrium 3 if qi�11 = q1, p13 is the probability that qi0 2 [0; q2),

the basin of attraction for equilibrium 1, when qi�11 = 1 and p33 is the probability

that qi0 2 (q2; 1], the basin of attraction for equilibrium 3, when qi�11 = 1.

Note that when N ! 1, q2 ! 1: So given the distribution we have: p1i !
1; p3i ! 0; i = 1; 3: This conclusion is true as well with a more general

distribution of q0 as long as it is absolutely continuous with respect to the

Lebesgue measure. In both cases it is easy to see that the invariant measure is

concentration on state 1 in the �rst case or converges to a measure on 1 in the

general case.
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