
SOCIAL CONFORMITY AND EQUILIBRIUM IN PURE
STRATEGIES IN GAMES WITH MANY PLAYERS

Myrna Wooders

Edward Cartwright

And

Reinhard Selten

No 636

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS



Social Conformity and Equilibrium in Pure
Strategies in Games with Many Players∗

A revision of University of Warwick Department of Economics WP #589

Myrna Wooders†

Department of Economics
University of Warwick
Coventry CV4 7AL, UK
M.Wooders@warwick.ac.uk

http://www.warwick.ac.uk/fac/soc/Economics/wooders/

Edward Cartwright
Department of Economics
University of Warwick
Coventry CV4 7AL, UK

E.J.Cartwright@warwick.ac.uk

Reinhard Selten
Department of Economics

University of Bonn
Adenauerallee 24-26, 53113 Bonn

Germany

May 15, 2001
This version: April 2002

∗We are indebted to Robert Aumann, Roland Benabou, Francis Bloch, Jean-Marc Bon-
niseau, Michel Le Breton, Warwick Dumas, Glen Elllison, Sergiu Hart, Alan Kirman, Gleb
Koshevoy, Jean-Francois Mertens, Frank Page and Unal Zenginobuz, and also to partici-
pants at presentations of this paper at Bogazici University, Hebrew University Centre for
Rationality, the Maastricht General Equilibrium conference, and the Paris 1 Oiko NOMIA
- Blaise PASCAL Seminar for stimulating and helpful comments.

†This author is indebted to Sonderforschungsbereich 303 and to the University of Bonn
for hospitality and financial support during 1990-1991 when this research was initiated.
She is also grateful to a number of researchers who listened to intuitive discussions of the
results of this paper over the intervening years, especially Jurgen Eichberger.

1



Abstract: We introduce a framework of noncooperative pregames, in which
players are characterized by their attributes, and demonstrate that for all
games with sufficiently many players, there exist approximate (ε) Nash equi-
libria in pure strategies. In fact, every mixed strategy equilibrium can be
used to construct an ε-equilibrium in pure strategies, an ‘ε-purification’ re-
sult. Our main result is a social conformity theorem. Interpret a set of
players, all with attributes in some convex subset of attribute space and all
playing the same strategy, as a society. Observe that the number of societies
may be as large as the number of players. Our social conformity result dic-
tates that, given ε > 0, there is an integer L, depending on ε but not on the
number of players, such that any sufficiently large game has an ε-equilibrium
in pure strategies that induces a partition of the player set into fewer than
L societies.

1 Social learning

A society is a group of individuals who have commonalities of language, so-
cial and behavioral norms, and customs. Social learning consists, at least in
part, in learning the norms and behavior patterns of the society into which
one is born and in those other societies which one may join — professional
associations, faculty clubs, and communities, for example. Individuals may
learn by observing and imitating individuals in the same society. A funda-
mental question is whether the outcome of such imitation can be consistent
with self-interested behavior. This consistency requires the existence of a
Nash equilibrium where individuals within the same society play the same
or similar strategies and where societies are nontrivial in size. The existence
of such an equilibrium is fundamental to the social sciences.

To address the question of whether imitation can be consistent with Nash
equilibrium, we must first have an appropriate model. One of the main
contributions of the current paper is the introduction of a non-cooperative
counterpart to the pregame framework of cooperative game theory.1 In coop-
erative game theory this framework has led to a number of results, especially
results showing that large games with small effective groups2 resemble, or
in fact are, competitive economies. It appears that our framework of non-

1See, for example, Wooders (1983,1994).
2Small groups are effective if all or almost all gains to collective activities can be realized

by cooperation only within groups of players that are small relative to the total population.
This is an apparently mild condition; when there are sufficiently many players of each type
that appears in the games, small group effectiveness is equivalent to boundedness of per
capita payoffs (Wooders 1994).
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cooperative games may be equally useful. We return to a comparison of
noncooperative pregames and cooperative pregames in a concluding section.

The main component of a noncooperative pregame is a set Ω of attributes
of players. A component of attribute space is a complete description of the
possible characteristics of a player, such as gender, height, IQ, personality,
as well as a player’s payoff function. The two other components are a set S
of pure strategies, constrained to be finite in the current paper, and a payoff
function h summarizing the payoff functions of all players in all possible
games derived from the pregame. A population consists of a finite player
set and an attribute function, ascribing an attribute ω ∈ Ω to each member
of the population. The pregame induces a game on each population. In
each game, a player’s payoff is a function of his own strategy and of the
joint distribution over pure strategies and attributes implied by the actions
of the complementary player set. Thus, a player is indifferent when two
players of the same attribute exchange strategies. A player is, however, not
indifferent if two players with different attributes exchange strategies. This
latter characteristic distinguishes the model of this paper with those used in
much of the prior literature. The relationship of this paper to the literature
is discussed further in Section 7.

We require two main assumptions for games with large player sets.
The first is a continuity assumption on the payoff function with respect
to changes in attributes. It dictates that a player is nearly indifferent to a
small change in their own attribute. Further, it requires that a player be
nearly indifferent to a slight perturbation in the attribute’s of others - on
the assumption that the strategies they play are unchanged. The second
assumption, global interaction, states that each player’s payoff is primarily
a function of his own strategy and of the fraction of players with each at-
tribute playing each strategy. Global interaction is essentially a statement
of the type of game we model in this paper; games for which the actions of
any one individual have relatively little effect on the payoffs of other players.
A pregame is said to satisfy the large game property if continuity and global
interaction holds for large games.

We first provide an existence and purification result; there exists a Nash
equilibrium in pure strategies and ‘near’ to any mixed strategy vector is a
strategy vector in pure strategies. More precisely:

Theorem 1: Existence. If a pregame satisfies the large game property
then given any ε > 0 there exists an integer η(ε) with the property
that every game with at least η(ε) players has an ε-equilibrium in pure
strategies. Moreover, every strategy vector can be ε-purified.
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Part of the interest of this result, as its antecedents in the literature, is that
it overcomes the need to motivate mixed strategies. In a social conformity
context, where players are imitating each other, the use of mixed strategies
may be particularly difficult to explain.

For our next theorem we introduce the notion of a society; for any game
induced by the pregame and for any convex subset of attribute space ΩA, if
the set of players A with attributes in ΩA is such that every player in A plays
the same pure strategy, then we interpret the set of players A as a society.
Note that a strategy profile does not necessarily induce a partition of the
set of players into societies (players with the same attribute play different
strategies.) Moreover, if each player has a different attribute, the number
of societies may be as large as the player set.

Theorem 2: Social conformity. Suppose a pregame satisfies the large
game property, the space of attributes Ω satisfies an apparently mild
property of ‘convex separation’ and that there is a bound B on the
number of players with any one attribute; then, given any ε > 0,
there is an integer L(ε, B) such that for any game with at least η(ε, B)
players there exists an ε-equilibrium in pure strategies that induces a
partition of the set of players into at most L(ε, B) societies.

The integer L is a measure of social conformity; the smaller L the greater
the possible dissimilarity of players who conform, in the ε-equilibrium, in
their choice of strategy. Thus, it is an important feature of Theorem 2 that,
given ε, the integer L is fixed, independent of the numbers of players.3 More
motivation for our notion of social conformity is provided in the following
subsection and later in the paper.

Another important feature of Theorem 2 is the convexity aspect of soci-
eties. For some attribute spaces, for example, Ω = [0, 1], Theorem 2 implies
more — the existence of an approximate equilibria in pure strategies with
the property that most players are playing the same strategy as their clos-
est neighbors in attribute space. Other examples of such instances could
possibly be derived from exchange economies where, in equilibrium, simi-
lar players choose similar commodity bundles or from economies inducing
consecutive games, as in Greenberg and Weber (1986). It may be, however,
despite our Theorem 2, that there are games for which all ε-equilibria have
the property that most players do not play the same strategy as their closest
neighbor. Suppose, for example, that Ω = [0, 1]× [0, 1]. It may be that the

3We are grateful to Roland Benabou for suggesting we emphasize this aspect of Theo-
rem 2.
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partition required by Theorem 2 splits Ω into two convex subsets with the
property that every player is in a different society than his closest neighbor;
such an example is considered in Section 3.2. In some situations, however,
it is natural for closest neighbors to play different strategies and additional
conditions on our model to rule this out would be restrictive.

It is easy to see why Theorem 2 requires that the number of players with
any particular attribute is bounded. Consider, for example, an n-person
matching pennies game where all players have identical attributes. In this
case, since all players are identical it is impossible to construct a partition
of the total player set into two subsets of players where all the players in
each subset play the same strategy and the attributes of the players in the
two subsets are distinct. We return to this issue in a concluding section.

Our existence result, differs from a number of results in the literature in
that the prior papers almost all have a continuum of players (for example,
Schmeidler 1973, Mas-Colell 1984, Khan 1989, Pascoa 1993,1998, Khan et
al. 1997, Khan and Sun 1999, and Araujo and Pascoa 2000). Of course for a
number of these results, one could consider a sequence of large finite games
with the player distribution converging to the distribution of player types
in the given continuum, and from the results for the continuum, establish
existence of ε-equilibrium in pure strategies for all sufficiently large games in
the sequence.4 Our results differ in that we are not restricted to one limiting
distribution of player types; our results hold for all sufficiently large finite
games derived from a non-cooperative pregame. The relationship between
our framework and results and the existing literature are discussed in Section
7.

To the best of our knowledge, our social conformity result has no ana-
logue in the extant literature. A related literature concerns dynamic models
of social learning (for example, Blume 1993, Ellison 1993, Kandori, Mailath
and Rob 1993, Ellison and Fudenberg 1993, 1995, Kirman 1993, Bjorner-
stedt and Weibull 1995, Young 2001). A primary motivation behind this
literature is to see whether players can learn, using simple rules of thumb
such as imitation, to play Nash equilibrium strategies. This motivation is
analogous to ours in questioning the effectiveness of social learning. We note
that through choice of model, however, in this literature the existence of the
type of strategy vector we are concerned with in Theorem 2 is not an issue.
In particular, there often trivially exists a strategy vector that is both a
Nash equilibrium and an absorbing state of the social dynamic; the question

4Indeed, some of these papers discuss the implications of their results for games with
many, but a finite number, of players; see, for example, Khan and Sun (1999).
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is whether players can learn to play such a strategy vector. In contrast, our
question is whether, more generally, such a strategy vector exists.

1.1 Further discussion of social conformity

There is no definitive definition of social conformity but typically it is used
to describe situations in which a person’s decision is influenced by a group
of people with whom he interacts (Gross 1996) or by ‘similar’ players. In
a widely accepted account of group influence, Deutsch and Gerard (1955)
distinguish two fundamental reasons for group influence - informational in-
fluence and normative influence (see also Asch 1952). Group influence leads
to conformity in the sense that people choose the same actions as those with
whom they interact.

Informational influence reflects the fact that a person may be able to
make a more informed decision by observing the actions of other individu-
als. This could be because a person is boundedly rational or has imperfect
information and so imitates a person he believes is better informed (Gale and
Rosenthal 1999). For example, in financial markets the actions of traders
may signal private information (Schleifer 2000). Alternatively, in a game
with multiple equilibria a player may be able to make a better strategy
choice by observing the actions of others (Ellison and Fudenberg 1995). For
example, there may be a choice between two types of computer software
and it is in a player’s interest to choose the same software as those other
players with whom he interacts (Young 2001). In a financial market con-
text it may be a best response to choose the same strategy as other traders
on the basis ‘there is less to explain’ if that strategy ultimately does not
succeed (Scharfstein and Stein 1990). Normative influence, in contrast to
informational influence, reflects the fact that a person may be motivated by
desires for prestige, popularity or acceptance etc. (Bernheim 1994). Thus,
a player may choose a strategy purely so as to ‘fit in’ with a social norm.

It is clear that, in the presence of both informational and normative
influences, a person will be influenced differently by different people. In
particular, a person may not be influenced by the behaviour of certain in-
dividuals; he may not, for example, perceive them as better informed than
himself or as people whose acceptance he desires. Reflecting this, the psy-
chology literature also highlights that social influence may result from a
process whereby a person perceives themselves as a part of a group whose
members have similar characteristics (Gross 1996). A person is then influ-
enced primarily by members of the group with which he identifies — similar
individuals. In particular, a person may only be influenced by those people
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with whom he, a-priori, expects to choose the same action.
The above discussion motivates our notion of social conformity as a par-

tition of the population into a relatively small number of societies, as defined
above. It is apparent that different types of group influence appear, intu-
itively, more likely to be consistent with a small number of societies. For
example, if players are influenced by normative concerns it appears more
likely that social conformity can be consistent with rational behaviour. We
do not, however, build into our model any explicit assumption that induces
similar players to choose the same strategy. Normative influence for in-
stance, may be present, but equally it may not. This means that our results
can be applied to any type of conformity. For example, the results can
be interpreted with respect to whether imitation as a method of learning
by boundedly rational players can be consistent with rational behaviour. It
may, however, be the case that the existence of normative influence, or other
such factors, imply that a greater level of social conformity is consistent with
rational behaviour. We explore this possibility further in two examples later
in the paper.

1.2 Outline of the paper

In the following, we first introduce the framework of noncooperative pregames,
games derived from pregames and the crucial ‘large game’ property (conti-
nuity and global interaction). A simple example illustrating the framework
is presented at the end of the section. The next section presents two lem-
mas used in our purification results. The fourth section states and proves
Theorem 1 (existence of approximate equilibrium in pure strategies) and the
fifth section states and proves Theorem 2 (social conformity). In addition,
in the fifth section, convex separation is defined and two additional lemmas,
used in the proof of Theorem 2, are provided. A subsection continues the
prior example to illustrate an equilibrium satisfying social conformity. A
second subsection returns to the discussion of social conformity and pro-
vides two further examples. The sixth section provides and example of a
compact metric space of attributes satisfying convex separation. The final
two sections contain a discussion of relationships to the literature and then
conclusions. An Appendix demonstrates that finite dimensional Euclidean
space satisfies convex separation.
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2 Noncooperative Pregames

Let Ω denote a set of player attributes, let S be a set of pure strategies and
let ∆(S) denote the set of mixed strategies. A function w from Ω × S into
R+ is said to be a weight function if it satisfies sk∈S w(ω, sk) ∈ Z+ for all
ω ∈ Ω.5 Let W denote the set of all weight functions.

A pregame is given by a triple

G = (Ω, S, h),

consisting of a metric space Ω of attributes, a set S of pure strategies and a
function h : Ω×∆(S)×W −→ R+. Throughout the following, we will assume
that Ω is a compact metric space and S is a finite set, S = {s1, ...., sK}.

While a pregame is defined independently of any particular game, some
interpretation here of the components of a pregame may be helpful to the
reader. In the following section, we develop these ideas formally. First,
given a finite player set N and an attribute function, assigning attributes to
each player in N , the pregame induces a game on N . In such a game, each
player will have the strategy choice set ∆(S). A strategy choice for each
player in the game determines a weight function. The function h determines
the payoff for each player in the game. The payoff to a player depends on
the attributes of that player, his strategy choice, and the weight function
induced by the strategy choices of the other players.

2.1 Populations and games

Let N be a finite set and let α be a mapping fromN to Ω, called an attribute
function. The pair (N,α) is a population. The profile of the population
(N,α) is a function profile(N,α) : Ω→ Z+ given by

profile(N,α)(ω) = α−1(ω)

Thus, the profile of a population tells us the number of players with each
attribute in the population.

We say that a weight function wα corresponds to population (N,α) when
it satisfies

sk∈S
wα(ω, sk) = profile(N,α)(ω)

5Where R+ and Z+ denote, respectively, the non-negative real numbers and non-
negative integers.
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for all ω ∈ Ω. In other words, given an attribute function α, a corresponding
weight function is an assignment of a non-negative real number to each
attribute-pure strategy pair (ω, sk) so that the sum, over pure strategies, of
the weights assigned to the pairs (ω, sk) equals the number of players with
that attribute. It follows that

sk∈S ω∈α(N)
wα(ω, sk) = |N | .

We letWα denote the set of weight functions corresponding to the population
(N,α).

A strategy vector for population (N,α) is given by

σ = (σ1, ...,σ|N |) ∈ ×i∈N∆(S)

where σi denotes the strategy of player i. Let σik denote the probability that
player i plays pure strategy sk. A strategy vectorm is called degenerate if for
each i, for some k, mik = 1; that is, each player’s strategy assigns probability
1 to some pure strategy.

Given a population (N,α) and a strategy vector σ for the population
(N,α) we say that weight function wα,σ is relative to strategy vector σ and
attribute function α if,

wα,σ(ω, sk) =

i∈N : α(i)=ω
σik

for all sk ∈ S and all ω ∈ Ω. It is immediate that wα,σ so defined is a weight
function corresponding to population (N,α). We interpret wα,σ(ω, sk), as
stating, for each ω ∈ Ω, the total weight given to pure strategy sk in the
strategy vector σ by players assigned attribute ω by α. Thus, given the
population (N,α) and the strategy vector σ,

wα,σ(ω, sk)

profile(N,α)(ω)

is the expected proportion of times pure strategy sk will be played by a
player of attribute ω.

Every weight function w ∈ W is relative to an essentially unique at-
tribute function and a not-necessarily-unique strategy vector. Formally, if a
weight function w corresponds to both population (N,α) and to population
(N,α) then, in view of the identity sk∈S w(ω, sk) = profile(N,α)(ω) =
profile(N,α)(ω) for all ω ∈ Ω, the two populations can differ only by a
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permutation of the attributes of the players in N ; thus, up to a permuta-
tion of attributes of players, an attribute function is uniquely determined
by the weight function w. If profile(N,α)(ω) > 1 for some ω ∈ Ω then
a weight function w corresponding to population (N,α) may be relative
to many different strategy vectors. For example, if α(i) = α(j) = ω and
w(ω, s1) = w(ω, s2) = 1, it may be that player i plays s1 with probability 1
and player j plays s2 with probability 1 or each of the two players may play
each of the two strategies with probability 1/2.

Before defining a game, it will be convenient to introduce one further
definition. Given population (N,α) and player i ∈ N , define α−i as the
restriction of α to N\{i}. Let wα−i,σ be a weight function defined by its
components as follows: for all ω ∈ Ω and for all σk ∈ S

wα−i,σ(ω, sk)
def
=

wα,σ(ω, sk)− σik if α(i) = ω
wα,σ(ω, sk) otherwise.

Weight functions modified by the property that one player of some par-
ticular attribute is not included will play a role in the definition of games.
We will use Wα−ω to denote the set of weight functions corresponding to
(N\{i},α−i) where ω = α(i). Clearly, the set Wα−ω is well-defined because,
prior to the choice of strategies, players of the same attribute are anonymous.

2.1.1 Induced games

Given a population (N,α), a game

Γ(N,α) = ((N,α), S, {hω : ∆(S)×Wα−ω −→ R+|ω ∈ α(N)})
is induced from the pregame (Ω, S, h) by defining, for each ω ∈ α(N),

hω(t, w)
def
= h(ω, t, w)

for all t ∈ ∆(S) and all w ∈Wα−ω . In interpretation, hα(i)(t, w) is the payoff
received by a player i ∈ N of attribute α(i) from playing the strategy t when
the strategies of other players are summarized by w. Note that players of the
same attribute have the same payoff function, inherited from the pregame.
Also note that the preferences of a player are partly determined by the
population in which he lives. In particular, different attribute functions, say
α and α, allow different supports for the weight functions w ∈ Wα−ω and
w ∈Wα−ω.

An anonymity assumption is implicit in defining the payoff hω(t, w) to
depend on a weight function w rather than on the strategy choices of all

10



members of the complementary player set. For example, consider two players
i, j ∈ N, where a(i) = α(j), and two alternative scenarios. In the first
scenario player i chooses pure strategy s1 and player j chooses pure strategy
s2. In the second scenario, roles are reversed so that player i chooses s2 and
player j chooses s1. Then, assuming everything else remains the same, the
payoff to a third player i� ∈ N is unaffected to this switch between i and j.

We make two standard assumptions. First, for all i ∈ N, player i’s payoff
to a mixed strategy p is a linear function of player i’s mixing probability,
that is,6

hα(i)(p,wα−i,σ) =
K

k=1

pkhα(i)(sk, wα−i,σ). (1)

Second, we assume that, for all i ∈ N , player i’s payoff to a mixed strategy
vector is a linear function of the mixing probability of the otherN\{i} players
strategies; that is, for any three strategy vectors σ,σ�,σ��, if

wα−i,σ = λwα−i,σ� + (1− λ)wα−i,σ��

for some λ ∈ [0, 1] then,7

hα(i)(p,wα−i,σ)
= λhα(i)(p,wα−i,σ�) + (1− λ)hα(i)(p,wα−i,σ��)

(2)

for all p ∈ ∆(S).
Neither (1) or (2) are necessary. One motivation for using these assump-

tions is that they guarantee the existence of a Nash equilibrium strategy
vector, possibly mixed. More general conditions are sufficient to guarantee
such existence; see, for example, Reny (1999). The analysis of the current
paper does not, however, even require the existence of a Nash equilibrium,
but merely the existence of a mixed ε-Nash equilibrium for arbitrarily small,
put positive, ε. We later confine our attention to games induced from a
pregame satisfying a ‘large game’ property. It would appear that for any
ε > 0 there exists a real number η(ε) such that any game Γ(N,α) induced
from a pregame satisfying the large game property and where |N | > η(ε) has
an ε-Nash equilibrium. The proof of this follows by showing that any game

6Here, for all k, sk denotes the mixed strategy assigning unit weight to pure strategy
sk and pk denotes the probability player i plays pure strategy sk.

7Given the definition of a weight function, we note that if λ1 ∈ [0, 1] then the sum
λ1w

1
α−i(·, ·) + (1 − λ1)w

2
α−i (·, ·), defined pointwise, gives a weight function wα−i(·, ·) ∈

Wα−i .
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Γ(N,α) can be approximated by a game ΓA(N,α) that is known to have a
Nash equilibrium (a technique analogous to that used in Reny 1999).8

A second motivation for (1) is to enable purification. In particular, we
need to rule out the possibility that a player’s payoff to a mixed strategy is
significantly higher than the payoff to the corresponding pure strategies in
the support of that mixed strategy. We could, however, relax the condition
to one stating that for any ε > 0 there exists some η(ε) such that for all
games Γ(N,α) where |N | > η(ε) and for any player i ∈ N player i’s payoff
to any mixed strategy p ∈ ∆(S) and any weight function w ∈ Wα is such
that

hα(i)(p,wα−i,σ) ≤
K

k=1

pkhα(i)(sk, wα−i,σ) + ε.

We also note that the restriction to a finite number of strategies appears
unnecessary. With these observations noted, for simplicity, we continue to
use the standard assumptions as outlined above. Future research aims to
look further at these issues.

2.1.2 Nash equilibrium

The standard definition of a Nash equilibrium applies. Let Γ(N,α) be a
game. A strategy vector σ is a Nash equilibrium for Γ(N,α) only if, for each
i ∈ N it holds that

hα(i)(σi, wα−i,σ) ≥ hα(i)(t, wα−i,σ) for all t ∈ ∆(S). (3)

Given ε ≥ 0, a strategy vector m is a Nash ε-equilibrium in pure strategies
or, informally, an approximate Nash equilibrium in pure strategies, only if,
for each i ∈ N , mi is degenerate and

hα(i)(mi, wα−i,m) ≥ hα(i)(t, wα−i,m)− ε for all t ∈ ∆(S). (4)

The notion of ε-purification was first introduced by Aumann et. al.
(1983) in a different context to that of this paper (see Section 7). They
define the notion of ε-purification as follows; given a game Γ(N,α), two
strategies p and t are ε-equivalent for player i if for any weight function

8Such techniques have also been used in the study of cooperative pregames. For ex-
ample, Wooders (1983) exploits the idea that cooperative games can be approximated by
games satisfying “strong comprehensiveness”, the property that boundaries of payoff sets
do not contain segments parallel to the boundaries of RS+ for any coalition S.
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w ∈ Wα−α(i), hα(i)(p,w)− hα(i)(t, w) < ε. An ε-purification of a strategy
p is a pure strategy that is ε-equivalent to p. This definition proves too
restrictive to be useful in the results of this paper. As such, we use a more
relaxed definition of purification in which ε-equivalence is defined relative to
strategy vectors rather than strategies. Formally, given a game Γ(N,α) we
say that two strategy vectors σ and m are ε-equivalent if, for all i ∈ N ,

hα(i)(mi, wα−i,m)− hα(i)(σi, wα−i,σ) < ε.

We say that a strategy vector σ can be ε-purified if there exists a strategy
vector m which is degenerate and ε-equivalent to σ.

2.2 Large games

The following two concepts of continuity of payoff functions and global inter-
action allow us to introduce the large game property. This property places
restrictions on the payoff function h of a pregame G = (Ω, S, h). As a pre-
liminary step, let γ(G, n) denote the set of games induced by the pregame
G by populations of size n. That is, game Γ(N,α) ∈ γ(G, n) if and only if
|N | = n. We proceed with the two definitions and statement of the large
game property before providing more discussion.

Continuity of payoff functions: Given positive real numbers ε > 0 and
δ > 0, the set of games γ(G, n) is said to satisfy δ, ε-continuity of payoff
functions when for any two games Γ(N,α) and Γ(N,α) in γ(G, n), if,
for all i ∈ N ,

dist(α(i),α(i)) < δ

then, for any j ∈ N with α(j) = α(j) and for any strategy vector σ,

hα(j)(t, wα−j ,σ)− hα(j)(t, wα−j ,σ) < ε

for all t ∈ ∆(S), where wα,σ and wα,σ are the weight functions relative
to strategy vector σ and, respectively, attribute functions α and α.

Global interaction: Given positive real numbers ε > 0 and δ > 0 the
game Γ(N,α) is said to satisfy δ, ε-global interaction when for any two
weight functions wα and gα, both relative to attribute function α, if,

1

|N |
sk∈S ω∈α(N)

|wα(ω, sk)− gα(ω, sk)| < δ
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then,

hα(i)(t, wα−i)− hα(i)(t, gα−i) < ε (5)

for all i ∈ N and all t ∈ ∆(S).

We can now introduce our main assumption,

Large game property: The pregame G = (Ω, S, h) satisfies the large game
property (with continuity of payoff functions) if for any ε > 0 there
exists real numbers η(ε), δc(ε) > 0 and δg(ε) > 0 such that for any
n > η(ε) the set of games γ(G, n) satisfies δc(ε), ε-continuity of pay-
off functions and any game Γ(N,α) ∈ γ(G, n) satisfies δg(ε), ε-global
interaction.

Thus, the pregame G satisfies the large game property if both global inter-
action and continuity of payoff functions are satisfied by large games. As
mentioned above, the assumption of a large game property is an assumption
on a pregame G = (Ω, S, h) and in particular, on the function h. Specifically,
the large game property implies a form of continuity of h(ω, t, w) with re-
spect to changes in the weight function w while the attribute ω and strategy
t remain constant. To appreciate the importance of this continuity we have
to look at the games induced from the pregame (Ω, S, h).

Let us consider in more detail the assumption of continuity in payoff
functions for large games. We can begin our explanation by imagining a
population (N,α) and a change in the attribute function from α to α. As
the attribute function changes so does the population, from (N,α) to (N,α),
and the game from Γ(N,α) to Γ(N,α). Both games belong to the set γ(G, n)
where |N | = n. Focus now on a player i who maintains the same attribute
in both societies (N,α) and (N,α), that is α(i) = α(i). The payoff function
of player i remains unchanged as hω. The set of weight functions that player
i may face has, however, changed from Wα−i to Wα−i . It seems reasonable,
though, given that the attribute function changes only slightly, that player
i would feel as though the game has changed only slightly. This is the
intuition formalized in the assumption of continuity of payoff functions. In
particular, it dictates that, for any given strategy vector, if we change the
attributes of some players only slightly, then for any player whose attribute
is unchanged, the change in payoff is small. A key point to appreciate is how
the existence of a pregame G = (Ω, S, h) allows us to compare two different
games Γ(N,α) and Γ(N,α) both induced from that pregame G. We also
highlight that, in the statement of the assumption, the strategy vector σ
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remains unchanged. That is, while the attributes of the players may have
changed (for player j they change from α(j) to α(j)) the strategies of the
players remain unchanged. This is possible since a strategy vector lists a
strategy for each player i ∈ N and the set N remains unchanged.

We should perhaps explain further why continuity of payoff functions
seems a relatively mild assumption. If one finds it reasonable that the payoff
functions of players are affected only by the actions of others and not by their
attributes, then the assumption of continuity in the attributes of others is
very mild indeed. In reality, a player’s payoffmay depend on the attributes of
others. To appreciate this we note, that an attribute can be seen to contain
two pieces of information - a player’s payoff function and a player’s personal
characteristics in terms of skills, physical appearance, etc.9 (We discuss
the nature of attributes in more detail in Section 6.) There are, therefore,
two broad reasons why a player’s payoff may be affected by the attributes
of others. First, a player’s payoff may depend on the payoff functions, or
preferences, of other players.10 Second, a player’s payoff may depend on the
personal characteristics of other players. For example, if someone offers to
make you lunch it might matter a great deal how well he can cook. Both
of these possibilities can be expected to be present in a broad range of
situations. We only need consider, however, small changes in the attributes
of other players. It seems unlikely that such small changes in attributes
could lead to significant effects on a player’s payoff when we, once more,
recall that the strategies of players do not change.

Let us now turn to the second assumption of global interaction in large
games. This assumption does not consider a change in the game Γ(N,α) but
merely a change in the strategies of players within the game. Informally,
global interaction dictates that a player is nearly indifferent to small changes
in the proportion, relative to the total population of players, of players of
each attribute playing each strategy. The term global interaction is used
in the evolutionary game theory literature to describe a scenario in which

9A similar distinction is made in the literature of clubs and economies with local public
goods, where these personal characteristics are called crowding types (cf. Conley and
Wooders 1996,2001).
10There are situations where individuals claim to be affected by the feelings, loyalties

or thoughts of others, independent of their actions. In Arthur Miller’s celebrated book,
The Crucible, Rachel has been a pious woman, known for her good deeds and kind works,
all through her long life. But the witch hunters of Salem interpreted Rachel’s apparent
goodness as just a clever disguise to hide her love of the devil. Rachel was put to death as
a witch; for witch hunters, the private feelings of others and their thoughts are significant.
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every player plays against every other player.11 If a player interacts with
all members of the population equally then we would expect that his payoff
should be dependent only on his own strategy and on the ‘aggregate strategy
of the population’. Furthermore, we would expect that a player is nearly
indifferent to small changes in such an ‘aggregate strategy of the population’.
This is of the type of game considered in this paper.

2.3 A simple example

The following example illustrates the pregame framework and the large game
property. Consider an economy in which there are two goods -‘A’ and ‘B’.
Each player has a unit of time which they devote to producing goods. There
are two pure strategies - ‘to spend all ones time producing A’ or ‘to spend
ones time producing B’. We subsequently refer to these pure strategies as
sA and sB.

The attribute space is given by Ω = [0, 1] × [0, 1]. If a player i has an
attribute ω = (ωA,ωB) then the value ωA is interpreted as the amount of
good A player i produces if he spends all his time producing good A and
similarly ωB is interpreted as the amount of good B player i produces if he
spends all his time producing good B.

Given any population (N,α) and any weight function wα corresponding
to α the expected amount of good A that will be produced is given by,

xA(wα)
def
=

ω=(ωA,ωB)∈α(N)
wα(ω, s

A)× ωA

and the expected amount of good B that will be produced is given by,

xB(wα)
def
=

ω=(ωA,ωB)∈α(N)
wα(ω, s

B)× ωB .

Payoff functions are assumed to be the same for all ω ∈ Ω and for
all finite populations. Let (N,α) be any population and let player i be a
member of N. Then the payoff function of player i is formally defined by

hα(i)(p,wα) =
xA(wα−i) + x

B(wα−i) + p
AωA + pBωB

|N |
11The term is also used for the essentially identical situation in which the matching is

random. That is, a player may only face one opponent but this opponent is randomly
drawn from the remaining population.
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where α(i) = (ωA,ωB) and where pA and pB denote, respectively, the prob-
ability that player i plays pure strategies sA and sB. Thus, a player’s payoff
is given by the per capita expected combined production of goods A and
B. Our final task is to put a metric to the space Ω. We use the metric ρ0
defined by:

ρ0(ω,ω) = max{ ωA − ωA , ωB − ωB }

for any ω = (ωA,ωB),ω = (ωA,ωB) ∈ Ω. This completes the definition of
a pregame G. It remains to show that this pregame satisfies the large game
property.

For any two games Γ(N,α) and Γ(N,α) in γ(G, n), if, for all i ∈ N it
holds that

ρ0(α(i),α(i)) < ε

then, for any j ∈ N and for any strategy vector σ,

hα(j)(t, wα−j ,σ)− hα(j)(t, wα−j ,σ) < ε

for all t ∈ ∆(S). For any finite population (N,α) and for any two weight
functions wα and gα, both corresponding to population (N,α), if

1

|N |
sk∈S ω∈α(N )

|wα(ω, sk)− gα(ω, sk)| < ε

then

hα(i)(t, wα−i)− hα(i)(t, gα−i) < ε (6)

for all i ∈ N and all t ∈ ∆(S). Thus, by setting η(ε) = 1 and δc(ε) =
δg(ε) = ε for any ε > 0, it is apparent that this pregame satisfies the large
game property.

3 Two Lemmas

This section states two lemmas. With these two lemmas in hand, in the fol-
lowing section, we prove our purification result and then, in the subsequent
section, we prove our social conformity result. It is worth noting that our
purification result could be proved using the Shapley-Folkman Theory (see,
for example, Green and Heller 1991) and without need for the following the

17



two lemmas. The method for such a proof becomes apparent from an un-
derstanding of the proofs to the theorems in this paper and those of Rashid
(1983). The reasons for introducing the following two lemmas, and in par-
ticular Lemma 1, are two-fold. First, these results seem interesting in their
own right. Indeed, Lemma 1 may be an extension of the Shapley-Folkman
Theorem.12 Second, the two lemmas provide a much more ‘direct’ way of
proving Theorem 1 and thus ultimately simplify the proof.

Our two lemmas show that given a population (N,α) and any mixed
strategy vector σ, there exists a degenerate strategy vector m such that (i)
each player i ∈ N plays a pure strategy sk in the support of σi, and (ii) the
aggregate weighting to strategies remains nearly unchanged; specifically,

|gα,m(ω, sk)−wα,σ(ω, sk)|
|N | <

K

|N |
for all ω ∈ Ω and sk ∈ S, where wα,σ is the weight function relative to
strategy vector σ and attribute function α and gα,m is the weight function
relative to strategy vector m and attribute function α.

We need some additional notation. Let a = (a1, ..., an), b = (b1, ..., bn) ∈
Rn. We write a ≥ b if and only if ai ≥ bi for all i = 1, ..., n. Let ZK+ denote
the set of K dimensional vectors for which each component is a non-negative
integer. When we apply Lemma 1 to prove our Theorems, we treat the set
N as a subset of players all with the same attribute ω ∈ Ω.

Lemma 1: Let N = {1, ..., n} be a finite set. For any strategy vector
σ = (σ1, ..., σn) ∈ ∆Kn and for any vector g ∈ ZK+ such that i σi ≥ g,
there exists a degenerate strategy vector m = (m1, ..., mn) such that,

support(mi) ⊆ support(σi)
for all i ∈ N and

i∈N
mi ≥ g.

The proofs of Lemmas 1 and 2 are presented in the Appendix.

Weight functions corresponding to degenerate strategies play an impor-
tant role in our proofs. A weight function wα ∈ Wα is called integer-valued
12This issue is taken further in Cartwright and Wooders (2001).
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if wα(ω, sk) ∈ Z+ for each ω ∈ Ω and each sk ∈ S. We typically denote
an integer-valued weight function by gα. If gα is an integer-valued weight
function there exists a strategy vector m such that mi is degenerate for all
players i ∈ N and gα(ω, sk) = gα,m(ω, sk) for all sk ∈ S and all ω ∈ Ω.
Moreover, every degenerate strategy vector m generates an integer-valued
weight function. Given a degenerate strategy vector m, the interpretation
is that, for each attribute ω and strategy sk ∈ S, gα,m(ω, sk) denotes the
number of players i in N with attribute ω whose strategy mi places weight
1 on pure strategy sk.

Lemma 2: Let σ denote a strategy vector for population (N,α) and let
wα,σ denote the weight function relative to σ and α. Then there exists a
degenerate strategy vector m and weight function gα,m relative to m and α,
with the properties that:

support(mi) ⊆ support(σi)
for all i ∈ N and

|gα,m(ω, sk)−wα,σ(ω, sk)| < K
for all ω ∈ Ω and all sk ∈ S.

4 Existence of ε-equilibrium in pure strategies

In the following Theorem, we demonstrate that, given ε > 0 there is an
integer η1 sufficiently large so that every game Γ(N,α) induced from a
pregame with the large game property and such that |N | > η1 has a Nash
ε-equilibrium in pure strategies. To obtain this result, at a point in the
proof we arbitrarily select a Nash equilibrium for each game in a sequence
and show that if there are sufficiently many players, this Nash equilibrium
can be used to construct a Nash ε-equilibrium in pure strategies. Since the
selection of the Nash equilibrium was arbitrary, our result can be viewed as
a purification theorem on the set of Nash equilibrium. In fact, it is clear
from the proof that any strategy vector can be purified.

Theorem 1: If a pregame G satisfies the large game property then for any
real number ε > 0 there exists an integer η1(ε) such that for any population
(N,α) where |N | > η1(ε) the induced game Γ(N,α) has a Nash ε-equilibrium
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in pure strategies. Moreover, any strategy vector of the game Γ(N,α) can
be ε-purified.

Proof: Suppose that the statement of the Theorem is false. Then there is
some ε > 0 such that, for each integer ν there is a population (Nν ,αν) and
induced game Γ(Nν ,αν) with |Nν | > ν for which there does not exist an
ε-equilibrium in pure strategies. That is, for each induced game Γ(Nν ,αν)
there does not exist a degenerate strategy vector mν , with corresponding
integer-valued weight function gναν ,mν such that:

hα(i)(m
ν
i , g

ν
αν−i,mν ) ≥ hα(i)(t, gναν−i,mν )− ε (7)

for all t ∈ ∆(S) and for all i ∈ Nν .
From Nash’s well known theorem, for each ν, the game Γ(Nν ,αν) has a

mixed strategy Nash equilibrium. Denote a Nash equilibrium of the game
Γ(Nν,αν) by σν and the relative weight function by wν

αν ,σν . Since σ
ν is a

Nash equilibrium, for each ν and for each i ∈ Nν we have:

hαν(i)(σ
ν
i , w

ν
αν−i,σν

) ≥ hαν(i)(t, wν
αν−i,σν

)

for all t ∈ ∆(S) and
hαν(i)(p,w

ν
αν−i,σν

) ≥ hαν(i)(t, wν
αν−i,σν

)

for all t ∈ ∆(S) and for all p where support(p) ⊂ support(σνi ).
Since the pregame G satisfies the large game property, we may choose

non-negative real numbers δc ε
6 , δg

ε
6 and η ε

6 such that for any n >
η( ε6 ) the set of games γ(G, n) satisfies δc( ε6 ), ( ε6 )-continuity of payoff func-
tions and any game Γ(N,α) ∈ γ(G, n) satisfies δg( ε6 ), ( ε6)-global interaction.

Set δ = δc
ε
6 . Use compactness of Ω to write Ω as the disjoint union of

a finite number of non-empty subsets Ω1, ...,ΩA, each of diameter less than
δ.13 For each a, choose and fix a point ωa ∈ Ωa.

For all ν and for all i ∈ Nν we define the attribute function αν as follows:

αν(i) = ωa if and only if α(i) ∈ Ωa.
For all ν, let wν

αν ,σν denote the weight function relative to attribute function
αν and strategy vector σν.
13A subset A of (the metric space) Ω has diameter δ, if, for any ω,ω� ∈ A, dis-

tance(ω,ω�) ≤ δ.
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For each a = 1, ..., A and for each k = 1, .., K define θνak as follows:

θνak =
wν
αν ,σν (wa, sk)

|Nν| .

By passing to a subsequence if necessary, assume that the limν→∞ θνak = θak
exists for all a = 1, .., A and all k = 1, ...,K.

By Lemma 2 there exists a sequence {mν} of degenerate strategy vectors
and a sequence {gναν ,mν} of integer-valued weight functions where gναν ,mν is
relative to attribute function αν and strategy vector mν , such that:

1. for all ν and for all sk ∈ S and all ωa ∈ Ω,

lim
ν→∞

gναν ,mν (wa, sk)

|Nν | = lim
ν→∞

gναν ,mν (wa, sk)− 1
|Nν | = θak (8)

2. for all ν and for all i ∈ Nν, support(mν
i ) ⊂support(σνi ) .

For all ν, given the weight function gναν ,mν relative to attribute function
αν and strategy vector mν , let gναν ,mν denote the integer valued weight
function relative to attribute function αν and strategy vector mν .

Restrict attention to those populations (Nν ,αν) where |Nν | > η ε
6 .

Consider the change in payoff to a player i ∈ Nν from the change in strategy
vector from σν to mν. By the assumption of continuity of payoff functions
and the choice of δ it holds that:

hναν (i)(t, w
ν
αν−i,σν

)− hναν (i)(t, wν
αν−i,σν

) <
ε

6

for all t ∈ ∆(S). Similarly,

hναν (i)(t, g
ν
αν−i,mν )− hναν (i)(t, gναν−i,mν ) <

ε

6

for all t ∈ ∆(S).
In view of (8) and the assumption of global interaction there exists a ν1

such that for all ν > ν1,

hναν(i)(t, w
ν
αν−i,σν

)− hναν(i)(t, gναν−i,mν ) <
ε

6

for any t ∈ ∆(S).
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Thus, for any ν > ν1 and any i ∈ Nν we have that:

hναν (i)(t, w
ν
αν−i,σν

)− hναν (i)(t, gναν−i,mν )

≤ hναν (i)(t, w
ν
αν−i,σν

)− hναν (i)(t, wν
αν−i,σν

)

+ hναν (i)(t, w
ν
αν−i,σν

)− hναν (i)(t, gναν−i,mν )

+ hναν (i)(t, g
ν
αν−i,mν )− hναν (i)(t, gναν−i,mν )

<
ε

6
+

ε

6
+

ε

6
=

ε

2

for any t ∈ ∆(S). We recall, however, that

hναν(i)(p, w
ν
αν−i,σν

)− hναν(i)(t, wν
αν−i,σν

) ≥ 0

for all p such that support(p) ⊂support(σνi ), for all i ∈ N , for all t ∈ ∆(S)
and for all ν. Given that support(mν

i ) ⊂support(σνi ) for all ν, this implies
that for ν > ν1 and for all i ∈ Nν ,

hναν (i)(m
ν
i , g

ν
αν−i,mν )− hναν(i)(t, gναν−i,mν )

≥ − hναν(i)(t, w
ν
αν−i,σν

)− hναν(i)(t, gναν−i,mν )

− hναν(i)(m
ν
i , g

ν
αν−i,mν )− hναν(i)(mν

i , w
ν
αν−i,σν

)

> − ε
2 − ε

2 = −ε
for all t ∈ ∆(S) which contradicts the supposition that (7) does not hold
and completes the proof.

We note that the equilibrium mixed strategy vector with which we
started our proof was arbitrary. Thus, any Nash equilibrium can be ε-
purified.

Related literature is discussed in Section 7.

5 Social conformity

Besides permitting results such as Theorem 1 and various extensions, our
framework has the advantage, as exemplified by the following social confor-
mity theorem, that it allows us to address different questions than currently
in the game-theoretic literature. The interpretation of our social conformity

22



result also requires us to look more deeply at the attribute space. We pro-
ceed with the statement and proof of our conformity result and postpone
discussion of indexing attributes to the next Section.

One additional assumption is required. Technically, this is a stronger
version of continuity of payoff functions. The role of this assumption in
our proofs is to allow us to construct a ε-Nash equilibrium by interchanging
strategies of similar players. The statement of the assumption is:

Continuity in attributes: Given positive real numbers ε > 0 and δ > 0,
the set of games γ(G, n) is said to satisfy δ, ε-continuity in attributes
when for any two games Γ(N,α) and Γ(N,α) in γ(G, n), if, for all
i ∈ N ,

dist(α(i),α(i)) < δ

then, for any j ∈ N and for any strategy vector σ,

hα(j)(t, wα−j ,σ)− hα(j)(t, wα−j ,σ) < ε

for all t ∈ ∆(S), where wα,σ and wα,σ are the weight functions relative
to strategy vector σ and, respectively, attribute functions α and α.

We extend the definition of the large game property in the obvious way,
distinguishing between the large game property with continuity in attributes
and the large game property with continuity of payoff functions. Note that
continuity in attributes implies continuity of payoff functions.

The assumption of continuity in attributes for large games goes further
than continuity of payoff functions in dictating that a player i is relatively
unaffected by, not only a change in the weight function, but also a change
in his own attribute, that is, a change in attribute from α(i) to α(i). Thus,
while the large game property (with continuity in attributes) still remains
an assumption on the function h of a pregame G = (Ω, S, h), it now implies
a form of continuity of h(ω, t, w) with respect to changes in the attribute ω
as well as changes in the weight function w. If the assumption of continuity
of payoff functions is accepted, then this is a relatively mild extension that
says a small change in attribute implies only a small change in the payoff
function. Again the assumption of continuity in attributes demonstrates how
the use of a pregame allows us to move between different games induced by
that pregame.

For the purposes of our social conformity result we assume that Ω is
a compact subset of a normed, real linear space. An example of such an

23



attribute space is provided in the following section. The choice of attribute
space allows us to treat convex subsets of Ω and to define a society. Be-
fore defining a society the issue of convexity requires further consideration.
Throughout this paper we will treat convexity as a property relative to an
attribute space Ω rather than the linear space of which Ω is a subset. For-
mally, given an attribute space Ω we say that A ⊂ Ω is convex when for any
two points a, b ∈ A and for any λ ∈ [0, 1],

if λa+ (1− λ)b ∈ Ω

then λa+ (1− λ)b ∈ A.

To appreciate why this may be necessary suppose that Ω = Q ∩ [0, 1], i.e.
the set of rationals on the unit interval. The above definition of convexity
allows us to partition Ω into a finite number of convex subsets. This would
not be possible under a standard definition of convexity .

Given a population (N,α) and strategy vector σ we interpret a set of
players D as a society (relative to α and σ) if (i) there exists some strategy
t ∈ ∆(S) such that σi = t for all i ∈ D, and (ii) for any player i ∈ N if
i ∈ convex hull(α(D)) then i ∈ D. Thus, any two players belonging to a
society D must play the same strategy. Furthermore, to any society D we
can associate a convex subset ΩD of attribute space Ω with the properties
that any player i belonging to D has attributes in ΩD while there exists no
other player j ∈ N\D who has attributes in ΩD.

We say that a strategy vector σ induces a partition of the population
(N,α) into a set of societies S = {N1, ...,NC} if each player i ∈ N belongs
to a unique society Nc ∈ S and if each society Nc ∈ S is relative to α and
σ. We also say that σ induces a partition of the population (N,α) into C
societies. Thus, if σ induces a partition of the population (N,α) into C
societies there exists a partition of Ω into C convex subsets {Ωc}Cc=1 such
that for any two players i, j ∈ N and any c if α(i),α(j) ∈ Ωc then σi = σj.

To illustrate the concept of a society we make two observations. First,
for some populations (N,α) there may exist a strategy vector σ which does
not induce a partition of the population (N,α) into societies. In particular,
if there exists two players i, j ∈ N such that α(i) = α(j) but σi 9= σj then
the population (N,α) cannot be partitioned into societies. Conversely, if
profile(N,α)(ω) ∈ {0, 1} for all ω ∈ Ω then any strategy vector σ partitions
the population (N,α) into |N | societies. That is, each individual constitutes
a society.

An important aspect of the following result is that the population (N,α)
can be partitioned into a bounded number of societies A(ε, B)K and this
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bound is independent of the size of the total player set. The smaller the
bound A(ε, B)K, the stronger social conformity, since the smaller A(ε, B)K,
the more dissimilar the players in the same society.

Before stating Theorem 2 we require the following definition.

convex separation. We say that a linear space Ω satisfies convex separa-
tion if there exists a binary relation < that is a strict linear order on
Ω and such that, for any two finite sets of points ΩJ = {ω1, ...,ωJ}
and ΩQ = {ω�1, ...,ω�Q}, where ω1, ...,ωJ ,ω�1, ...,ω�Q ∈ Ω, if,

max
ωj∈ΩJ

{ωj} < min
ω�q∈ΩQ

{ω�q}

then the convex hulls of the sets ΩJ and ΩQ are distinct.14

It appears that convex separation, a new property, is satisfied by an in-
teresting class of metric spaces. In the appendix we demonstrate that both
finite and infinite dimensional Euclidean space satisfy convex separation (see
Lemma 5).

We can now state and prove our second theorem:

Theorem 2: Given any real numbers ε > 0 and B ≥ 1 there exists a real
number η2(ε, B) and an integerA(ε, B) such that, if a pregame G satisfies the
large game property (with continuity in attributes) then for any population
(N,α) where |N | > η2(ε, B) and profile(N,α)(ω) ≤ B for all ω ∈ Ω, the
induced game Γ(N,α) has a Nash ε-equilibrium in pure strategies which
partitions the population (N,α) into C ≤ A(ε, B)K societies.

We given some intuition behind the proof of Theorem 2 before stating
two lemmas, both proved in the appendix, and providing the formal proof.
Theorem 1 allows to take as given, for a large game Γ(N,α), the existence
of a Nash ε

9 -equilibrium in pure strategies m. The proof of Theorem 2
proceeds by constructing from this a Nash ε-equilibrium in pure strategies
m which, provided |N | is sufficiently large, partitions the population (N,α)
into C ≤ A(ε, B)K societies.

We begin by partitioning the attribute set Ω into a finite number of
convex subsets Ω1, ...,ΩA, each of relatively small diameter. Interpret two

14A binary relation < is a strict linear order on Ω if (1) for any ω ∈ Ω it is not true that
ω < ω, (2) for any ω,ω ∈ Ω either ω < ω or ω < ω, (3) for any ω,ω,ω ∈ Ω if ω < ω and
ω < ω then ω < ω.
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players with attributes in the same subset Ωa as players of the same class.15

Select a binary relation < on Ω satisfying the requirements of convex sepa-
ration. We can use < to order players of the same class in a line. To form
the smallest number of societies we would like it to be the case that the set
of players with class a who are playing pure strategy sk form a connected
subset of this line. If this were the case for all a and all sk, given the defini-
tions of convex separation, and of a society, the number of societies would be
at most KA. It should be noted that we are making no use of the attribute
index in placing players along a line. In particular, two players with very
different attributes could potentially end up being ‘next to each other’ in
terms of the ordering of attributes. The implications of this become clear in
Section 5.1.

In the first stage of the proof we consider an arbitrary exchange of strate-
gies between players of the same class. That is, an initial degenerate strategy
vector m is compared to a degenerate strategy vector m where the number
of players with class a playing pure strategy sk is the same for m as for m,
for any class and pure strategy. Intuitively, we would expect that if m is an
approximate Nash equilibrium then m is an approximate Nash equilibria for
a slightly more relaxed bound. This is the intuition formalized in Lemma 3.

Lemma 3: Given a pregame G suppose that the set of games γ(G, n) satisfies
δ, ε9 -continuity in attributes. Then for any game Γ(N,α) ∈ γ(G, n), any par-
tition of Ω into a finite number of subsets Ω1, ...,ΩA, each of diameter less
that δ, and any two degenerate strategy profiles m and m, where for all a
and all sk ∈ S,

i: α(i)∈Ωa
mik =

i: α(i)∈Ωa
mik,

if m is a Nash ε
9 -equilibrium, then m is a Nash ε

3 -equilibrium of the game
Γ(N,α).

Given the initial Nash ε
9 -equilibrium m consider a degenerate strategy

vector m such that, (1) i: α(i)∈Ωamik = i: α(i)∈Ωamik, and (2) when

α(i),α(j) ∈ Ωa for some a and mik = 1 and mik = 1 where k < k then
αν(i) αν(j). That is, m is derived from m by exchanging the strategies
of players with the same class so that those players with the same class and

15We can think of players of the same class as being approximate substitutes for each
other or as being approximately the same ‘type.’ We avoid using the word ‘type’, however,
as this may create confusion with the notion of ‘type’ due to Harsanyi.
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playing the same strategy are ‘next to’ each other in terms of the ordering of
attributes. By Lemma 3 we know that such an m is a Nash ε

3-equilibrium.
This does not complete the proof of Theorem 2. The remaining possi-

bility is that given strategy vector m there may be players with the same
attribute who are playing different strategies. This prevents us from forming
societies. The answer is to construct a strategy profile m in which for any
two players i, j with the same attributes who are playing different strate-
gies we simply reallocate one player i the strategy of player j. Provided the
number of players whose strategy could change is potentially small we would
expect such a change to have a relatively minor effect on payoffs. This is
formalized by Lemma 4.

Lemma 4: Suppose the pregame G satisfies convex separation and the large
game property. Then for any ε > 0, any B ≥ 1, and any partition of Ω into
a finite number of subsets Ω1, ...,ΩA there exists a real number η4(ε, B,A)
such that for any game Γ(N,α) induced from G where |N | > η4(ε, B,A) and
profile(N,α)(ω) ≤ B for all ω ∈ Ω, if there exists a Nash ε

3-equilibrium in
pure strategies m with the property that,

when α(i),α(j) ∈ Ωa for some a and mik = 1 and mik = 1

where k < k, then αν(i) ≤ αν(j),

then there exists a Nash ε-equilibrium in pure strategiesm with the property
that,

when α(i),α(j) ∈ Ωa for some a and mik = 1 and mik = 1

where k < k then αν(i) < αν(j).

The formal statement of the proof now follows.

Proof of Theorem 2: Suppose not. Then, there is some ε > 0 and some
B ≥ 1 such that for each integer ν there is a population (Nν,αν) where
|Nν | > ν, and induced game Γ(Nν ,αν), which satisfy the conditions of the
statement of the Theorem but for which there exists no Nash ε-equilibrium
with the required properties.

We note that, by Theorem 1, for any ε there exists a real number η1
ε
9

such that if ν ≥ η1
ε
9 the game Γ(Nν ,αν) has a Nash ε

9 equilibrium in
pure strategies. For each ν, denote a Nash ε

9 equilibrium in pure strategies
by mν and let gναν ,mν be the corresponding weight function.

27



Since the pregame G satisfies the large game property, we may choose
non-negative real numbers δc ε

9 and η ε
9 such that for any n > η( ε9 ) the

set of games γ(G, n) satisfies δc( ε9 ), ( ε9 )-continuity of payoff functions. Use
compactness of Ω to write Ω as the disjoint union of a finite number A of
convex non-empty subsets Ω1, ...,ΩA, each of diameter less than δ = δc

ε
9 .

The proof now proceeds in two stages. In the first stage consider a change
of degenerate strategy vector from mν to mν , for all ν, where mν satisfies:

1.

i: α(i)∈Ωj
mν
ik =

i: α(i)∈Ωj
mν
ik

for all a = 1, ..., A and for all sk ∈ S and,
2.

when αν(i),αν(j) ∈ Ωa for some a and mν
ik = 1 and m

ν
ik
= 1

where k < k then αν(i) αν(j),

for all i, j ∈ Nν.

Given that the finite set of points α(Nν) is well ordered for all ν, it
is always possible to construct such a degenerate strategy vector mν by a
simple ‘reallocation’ of strategies. Given the choice of δ and that mν is a
Nash ε

9 -equilibrium for all ν it is immediate from Lemma 3 that mν is a
Nash ε

3 -equilibrium of the game Γ(Nν,αν).
In the second stage of the proof we apply Lemma 4 to show the existence

of a degenerate strategy profile mν for all ν > η4(ε, B, A) where for any
i, j,∈ Nν ,

when α(i),α(j) ∈ Ωa for some a and mik = 1 and mik = 1

where k < k then αν(i) < αν(j),

and where mν is a Nash ε-equilibrium. From the definition of convex sep-
aration and the fact that each Ωa is convex it is clear that m

ν is a Nash
ε-equilibrium in pure strategies that partitions the population into at most
AK societies, giving the desired contradiction.

Some form of condition that profile(N,α)(ω) ≤ B for all ω ∈ Ω in the
statement of the Theorem is necessary because of our insistence on pure
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strategy equilibria. If all players have the same attribute, for example, and
a Nash equilibrium exists with the property that a positive fraction of the
players choose one strategy and a positive fraction choose another strategy,
then a result such as Theorem 2 cannot be obtained. The condition could,
however, possibly be relaxed to one requiring only that the percentage of
players with any one attribute is small, say less than ε

B .

5.1 The example revisited

It is worth briefly returning to the example in Section 2.3 of a pregame
satisfying the large game property given earlier. As highlighted in the in-
troduction, for some attribute spaces Theorem 2 implies the existence of
an approximate equilibria in pure strategies with the property that most
players are playing the same strategy as their closest neighbors in attribute
space. In particular, this is the case when Ω = [0, 1]. It may be, however,
despite our Theorem 2, that there are games for which all ε-equilibria have
the property that most players do not play the same strategy as their clos-
est neighbor. Our earlier example allows us to illustrate why this may be
reasonable.

Consider a sequence of populations {(Nν ,αν)}ν>1 such that for all ν and
any player i ∈ Nν the attribute of player i is given by,

i+ 1
n2

n+ 2
,

i

n+ 2
if i is even, and

i+ 1

n+ 2
,
i+ 1+ 1

n2

n+ 2
if i is odd,

where n = |Nν| > ν. Figure 1 illustrates the attribute space (not to scale) for
a population with 10 players. This demonstrates how, within this sequence
of populations, players are in pairs of the form (i, i + 1) where i is an odd
number. Players in the same pair are basically identical in terms of attribute
but one is slightly more efficient at producing good A and the other at
producing good B. Two players within the same pair are clearly their closest
neighbors in terms of attributes. It seems intuitively reasonable, however,
for two players within the same pair to belong in different societies.

5.2 Examples of social conformity

In a number of game theoretic models of social situations, there is some
feature built into the model that ensures social conformity. For example,
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Bernheim (1994) obtains such a result for a model in which individuals care
about status and behaviour (strategy) serves as a signal of status. Con-
formity within subgroups (clubs or jurisdictions) of the population has also
been an issue in models of cooperative and price-taking behaviour; see, for
example, Greenberg and Weber (1986) or Conley and Wooders (1996) where
equilibrium jurisdictions consist of similar individuals. The following two ex-
amples illustrate that when there is some feature of the model motivating
individuals to conform, it is ‘easier’ to have social conformity as defined in
this paper. Indeed, we demonstrate that the existence of normative confor-
mity can imply the existence of exact equilibria satisfying social conformity
with a fewer number of societies.

Example 2: Normative influence can reduce the number of soci-
eties.

There are 2 pure strategies - to dress down (D) or to dress smart (U).
The attribute space is Ω = [0, 1]. An attribute is a measure of a person’s
preference for dressing smart. Specifically, for any finite population (N,α)
we can think of a player’s payoff function, assuming an absence of normative
influence, as given by,

h0ω(p,w) = (2− ω)pD + (1+ ω)pU

for all w ∈Wα−w, where pD is the probability of dressing down and pU the
probability of dressing smart. The larger the attribute of an individual the
more he enjoys dressing smart. Players may, however, exhibit normative
influence. Given a population (N,α) and any weight function w define d(w)
and u(w) as follows,

d(w) = ω i∈N w(D,ω)
|N | ,

u(w) = ω i∈N w(U,w)
|N | .

Thus, d(w) is the proportion of the population who dress down. Let β be a
non-negative real number referred to as the degree of normative influence.
A player’s payoff function for any finite game Γ(N,α) is then given by

hω(p,w) = (2− ω)pD(1+ βd(w)) + (1+ ω)pU(1+ βu(w))

for all w ∈Wα−w. If β = 0 payoffs do not exhibit normative influence.
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It is easily checked that this pregame satisfies the large game property
(for any suitable metric on Ω). By applying Theorem 2 we can show

Given real numbers ε > 0 and B ≥ 1 for any population (N,α) where
profile(N,α)(ω) ≤ B for all ω ∈ Ω, the induced game Γ(N,α) has
a Nash ε-equilibrium in pure strategies that partitions the population
(N,α) into C ≤ 2 societies.’

Consider a population (N,α) where |N | = 100 and where profile(N,α)(0)
= profile(N,α)(1) = 50. If β is small (e.g. 0) then there will be a unique
Nash 0-equilibrium in which there are two societies - one in which people
dress smart and one in which people dress down. If β is large (e.g. 2) then
there are two Nash 0-equilibrium - one in which there exists a unique society
of people who dress smart and one in which there exists a unique society of
people who dress down. That is, there exists a unique society.

Example 3: Normative influence can imply the existence of exact
Nash equilibria.

This example is based around the 2 player matching pennies game whose
payoff matrix is given below:

row \ column Heads Tails
Heads 1,−1 −1, 1
Tails −1, 1 1,−1

The attribute space Ω is given by [0, 1]× {R,C}. The first element of a
player’s attribute can interpreted as his geographical position. The second
element is interpreted as whether he is a row (R) or column player (C).

Induced games are such that given any population (N,α) every column
player (i ∈ N such that α(i) = (·, C)) meets every row player (j ∈ N such
that α(j) = (·, R)). When two players i and j meet they play the matching
pennies game. There are two pure strategies, to ‘choose heads’ (H) and to
‘choose tails’ (T ). If a player chooses strategy H then he will play heads
against any player he meets.

Given a population (N,α) and weight function w let CH(w) be defined
by,

CH(w) =
ω∈α(N):ω=(·,C)

w(ω,H).
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That is, CH(w) denotes the weight being put on H by column (C) players.
We provide similar interpretations to CT (w), RH(w) and RT (w). If there
is no normative conformity then player i’s payoff for any game Γ(N,α), any
weight function wα and any strategy p = (pH , pT ) is given by

h0α(i)(p, wα−i) =

1

|N | pH(RT (wα−i)−RH(wα−i)) + pT (RH(wα−i)−RT (wα−i))

if α(i) = (·, C) and by
h0α(i)(p, wα−i) =

1

|N | pH(CH(wα−i)− CT (wα−i)) + pT (CT (wα−i)− CH(wα−i))

if α(i) = (·, R). That is, their payoff is the total amount they earn from
playing the matching pennies game, divided the number of players in the
population.

Let β be a non-negative real number referred to as the degree of norma-
tive influence. Given a value for β player i’s payoff for any game Γ(N,α),
any weight function wα and any strategy p = (pT , pH) is given by

hβα(i)(p,wα−i) = h
0
α(i)(p,wα−i) +

β
1

|N | pH(RH(wα−i) + CH(wα−i)) + pT (RT (wα−i) +CT (wα−i)) .

Thus, depending on the level of β a player’s payoff is higher if they are
playing the same strategy as other players in the population.

The definition of a pregame is completed by providing a metric ρ for Ω.
For any ω1,ω2 ∈ Ω, let

ρ((ω11,ω21), (ω12,ω22)) = |ω11 − ω12| if ω21 = ω22

and ρ(ω1,ω2) = 2 otherwise.

This pregame satisfies the large game property as can be verified by
setting δc(ε) = 1, δg(ε) = ε

2 and η(ε) = 1 for all ε > 0. On reflection of the
proof of Theorem 2, for this example, we have that

‘Given real numbers ε > 0 and B ≥ 1 for any population (N,α) where
profile(N,α)(ω) ≤ B for all ω ∈ Ω, the induced game Γ(N,α) has a Nash
ε-equilibrium in pure strategies that partitions the population (N,α) into
C ≤ 4 societies.’
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For example, there will be a society of column players living in a convex
subset of [0, 1] who all play H.

Given the existence of normative influence can we obtain a stronger
result? To simplify matters we restrict attention to games where the number
of column players is equal to the number of row players. Begin by assuming
that β < 1. For any induced game Γ(N,α), a Nash equilibrium σ clearly
satisfies CH(wα,σ) = CT(wα,σ) and RH(wα,σ) = RT (wα,σ). It is immediate
from this, that for arbitrarily large populations, if there is an odd number
of row and column players, there need not exist an Nash 0-equilibrium in
pure strategies. That is, there can only exist an approximate equilibrium
in pure strategies. Further, it is also clear that any such approximate Nash
equilibrium will induce a partition of the population into four societies.
Assume now that β > 1. In this case there will exist two Nash 0-equilibria
in pure strategies - ‘everybody play H’ and ‘everybody play T ’. Thus,
because of the high degree of normative influence there exists an exact Nash
equilibrium in pure strategies. Further, the number of societies falls to two.16

6 An example of an attribute space.

Theorem 2 assumes that the space of attributes is both a compact metric
space and a space that satisfies convex separation. Clearly this imposes
restrictions on the type of attributes permissible. Our purpose in this sec-
tion is to provide an illustrative example of a space that has the desired
properties. This example is by no means the most general possible but will
hopefully demonstrate that the restrictions imposed on the attribute space
are relatively mild.

Let Ω be the space of sequences of bounded rational numbers, let [a, b]
be closed interval contained in the real line R, and let Q denotes the set of
rational numbers. An element of Ω is of the form ω = (ω1,ω2, ....) where
ω� ∈ [a, b] ∩ Q for each c .17 As demonstrated in the appendix, Ω satisfies
convex separation. Further, given a suitable metric, the spaceΩ is a compact

16 It is well know that the symmetric mixed equilibrium may be a good predictor of the
aggregate distribution of play, but a poor predictor of individual play from round to round
in experimental games; see, for example, O’Neil.(1987) and, for a recent discussion, Walker
and Wooders (2001). Glen Ellison has suggested to us that one explanation may be that
play is converging to an Nash ε-equilibria in pure strategies that look like the symmetric
mixed Nash equilibrium. While this example illustrates such a possibility, investigation of
Ellison’s suggestion is beyond the scope of the current paper, but one we hope to consider
in future research.
17When indexing an attribute ωj ∈ Ω we use the notation that ωj = (ωj1,ωj2, ...).
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metric space. We will discuss below such a suitable metric, but for now, let
us proceed on the basis that Ω is indeed a compact metric space satisfying
convex separation. We thus need to demonstrate how an element ω of Ω can
be thought of as describing a player.

Generally, we can think of a player i ∈ N as being described by two
pieces of information: first, the player’s payoff function and second his per-
sonal characteristics such as gender, height, intelligence, metabolic rate and
endowment etc.

Let uω denote the payoff function of a player with attribute ω. We note
that equations (1) and (2) imply that a payoff function need merely detail
a player’s payoff at those strategy-weight function combinations (t, w) for
which t is a pure strategy choice and w is a degenerate weight function. Let
G denote the set of degenerate weight functions and assume that uω maps
S × G into [a, b] ∩ Q. We note that given the function uω for all ω ∈ Ω
it is clearly possible to derive a function h : Ω ×∆(S) ×W −→ R+ which
summarises the payoff characteristics of players and enters as a component
of the pregame.

We can now introduce a function pω to represent the personal charac-
teristics of a player i. Given the attribute space Ω let A denote the set of
functions mapping N → Ω for any finite set N = {1, ..., |N |}. That is, A is
the set of attribute functions possible given attribute space Ω. Assume that
pω : A→ [a, b]P ∩QP for some finite P . In other words, the personal char-
acteristics of a player with attribute ω are given by a finite list of bounded
rational numbers and are determined by the attribute function. Note, that a
player’s personal characteristics may be dependent in part on the attributes
of other players in the population.

Take a population (N,α) as given. We note that because there are
a finite number of strategies K and finite number of players |N |, there
are only a finite number of possible degenerate weight functions gα ∈ Gα.
Furthermore, this implies that there are only a finite number of plausible
pure strategy-integer valued weight function pairs (sk, gα−i) with respect to
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a player i ∈ N for the population (N,α).18 We know also that the personal
characteristics of player i ∈ N are given by the finite list pα(i)(α). Thus, for
any population (N,α) and for any player i ∈ N , player i can be described,
in that population, by a finite sequence of bounded rational numbers.

An attribute must, however, specify the personal characteristics and pay-
off’s of a player with attribute ω for any possible population (N,α) induced
by the pregame G. We note, however, that Ω has a countable number of
elements. This further implies that there are only a countable number of
possible societies (N,α) for finite |N |.19 Thus, given that a finite sequence
of bounded rational numbers describes a player’s payoff and personal char-
acteristics for any given population, a complete description of an attribute
can be given by a countable sequence of bounded rational numbers. That
is, we can think of a player’s attribute as a list of the payoff and personal
characteristics that the player will have for all of the possible societies that
they might live in.

This demonstrates how an element ω of Ω can represent the attribute of a
player. It remains to put a metric to the space Ω. We begin by introducing
some notation: Given a sequence of real numbers ω = (ω1,ω2, ...) and a
finite set of positive integers P = (1, ..., P ), a sequence ω = (ω1,ω2, ...) is a
permutation of ω with respect to P if:

1. ωi = ωi for all i /∈ P and,
2. there exists a one-to-one mapping p from P to P such that ωi = ωp(i)
for all i ∈ P.

For any ω ∈ Ω let πP(ω) denote the set of permutations of x with respect
18A simple example may be clarifying. Consider a society of three people indexed 1, 2

and 3 and two strategies indexed A and B. Suppose further that α(1) = α(2) = ω1 and
α(3) = ω3 �= ω1. With regard to player 1 there are 8 possible strategy/integer valued
weight function pairs (sk, gα−i) of which four are:-

(A; (1×A; 1×A)) ; (A; (1×A; 1×B)) ;
(A; (1×B; 1×A)) ;(A; (1×B; 1×B)

where (1 × A; 1 × B) is interpreted as the integer valued weight function in which one
player with attribute ω1 plays strategy A and one player of attribute ω3 plays strategy B.
19A standard result from real analysis is that a countable union of countable sets is itself

countable. Repeated application of this result shows, for any finite N , that there are a
countable number of possible societies of size N . Given this, application of the ‘standard
result’ one more time demonstrates that there are a countable number of possible societies
of finite size.
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to P. We define a metric, given P, by:

ρP (ω,ω) = sup
z∈πP(ω−ω)

∞

i=1

|zi|
1+ |zi|2

−i

This is indeed a metric for any finite set P .
To explain the metric and then its motivation, we begin by ignoring

the possibility of permutations. The difference between two sequences ω =
(ω1,ω2, ...) and ω = (ω1,ω2, ...) is then given by a standard metric ρs(ω,ω) =
∞
i=1

|ωi−ωi|
1+|ωi−ωi|2

−i. (Indeed, such a metric makes Ω a metric space furnished
with the product topology.) The difference between ω and ω is, in this case,
given by the ‘weighted sum’ of the element-wise differences in the two se-
quences, with differences in elements ‘early in the sequence’ given more
weight. In the more general metric ρP we essentially pick a finite set of ‘rep-
resentative points’ along the sequence. In calculating the difference between
two sequences ω and ω all permutations of ω and ω about these represen-
tative points are considered. The difference is then taken as the maximum
difference in the corresponding metric ρs(ω,ω). The metric space (Ω, ρP ) is
indeed compact for any set P .

We conclude by explaining the motivation behind the metric ρP .We be-
gin by highlighting that, while an infinite sequence of numbers is needed to
fully describe a player’s attribute, to describe the payoff function and per-
sonal characteristics of a player with that attribute in any given population
requires only a finite set of components of that sequence. Thus, informally, in
choosing the finite set of points P, we can select any finite number of games
of finite size and measure the distance between the attributes of two players
in terms of the payoffs and characteristics that players with these attributes
have in such games.20 As such, the notion of a finite set of ‘representative
points’ can be superseded by the notion of a finite set of ‘representative
games’. The assumptions of continuity, compactness and global interaction
suggest that such a set of ‘representative games’ should exist.

7 Some relationships to the literature

The literature on the existence of an approximate non-cooperative equilib-
rium in pure strategies was initiated by Schmeidler (1973) for non-atomic
games, i.e. games with a continuum of players. (The introduction to Khan,

20Clearly, we are assuming that the sequence of numbers in the attribute are ordered
(or constructed) in such a way that element wise comparison is appropriate.
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Rath and Sun 1997 summarizes much of this literature.) The relationship
between this literature and the results of the current paper are worth ex-
ploring. It is useful to begin by discussing some related results, for games
with a finite player set, developed in Kalai (2000).

Kalai introduces the appealing concept of information proof Bayesian
equilibrium, a type of equilibrium immune to changes in the prior proba-
bility of types, in the probabilities of mixed pure actions, and in the order
of play, as well as to information leakage and the possibility of revision.
Remarkably, he demonstrates that information proofness is a property of
Bayesian equilibrium for a broad class of large games. Throughout, it is
assumed that there is a finite strategy set. As an application of the law of
large numbers, for games with complete information Kalai’s results imply
the existence of ε-Nash equilibria in pure strategies for all sufficiently large
games satisfying the anonymity properties of his model. A similar result
could also be derived from Rashid (1983).

The anonymity, or global interaction, property in Kalai (2000) differs
significantly from that of this paper. In particular, given any population
(N,α) and strategy profile σ let

wα,σ(sk) =
i∈N

σik.

Given σ, the empirical distribution of play defined by Kalai is given by
wα,σ(·)
|N | . We note that this empirical distribution is itself a strategy. A

player’s payoff function is assumed to map S × ∆(S) into a closed subset
of the real line. The interpretation is that a player’s payoff depends on his
own strategy and on the empirical distribution of opponent’s strategies.

There are two ways in which the anonymity assumption of Kalai differs
from the global interaction assumption of this paper. These two differences
are also reflected in the literature on non-atomic games. A first difference
is that within our framework payoffs depend on the joint distribution over
strategies and attributes (or player characteristics) and not just on the distri-
bution over strategies. That is, recalling the definition of a weight function,

wα,σ(ω, sk) =

i∈N : α(i)=ω
σik,

within our framework payoffs depend on who plays which strategy. It is
typical within the literature on nonatomic games to formulate the model
such that payoffs depend on the distribution over strategies and not the joint
distribution over strategies and attributes (for example, Schmeidler 1973,
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Mas-Colell 1984, Khan 1989). Exceptions include Pascoa (1993a, 1993b)
where this issue is discussed in more detail.21 Within the framework of
this paper it is relatively trivial to prove both Theorems 1 and 2 in the case
where payoffs depend on the distribution over strategies and not on the joint
distribution over strategies and attributes. Indeed, such results are easily
derived from Lemma 1.

A second difference between the anonymity property in Kalai (2000)
and the global interaction assumption of this paper is that in Kalai (2000)
payoffs are a function of the average, wα,σ(·)

|N | , while in this paper payoffs
are a function of the distribution wα,σ(·, ·). In fact, our framework is such
that payoffs depend on the distribution wα,σ(·, ·) but are nearly invariant to
changes in the average wα,σ(·,·).

|N | . An important implication of this is that

the size of the population can have an influence on payoffs.22 It is typical
within the literature to assume payoffs depend on averages (e.g. Mas-Colell,
Pascoa 1993a.) An exception is Schmeidler (1973) and Khan, Rath and Sun
(1997) where this issue is discussed further. Again, it is trivial that both
Theorems 1 and 2 could be derived within our framework if payoffs were to
depend on averages and not on the distribution.

With payoffs being a function of the distribution and not the average, and
furthermore, being a function of the joint distribution over pure strategies
and attributes and not just the distribution over strategies, it becomes clear
that the framework of this paper is a relatively general one. The only real
restriction would appear to be the assumption of a finite strategy set. With
this restriction noted, Theorem 1 represents a finite analogue to most of the
pure strategy existence results for non-atomic games. It is worth highlighting
that the motivation behind assuming a continuum player set is usually to
approximate a large but finite player set. Furthermore, games with finite
player sets are significantly different from games with a continuum of players,
and thus, it is not trivial true that results based on a nonatomic game can
be applied to large but finite games (Green 1984). We also note that the
assumption of a finite strategy space could be relaxed. In particular, there
seems no obvious reason why Theorem 1 and, possibly Theorem 2, could not
be extended to the case of a countable strategy space. It is also clear within
our framework how we could derive results if there is a compact metric space

21Mas-Colell (1984) also remarks that assuming payoffs depend only on the distribution
over strategies need not be restrictive when there exists an infinite strategy set. In this
case strategies can be ‘indexed’ so as to indicate a player’s attribute.
22Note, with a finite strategy set and continuum player set, the distinction between

averages and distributions is of no real significance (Khan, Rath and Sun 1997).
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of strategies. Such a space of strategies could be treated in an analogous
way to that in which the compact metric space of attributes is treated in
this paper — we approximate by finite sets of attributes.

The literature on non-atomic games has also addressed the question of
when there exists a symmetric non-competitive equilibrium in pure strategies
(Mas-Colell 1984, Pascoa 1993a, Rath, Sun, Yamshige 1995). A symmetric
equilibrium has the property that players with the same attribute (usually
this means same payoff function) play the same strategy. It is immediate
that our Theorem 2 implies the existence of such an equilibrium in large
finite games. It does, of course, much more - it shows how different players
may be who still conform in their choice of strategy.

A related literature concerns purification of Nash equilibria in finite
games with imperfect information. Assume that before the game is played
a player receives a private signal on which he can condition his action. Pro-
vided there is sufficient uncertainty over the signals players will receive, any
mixed strategy can be purified. That is, any mixed strategy can be re-
placed by a pure strategy that yields all players similar payoffs. One line of
the literature concerns exact purification (e.g. Radner and Rosenthal 1982)
and a second line considers approximate purification (e.g. Aumann et. al.
1983). In this paper we use a notion of ε-purification related to that used
by Aumann et. al. (1983) by demonstrating that any strategy vector can be
ε-purified if there are sufficiently many players in the game. We note that
the literature on nonatomic games does not demonstrate the possibility of
such purification. This, however, would merely appear to reflect the method
of proving the existence of a pure strategy non-cooperative equilibrium.

8 Conclusions

Assume that players learn and choose strategies by observing and conform-
ing to the strategy choices of similar players in the population. Is it possible
that through such a learning dynamic players can learn to behave ‘as if’
fully rational? That is, can players learn to play Nash equilibria? Such con-
formity effects appear to be a significant element in human decision making
and thus the answer to this question is one of fundamental importance. (For
further discussion see Durlauf and Young 2001.)

A first step in addressing the question of whether players can learn to
play Nash equilibria is to consider the possible existence of an approximate
equilibrium with conformity, that is, to demonstrate the existence of an
equilibrium that is stable in terms of the learning dynamic and also an
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approximate Nash equilibrium. In this paper we demonstrate existence of
such an equilibrium in large games. The result is made more interesting by
observing that large games are games for which it seems intuitively most
plausible that players will base decisions on processes such as conformity
and imitation.

Two issues still remaining are: (i) We only demonstrate the existence of
a Nash equilibrium with conformity; we do not address directly, the question
of whether players actually learn to play that equilibrium. (ii). Social
conformity in mixed strategy equilibrium is not treated. We take up each
of these issues in turn.

With regard to the dynamics of the learning process and convergence
to a Nash equilibrium there are two potential problems. First, we may get
convergence to a cycle and, second, we may get convergence to a non-Nash
equilibrium stable state. (See Fudenberg and Levine 1998 for a more detailed
discussion of these issues.) Informally, convergence to a cycle is usually the
result of aggregate play ‘circling around’ a mixed strategy Nash equilibria.
The purification result of this paper suggests a possible solution to such
problems. The intuition for this claim is that ‘nearby’ any Nash equilibrium
in mixed strategies is an approximate equilibrium in pure strategies. Thus,
it seems reasonable to conjecture that evolution cannot get caught in a per-
manent cycle around a mixed strategy equilibrium but is ultimately drawn
to the corresponding pure strategy equilibrium.

A more fundamental problem related to convergence may concern ‘mis-
takes’ in measuring similarities leading to convergence on non Nash equilib-
rium stable states. In particular, players may mimic individuals they per-
ceive as similar. We demonstrate the existence of an equilibrium in which
individuals that are in reality similar play the same strategies. Thus, the
metric by which individuals measure similarity is crucial. A bright and
highly capable boy, living in a low income area in Liverpool, for example,
may aspire to be a football hooligan rather than the rocket scientist he is
capable of becoming. It may be that if the similarity metrics that people use
are biased to place too much weight on similarities of gender, race, color, or
religion rather than on similarities of ability, interests, and so on, there may
be (non-Nash) ‘stable equilibrium’ outcomes that are quite different than
Nash outcomes. Part of the motivation for developing the current model is
to explore such issues.

The second issue is that there may be situations in which the require-
ment that individuals from the same society play the same pure strategies
is too restrictive; it may be more natural to require only that similar indi-
viduals play similar mixed strategies. In Cartwright and Wooders (2001) we
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formulate social conformity in terms of mixed strategies and demonstrate
conditions under which social conformity obtains.23 This formulation of
social conformity permits an arbitrary compact set of strategies.24

Let us now turn to other motivations for our research, from the lit-
erature of general equilibrium and cooperative game theory. One possible
issue concerns the so called “Equivalence Principle” of cooperative outcomes
of large (“competitive”) exchange economies. In exchange economies with
many players, the set of equilibrium outcomes, represented by the induced
utilities of members of the economy, coincides with the core of the game
generated by the economy and the value outcomes; see Debreu and Scarf
(1963), Aumann (1964, 1985). This sort of result holds for diverse models
of economies with many players (cf. Conley and Wooders 1997, 2001 for
economies with clubs and with endogenous choice of crowding types — skills
and other external characteristics). For abstract models of large economies
as cooperative games, under mild assumptions quite similar in spirit to those
of this paper, it is known that approximate cores are nonempty and treat
similar players similarly (cf. Kovalenkov and Wooders 1999a, 2001). We
conjecture that when noncooperative games derived from pregames are re-
quired to satisfy the conditions of this paper (satisfied, in spirit, for exchange
economies for which the Equivalence Principle holds) and, in addition, the
condition of self-sufficiency — that what a coalition of players can achieve
is at least asymptotically independent of the population in which it is em-
bedded — then analogues of the Equivalence Principle can be obtained for
large noncooperative games. More precisely, we conjecture that under self
sufficiency, (approximate) strong equilibrium outcomes are close to Pareto
optimal and also treat similar individuals similarly in terms of their expected
equilibrium payoffs.

To compare our noncooperative pregame framework to the cooperative
pregame framework, it is important to note a major and significant differ-
ence. In the cooperative framework, the payoff to a coalition is fixed and
independent of the population in which that coalition is embedded. Al-
though this is possible within the current noncooperative framework, it is
not built into the model and thus may or may not hold. Noncooperative
games derived from a (noncooperative) pregame are parameterized by the
numbers of players of each type in the player set and may vary considerably

23We are grateful to Francis Bloch, Alan Kirman and Michel Le Breton for stressing
the importance of this issue.
24A third issue that may be related, but which we do not explore here is under what

conditions evolutionary stable strategies must be pure strategies; see Selten (1980) and
Binmore and Samuelson (2001) for discussions of this issue.
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depending on the attributes of the players actually represented in the popu-
lation — even in a large population the presence or absence of one player with
a certain attribute may significantly change the game. For example, there
may be little relationship between derived games where all players have the
characteristic, male for example, and games where even one player has a dif-
ferent characteristic, female, for example. Moreover, even in the case where
all players are identical, there is no necessary relationship between a game
with n players and another with n+ 1 players.

One interesting similarity between the two frameworks is that, in the
cooperative pregame framework, the condition of small group effectiveness
plays an important role, cf., Wooders (1994). This condition dictates that all
or almost all gains to collective activities can be realized by groups of players
bounded in size. An equivalent condition is that small groups are negligible:
in large cooperative games derived from pregames, small groups are effective
if and only if small groups cannot have significant effects on aggregate per
capita payoff (Wooders 1993). The main substantive condition of the current
paper, global interaction, can be interpreted as the negligibility of small
groups of players; that is, the effects of the actions of any small set of players
on the complementary set of players become negligible in games with many
players. For cooperative pregames with side payments, the condition of small
group negligibility implies that large games are market games, as defined by
Shapley and Shubik (1969). The full implications of the condition of global
interaction for noncooperative pregames have not been fully explored, but
we expect there to be many.

The noncooperative framework that allowed us to derive our main result
promises to be fruitful and the techniques developed in this paper may be
useful in other applications other than those mentioned above. One potential
application, currently in draft form, is to games with incomplete information
(Cartwright and Wooders 2001). In particular, note that Lemma 1 applies
to any game and an extension of our model to incomplete information can
be obtained using that Lemma similarly to how it is used in this paper.

9 Appendix: Euclidean space satisfies convex sep-
aration.

To provide a simple example of convex separation, we show that a closed
subset of finite dimensional Euclidean space satisfies convex separation:
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Lemma 5: For any finite integer M the linear space ×Mm=1[0, 1] satisfies
convex separation.

Proof. We define the binary relations < and = as follows: Take any two
points x = (x1, ..., xM), x� = (x�1, ..., x

�
M) ∈ ×Mm=1[0, 1]. We say that x = x�

if xm = x�m for all m = 1, ...,M . We say that x < x� if either:

1. m xm < m x
�
m or,

2. m xm = m x
�
m and for some m∗ ∈ {1, ...,M − 1} xm∗ < x�m∗ and

xm = x
�
m for all m < m∗.

Suppose ΩJ = {x1, x2, ..., xJ} and ΩQ = {x�1, x�2, ..., x�Q} are two sets of
points in ×Mm=1[0, 1]. Then, if xj < x�q for all xj ∈ ΩJ and all xq ∈ ΩQ we
claim that: the convex hulls of ΩJ and ΩQ are disjoint. Denote the convex
hull of a set of points S = {S1, ..., Sn} by con S where

con S =
x|x = n

i=1 βisi for some numbers βi, 0 ≤ βi ≤ 1,
n
i=1 βi = 1, and for some set of points si ∈ S

.

Thus, suppose the claim is false. Then there exists a point x such that
x ∈ con ΩJ and x ∈ con ΩQ. Thus, for some numbers β1, ...,βQ and
γ1, ..., γJ we have that:

x =
J

j=1

γjxj and x =
Q

q=1

βqx
�
q. (9)

which implies that:

J

j=1

γj

M

m=1

xjm =

Q

q=1

βq

M

m=1

x�qm

Suppose, for some xj∗ and x�q∗ that m xjm < m x
�
qm. Then, given that

xj < x
�
q for all xj ∈ ΩJ and all x�q ∈ ΩQ, we must have that either γj∗ = 0

or βq∗ = 0. Let Ω
+
J denote the set of xj ∈ ΩJ given positive weight γj > 0

and Ω+Q the set of all x
�
q ∈ ΩQ given positive weight βq > 0. Then, it is

immediate from the above that m xjm = m x
�
qm for all xj ∈ Ω+J and

x�q ∈ Ω+Q. For any pair of points xj ∈ Ω+J and x�q ∈ Ω+Q there must exist
some m∗ ∈ {1, ...,M − 1} for which xjm∗ < x�qm∗ and xm = x�m for all
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m < m∗. Take the minimum of these m∗ over all points xj ∈ Ω+J and x�q ∈
Ω+Q. By 9 we have that:

J

j=1

γjxjm∗ =

Q

q=1

βqx
�
qm∗

However, by choice of m∗ we have that xjm∗ ≤ xqm∗ for all j, q and xjm∗ <
xqm∗ for some j, q which implies that:

J

j=1

γj >

Q

q=1

βq

giving the desired contradiction.

The same line of reasoning exemplified by the example above can be
extended to other spaces. We can use the following binary relation on the
space of bounded sequences of real numbers: two sequences x = (x1, x2, ....)
and y = (y1, y2, ...) are equal, written x = y, if and only if xi = yi for all
i ∈ Z+. We say that the sequence x is strictly less than the sequence y if:

∞

i=1

xi
1+ |xi|2

−i <
∞

i=1

yi
1+ |yi|2

−i

The remaining case is one in which the above sum is equal but the two
sequences are not equal. This implies that there is some smallest integer
i ∈ Z+ at which they differ, say xi < yi, and in this case we say that x < y.

10 Appendix 2. Proofs of Lemmas

Lemma 1: Let N = {1, ..., n} be a finite set. For any strategy vector
σ = (σ1, ..., σn) ∈ ∆Kn and for any vector g ∈ ZK+ such that i σi ≥ g,
there exists a degenerate strategy vector m = (m1, ..., mn) such that,

support(mi) ⊆ support(σi)
for all i ∈ N and

i

mi ≥ g.
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Proof: Given any strategy vector σ let M (σ) denote the set of strategy
vectors such that m ∈ M(σ) if and only if (1) m is degenerate and (2)
support(mi) ⊆support(σi) for all i ∈ N . It is trivial that M(σ) is non-
empty for any σ.

Suppose the statement of the lemma is false. Then, there exists a strat-
egy vector σ = (σ1, ...,σn) and a vector g ∈ ZK+ where i∈N σi ≥ g and
such that, for any vector m = (m1, ...,mn) ∈ M(σ) there must be at least
one k where s

k
∈ S and for which imik

< g
k
. For each vector m ∈M(σ)

let L be defined as follows:

L(m) =
sk∈S: imik<gk

gk −
i

mik

Select m0 ∈ M(σ) for which L(m) attains its minimum value over all m ∈
M(σ). Intuitively the vector m0 is ‘as close’ as we can get to satisfying the
lemma. Pick a strategy s

k
such that g

k
− im

0
ik
> 0.

For any subset I of N let the set S(I) ⊂ S be such that:
S(I) = s

k
∪ sk ∈ S : m0

ik = 1 for some i ∈ I

We can now define sets It k for t = 0, 1, ... as follows:

I0 k = i ∈ N : m0
ik
= 1 ,

for all t ≥ 1,
It k = It−1 k ∪

j ∈ N : σjk > 0 and m0jk = 0

for some k ∈ S It−1 k

Consider a player i1 ∈ I1 k \I0 k , if one exists. Then, m0
i1k

= 0,

σ
i1k

> 0 and m0
i1k1

= 1 for some sk1 ∈ S. Thus, there exists an m∗ ∈
M(σ) such that m∗i = m0

i for all i 9= i1 while m∗
i1k

= 1 and m∗i1k1 = 0.

Suppose that i∈N m
0
ik1
> gk1 . This implies, given that m

0
ik1
and gk1 are

integers, that i∈N m
0
ik1
≥ gk1 + 1. Then, it follows, by the definition of

L(m) that L(m∗) = L(m0) − 1. This contradicts that we chose the vector
m0 ∈M(σ) with minimum L.

Consider a player it ∈ It k \It−1 k , if one exists, where t ≥ 2 and
m0
itkt

= 1 for some pure strategy skt . By the construction of It k if
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it ∈ It k \It−1 k then there must exist some strategy

skt−1 ∈ S It−1 k \S It−2 k

such that σitkt−1 > 0 and m0itkt−1 = 0. This implies, by the definition of
S(I), that there exists a player

it−1 ∈ It−1 k \It−2 k

such that m0
it−1kt−1 = 1.

Continuing this chain as far as necessary, it follows that there exists
a set of players C = {i1, ..., it} ⊂ It k , where for all it ∈ C, we have,
it ∈ It k and m0

itkt
= 1. Further, there exists a vector m∗ ∈ M(σ) such

that:

for i1, m∗i1k1 = 0 and m
∗
i1k
= 1,

for all it ∈ C\{i1}, m∗itkt = 0 and m∗itkt−1 = 1, and
for all i /∈ C and all sk ∈ S, m∗ik = m0

ik.

Suppose that

i∈N
m0
ikt > gkt .

Then, again noting this implies that

i∈N
m0
ikt ≥ gkt + 1,

we have that

L(m∗) = L(m0)− 1.
To see this we note that

i∈N
m0
ikr =

i∈N
m∗ikr

for all 1 ≤ r < t while

i∈N
m0ikt − 1 =

i∈N
m∗ikt
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and

i∈N
m0
ik
+ 1 =

i∈N
m∗
ik
.

Then use the definition of L(m). This contradicts the choice of m0 ∈
M(σ) to minimize L(·).

Ultimately, for some t∗ ≥ 1 we must have that It∗+1 k = It
∗
k . This

is an immediate consequence of the finiteness of the player set.
The above has shown that if there exists a strategy sk ∈ S It

∗
k

where:

i∈N
m0
ik > gk

then we have the desired contradiction. This implies, for all sk ∈ S It
∗
k

that:

i∈N
m0
ik ≤ gk. (10)

Using the definition of It k and that It
∗+1 = It

∗
, there can exist no

player j ∈ N\It∗ k such that σjk > 0 for some sk ∈ S It
∗
k , unless

m0
jk = 1. This implies that:

i∈N\It∗(k)
m0
ik ≥

i∈N\It∗(k)
σik (11)

for all sk ∈ S It
∗
k .

Using the definition of S It
∗
k , we have that:

sk:sk∈S(It∗(k)) i∈It∗(k)
m0
ik ≥

sk:sk∈S(It∗(k)) i∈It∗(k)
σik. (12)

Combining 11 and 12 and using the statement of the lemma, we see that:

sk :sk∈S(It∗(k)) i∈N
m0ik ≥

sk:sk∈S(It∗(k)) i∈N
σik ≥

sk:sk∈S(It∗(k))
gk
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However, by assumption:

g
k
>
i∈N

m0
ik

and also by assumption, s
k
∈ S It

∗
k . Thus, there must exist at least

one sk ∈ S It
∗
k such that:

gk <
i∈N

m0
ik.

This contradicts 10 and completes the proof.
Here we provide an intuitive explanation of the sets It k with reference

to Figure 1 below.
The set I0 k contains those players who are ‘assigned’ the pure strat-

egy s
k
by vector m0. That is, if i0 ∈ I0(k) then m0

i0k
= 1. The set

I1 k \I0 k consists of those players who could have been assigned the

strategy k according to the definition of M(σ), but were not. That is, if

i1 ∈ I1 k \I0 k , then σ
i1k
> 0 but m0

i1k
= 0.

Suppose that m0i1k1 = 1. That is, player 1 was assigned pure strategy

sk1. In looking at the set I
2 k \I1 k pure strategies k 9= k play a role.

In particular, if there exists a player i2 such that m0i2k2 = 1 and σi2k1 > 0

then player i2 ∈ I2 k \I1 k . That is, player i2 could have been assigned
the strategy sk1 but was actually assigned strategy sk2 . Further, there exists

a player i1 ∈ I1 k using pure strategy sk1.
25 In adding the next group of

players, I3 k \I2 k , we can now take into account the pure strategy sk2.

Thus, we start looking for some player i3 such that m0
i3k3

= 1 and σi3k2 > 0.
And so on.

25We also require that σi2k = 0 otherwise player i2 would be included in the set I
1 k .
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i0∈ I0 k i1∈ I1 k \I0 k i2∈ I2 k \I1 k i3∈ I3 k \I2 k · · ·
⇓ ⇓ ⇓ ⇓

σ
i0k
> 0

m0
i0k
= 1.

σ
i1k
> 0

m0
i1k
= 0

σ
i2k
= 0

m0
i2k
= 0.

σ
i3k
= 0

m0
i3k
= 0.

and for some k1,
σi1k�> 0
m0
i1k1

= 1 .

For k1,
σi2k�> 0,
m0
i2k1

= 0

For k1,
σi3k1= 0,
m0
i3k1
= 0.

and for some k2
σi2k2> 0
m0
i2k2

= 1 .

For k2
σi3k2> 0
m0
i3k2
= 0

and for some k3
σi3k3> 0
m0
i3k3

= 1.

Figure 1

Any of the players in I1 k \I0 k , such as i1, could have been assigned

the pure strategy k (since σ
i1k
> 0) but instead i1 was assigned the pure

strategy sk1. Player i2 could have been assigned pure strategy i1 (since
σi2k1 > 0) but was assigned pure strategy sk2. Generalizing, any player

it ∈ It k \It−1 k could have been assigned pure strategy skt−1 but was
actually assigned pure strategy skt .

Now, suppose that there exists a strategy sk ∈ S It
∗
k such that:

i∈N
m0
ik ≥ gk + 1

We can do the following reallocation: put m0
itkt

equal to zero and set
m0
irkr−1 = 1 for all r ≥ 2 and set mi1k1 = 0 and m

i1k
= 1. This leaves

the numbers allocated to strategy skr for all 1 ≤ r ≤ n− 1 unchanged. The
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number playing skt reduces by one and the number playing sk increases by
one. Essentially, the player it has been allocated to a strategy skt where ‘it is
not needed’. Thus, we can take player it away from strategy skt and allocate
it to strategy skt−1. Repeating this chain we finish by putting mi1k

= 1. If
there was a shortfall in the number of players using strategy s

k
we thus re-

duce this shortfall to at the worst one less than we began with. At best, we
can, of course, overcome the shortfall completely and repeatedly applying
the above procedure will eventually do so.

Lemma 2: Let σ denote a strategy vector for population (N,α) and let
wα,σ denote the weight function relative to σ and α, then there exists a
degenerate strategy vector m and weight function gα,m relative to m and α,
with the properties that:

support(mi) ⊆ support(σi)
for all i ∈ N and

|gα,m(ω, sk)−wα,σ(ω, sk)| < K
for all ω ∈ Ω and all sk ∈ S.

Proof: We consider in turn each ω ∈ α(N). Thus, pick some ω ∈ α(N).
Choose a vector g ∈ ZK+ such that for each k = 1, ...,K,

i∈N :α(i)=ω
σik − 1 < gk ≤

i∈N :α(i)=ω
σik.

By Lemma 1 there exists a degenerate strategy vector m = (m1, ...,m|N |)
such that

i∈N :α(i)=ω
mi ≥ g.

and the support(mi) ⊂support(σi) for all i ∈ N with α(i) = ω. Thus, for
any k = 1, ..,K,

i∈N :α(i)=ω
σik −

i∈N :α(i)=ω
mik < 1. (13)
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Note, that sk∈S i∈N :α(i)=ω σik = sk∈S i∈N :α(i)=ωmik = profile(N,α)(ω).
Thus, for any sk ∈ S,

i∈N :α(i)=ω
mik = profile(N,α)(ω)−

sk�∈S:sk� �=sk i∈N :α(i)=ω
mik

=
sk�∈S:sk� �=sk i∈N :α(i)=ω

(σik −mik) +
i∈N :α(i)=ω

σik

< K +

i∈N :α(i)=ω
σik.

Thus, by (13)

−1 <
i∈N :α(i)=ω

mik −
i∈N :α(i)=ω

σik < K.

Repeating this argument for each ω ∈ α(N) completes the proof.

Lemma 3: Given a pregame G suppose that the set of games γ(G, n) satisfies
δ, ε9 -continuity in attributes. Then for any game Γ(N,α) ∈ γ(G, n), any par-
tition of Ω into a finite number of subsets Ω1, ...,ΩA, each of diameter less
that δ, and any two degenerate strategy profiles m and m, where for all a
and all sk ∈ S,

i: α(i)∈Ωa
mik =

i: α(i)∈Ωa
mik, (14)

if m is a Nash ε
9 -equilibrium, then m is a Nash ε

3 -equilibrium of the game
Γ(N,α).

Proof: Given (14) and the fact that both m and m are degenerate there
must exist a one-to-one mapping R(i) : N → N such that,

mi = mR(i) for all i ∈ N (15)

and,

dist(α(i),α(R(i))) < δ. (16)

That is, in the strategy profile m player i plays the strategy that player R(i)
plays in strategy profile m. Further, the attributes of players R(i) and i
must be within δ of each other. The proof of the lemma, therefore, requires
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us to show the existence of such a mapping R, and the fact that m is a Nash
ε
9 -equilibrium, implies that,

hα(i)(mi, gα−i,m) > hα(i)(t, gα−i,m)−
ε

3
(17)

for all i ∈ N where gα,m denotes the weight function relative to attribute
function α and strategy vector m.

Consider a change in population from (N,α) to (N,α) where,

α(R(i)) = α(i) for all i ∈ N. (18)

That is, instead of player i taking the strategy of player R(i), we now think
of player R(i) as taking the attribute of player i. Denote by gα,m the weight
function relative to attribute function α and strategy vector m. By the
assumption of continuity in attributes and (16) we have that,

hα(i)(t, gα−i,m)− hα(i)(t, gα−i,m) <
ε

9

for all t ∈ ∆(S) and all i ∈ N . Given that m is a Nash ε-equilibrium,

hα(i)(mi, gα−i,m) > hα(i)(t, gα−i,m)−
ε

9

for all t ∈ ∆(S) and all i ∈ N . Therefore,

hα(i)(mi, gα−i,m) > hα(i)(t, gα−i,m)−
ε

9
(19)

− hα(i)(t, gα−i,m)− hα(i)(t, gα−i,m)
− hα(i)(mi, gα−i,m)− hα(i)(mi, gα−i,m) (20)

and thus,

hα(i)(mi, gα−i,m) > hα(i)(t, gα−i,m)−
ε

3
(21)

for all i ∈ N and for all t ∈ ∆(S). In other words, the strategy vector
m, which we knew was a Nash ε

9 -equilibrium for game Γ(N,α), is a Nash
ε
3 -equilibrium in game Γ(N,α).
We note, by (15) and (18) that, for any i ∈ N

α(R(i)),mR(i) = α(i),mR(i) = (α(i), mi) . (22)

It follows from (22) that

gα,m = gα,m
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and that

gα−R(i),m = gα−i,m

for all i ∈ N . Furthermore,
hα(R(i))(t, gα−R(i),m) = hα(i)(t, gα−i,m)

for all i ∈ N and all t ∈ ∆(S). Thus, as a consequence of (21),

hα(i)(mi, gα−i,m) > hα(i)(t, gα−i,m)−
ε

3

for all i ∈ N and for all t ∈ ∆(S). (To see this last equation it may be
helpful to recall that R(i) is just some player i� ∈ N .) This demonstrates
(17).

Lemma 4: Suppose the pregame G satisfies convex separation and the
large game property. Then for any ε > 0, any B ≥ 1, and any partition
of Ω into a finite number of subsets Ω1, ...,ΩA there exists a real number
η4(ε, B,A) such that for any game Γ(N,α) induced from G where |N | >
η4(ε, B,A) and profile(N,α)(ω) ≤ B for all ω ∈ Ω, if there exists a Nash
ε
3 -equilibrium in pure strategies m with the property that,

when α(i),α(j) ∈ Ωa for some a and mik = 1 and mik = 1 (23)

where k < k then αν(i) αν(j), (24)

then there exists a Nash ε-equilibrium in pure strategiesm with the property
that,

when α(i),α(j) ∈ Ωa for some a and mik = 1 and mik = 1 (25)

where k < k then αν(i) < αν(j). (26)

Proof of Lemma 4: Suppose not. Then, there is some ε > 0 and some
B ≥ 1 such that for each integer ν there is a population (Nν,αν), where
|Nν | > ν, and induced game Γ(Nν ,αν), which satisfy the conditions of the
statement of the Theorem but for which there exists no Nash ε-equilibrium
with the required properties. For each ν denote by mν a Nash ε

3-equilibrium
in pure strategies m with the property (23).

Consider, for each ν, changing the strategy vector mν to a degenerate
strategy vector mν which satisfies the following conditions,
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(i) for any i, j ∈ Nν , if αν(i) = αν(j) then mν
i = m

ν
j ,

(ii) for all ω ∈ αν(Nν) there exists some player i ∈ Nν such that αν(i) = ω
and mν

i = m
ν
i .

That is, we consider changing the strategy vectormν to a strategy vector
mν such that any two players with the same attribute play the same pure
strategy. We require also that for any attribute ω ∈ αν(Nν) there is at
least one player who is playing the same pure strategy under mν as they
did under mν. Such a strategy mν satisfies property (25) but it remains to
show it is a Nash ε-equilibrium.

For each ν let Ων∗ be the set of attributes such that ω ∈ Ων∗ if and only
there exists players i, j ∈ Nν such that αν(i) = αν(j) and mν

i 9= mν
j . It

is clear that in changing from mν to mν only those players with attributes
α(i) ∈ Ων∗ could have changed strategy. The ordering, as implied by (23),
implies that there are at most K − 1 attributes ω belonging to Ων∗ ∩Ωa for
each a. We can therefore, for each ν, put an upper bound on the number of
players i ∈ Nν for whom mν

i 9= mν
i of (K − 1)A(B − 1).

Let gναν ,mν and gναν ,mν denote respectively the weight functions relative to
attribute function αν and strategy vectors mν and mν. Since the pregame G
satisfies the large game property, we may choose non-negative real numbers
δg

ε
3 and η ε

3 such that for any n > η( ε3), any game Γ(N,α) ∈ γ(G, n)
satisfies δg(

ε
3 ), (

ε
3)-global interaction. Given (K − 1)A(B − 1) is a finite

number, independent of the size of the player set there must exists some ν1
such that for all ν > ν1,

hαν (i)(t, g
ν
αν−i,m

ν )− hαν (i)(t, gναν−i,mν ) <
ε

3

for all i ∈ Nν and all t ∈ ∆(S). Given that m is a Nash ε
3 -equilibrium,

hαν(i)(m
ν
i , g

ν
αν−i,mν ) > hαν(i)(t, g

ν
αν−i,mν )− ε

3

for all t ∈ ∆(S) and all i ∈ N . Thus, for all ν > ν1 and all those players
i ∈ Nν for whom mν

i = m
ν
i ,

hαν(i)(m
ν
i , g

ν
αν−i,m

ν ) > hαν(i)(t, g
ν
αν−i,m

ν )− ε

3

− hαν(i)(t, g
ν
αν−i,m

ν )− hαν(i)(t, gναν−i,mν )

− hαν(i)(m
ν
i , g

ν
αν−i,m

ν )− hαν(i)(mν
i , g

ν
αν−i,mν )

and therefore,
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hαν(i)(m
ν
i , g

ν
αν−i,m

ν ) > hαν(i)(t, g
ν
αν−i,m

ν )− ε

for all t ∈ ∆(S), for all i ∈ N and for all ν > ν1. Furthermore, condition
(ii) above allows us to extend this to all i ∈ Nν including those for whom
mν
i 9= mν

i . This gives the desired contradiction.

References

[1] Araujo, A., M. Pascoa and J. Orrillo (2000) “Equilibrium with default
and exogenous collateral,” Mathematical Finance.

[2] Asch, S. (1952) Social Psychology, Prentice Hall, New York (Chapter
16).

[3] Aumann R.J. (1964) “Markets with a continuum of traders,” Econo-
metrica 32:39-50.

[4] Aumann, R.J. (1985) “An axiomatization of the non-transferable utility
value, Econometrica 53: 599-612.

[5] Aumann, R.J., Y. Katznelson, R. Radner, R.W. Rosenthal, and B.
Weiss (1983) “Approximate purification of mixed strategies,” Mathe-
matics of Operations Research 8, 327-341.

[6] Binmore, K. and L. Samuelson (2001) “Evolution and Mixed Strate-
gies,” Games and Economic Behavior 34, 200-226.

[7] Blume, L.E. (1993) “The statistical mechanics of strategic interaction,”
Games and Economic Behaviour 5:387-424.

[8] Bjornerstedt, J. and J. Weibull (1995), “Nash equilibrium and evolution
by imitation,” in The Rational Foundations of Economic Behavior, ed
by K.Arrow et al, Macmillan.

[9] Cartwright, E. and M. Wooders (2001) “Social conformity in games
with incomplete information,” Notes.

[10] Deutsch, M. and H.B. Gerard, (1955) “A study of normative and in-
formational social influences upon individual judgement,” Journal of
Abnormal and Social Psychology 51:629-636.

55



[11] Ellison, G. (1993) “Learning, local interaction and coordination,”
Econometrica 61:1047-1071.

[12] Ellison, G. and D. Fudenberg (1993) “Rules of thumb for social learn-
ing,” Journal of Political Economy 101:612-643.

[13] Ellison, G. and D. Fudenberg (1995) “Word-of-mouth communication
and social learning,” Quarterly Journal of Economics 110: 93-125.

[14] Follmer, H. (1974) “Random economies with many interacting agents,”
Journal of Mathematical Economics 1, 51-62.

[15] Fudenberg, D. and D.K. Levine (1998) The Theory of Learning in
Games, Cambridge: MIT press.

[16] Gale, D. and R. Rosenthal, 1999, “Experimentation, Imitation, and
Strategic Stability,” Journal of Economic Theory 84, 1-40.

[17] Green, E.J. (1984) “Continuum and finite-player noncooperative mod-
els of competition,” Econometrica vol.52, no. 4: 975-993.

[18] Green, J. and W.P. Heller (1991) “Mathematical analysis and convex-
ity with applications to economics,” in Handbook of Mathematical Eco-
nomics, Vol.1, K.J. Arrow and W. Intriligator, eds. North Holland:
Amsterdam, New York, Oxford.

[19] Greenberg, J. and S. Weber (1986) “Strong Tiebout equilibrium with
restricted preference domain,” Journal of Economic Theory 38:101-
117.

[20] Gross, R. (1996) Psychology. The science of Mind and Behaviour, Hod-
der and Stoughton.

[21] Hildenbrand, W. (1971) “Random preferences and equilibrium analy-
sis,” Journal of Economic Theory 3, 414-429.

[22] Kandori, M., G.J. Mailath and R. Rob (1993) “Learning, mutation and
long run equilibria in games,” Econometrica 61:29-56.

[23] Kalai, E. (2000) “Private information in large games,” Northwestern
University Discussion Paper 1312.

[24] Khan, A. (1989) “On Cournot-Nash equilibrium distributions for games
with a nonmetrizable action space and upper semi continuous payoffs,”
Transactions of the American Mathematical society 293: 737-749.

56



[25] Khan, A. and Y. Sun (1999) “Non-cooperative games on hyperfinite
Loeb spaces,” Journal of Mathematical Economics 31, 455-492.

[26] Khan, A., K.P. Rath and Y.N. Sun (1997) “On the existence of pure
strategy equilibria with a continuum of players,” Journal of Economic
Theory 76:13-46.

[27] Kirman, A.P. (1981) “Measure Theory,” Handbook of Mathematical
Economics, K. Arrow and M. Intrilligator (eds.), North Holland Ams-
terdam/New York/Oxford.

[28] Kirman, A.P. (1993) “Ants, rationality, and recruitment,” Quarterly
Journal of Economics, 137-156.

[29] Kovalenkov, A. and M. Wooders (1997) “Epsilon cores of games with
limited side payments; Nonemptiness and equal treatment,” Autonoma
University of Barcelona Working Paper 392.97 revised, Games and Eco-
nomic Behavior August 2001, vol. 36, no. 2, pp. 193-218 (26). .

[30] Kovalenkov, A. and M. Wooders (1997) “An exact bound on epsilon
for non-emptiness of the epsilon-core of an arbitrary game with side
payments,” Autonoma University of Barcelona Working Paper 393.97
revised, Mathematics of Operations Research Vol 26, No 4, Nov 2001,
pp 654-678.

[31] Mas-Colell, A. (1984) “On a theorem of Schmeidler,” Journal of Math-
ematical Economics 13: 206-210.

[32] O’Neill, B. (1987) “Nonparametric test of the Minimax Theory of two-
person, zero sum games,” Proceedings of the National Academy of Sci-
ences 84, 2106-2109.

[33] Pascoa, M. (1998) “Nash equilibrium and the law of large numbers,”
International Journal of Game Theory 27: 83-92.

[34] Pascoa, M. (1993a) “Approximate equlibrium in pure strategies for
nonatomic games,” Journal of Mathematical Economics 22: 223-241.

[35] Pascoa, M. (1993b) “Noncooperative equilibrium and Chamberlinian
monopolistic competition,” Journal of Economic Theory, 69: 335-353.

[36] Radner, R and R.W. Rosenthal (1982) “Private information and pure-
strategy equilibria,” Mathematics of Operations Research 7: 401-409

57



[37] Rashid, S. (1983) “Equilibrium points of nonatomic games; Asymptotic
results,” Economics Letters 12: 7-10.

[38] Rath, K.P., Y. Sun, S. Yamashige (1995) “The nonexistence of sym-
metric equilibria in anonymous games with compact action spaces,”
Journal of Mathematical Economics 24: 331-346.

[39] Reny, P.J. (1999) “On the existence of pure and mixed strategy Nash
equilibria in discontinuous games,” Econometrica 67: 1029-1056.

[40] Scharfstein, D.S. and J.C. Stein (1990) “Herd behaviour and invest-
ment,” The American Economic Review, vol 80, no. 3, 465-479.

[41] Selten, R. (1980) “A note on evolutionarily stable strategies in asym-
metric animal contesets,” Journal of Theoretical Biology 84, 93-101.

[42] Schleifer, A., (2000) Inefficient Markets, an introduction to behavioural
finance, Oxford University Press.

[43] Schmeidler, D. (1973) “Equilibrium points of nonatomic games,” Jour-
nal of Statistical Physics 7: 295-300.

[44] Walker, M. and J. Wooders (2001) “Minimax play at Wimbledon,” The
American Economic Review ; Dec 200, Volume: 91, Issue: 5, 1521-1538.

[45] Wooders, M. (1983) “The epsilon core of a large replica game,” Journal
of Mathematical Economics 11, 277-300.

[46] Wooders, M.H. (1993) “On Auman’s markets with a continuum of
traders; The continuum, small group effectiveness, and social homo-
geneity,” University of Toronto Department of Economics Working Pa-
per No. 9401.

[47] Wooders, M. (1994) “Equivalence of games and markets,” Econometrica
62, 1141-1160.

[48] Young, H.P. (2001) Individual Strategy and Social Structure, Princeton
University Press.

58


