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ABSTRACT

In recent years there has been a considerable development in modelling non-
linearities and asymmetries in economic and financial variables. The aim of
the current paper is to compare the forecasting performance of different
models for the returns of three of the most traded exchange rates in terms
of the US dollar, namely the French franc (FF/$), the German mark (DM/$)
and the Japanese yen (Y/$). The relative performance of non-linear models
of the SETAR, STAR and GARCH types is contrasted with their linear
counterparts. The results show that if attention is restricted to mean square
forecast errors, the performance of the models, when distinguishable, tends
to favour the linear models. The forecast performance of the models is
evaluated also conditional on the regime at the forecast origin and on density
forecasts. This analysis produces more evidence of forecasting gains from
non-linear models. Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS non-linearity; forecasting accuracy; point forecasts; density
forecasts; exchange rates

INTRODUCTION

The problem of exchange rate determination and its predictability is a very controversial issue
in the international economics literature. In particular, the empirical specification of non-linear
models for exchange rates has been largely motivated by non-linear solutions presented for such
variables in a number of theoretical models. We refer, for example, to the literature on target
zone models (Krugman, 1991) and to the rational expectations model with central bank stochastic
intervention rules (Hsieh, unpublished manuscript, 1989). The development of alternative models
and the evaluation of their forecasting abilities have been motivated by the evidence provided in
Meese and Rogoff (1983) that the simple random walk model outperformed the complex structural
models in forecasting exchange rate variables. Since then, a large number of studies have been
carried out, some corroborating the importance of Meese and Rogoff’s results, others stressing the
relevance of the economic fundamentals in determining exchange rate behaviour and reaffirming the
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forecasting superiority of the structural models over the random walk, at least for medium-long-term
horizons. An exhaustive empirical assessment of non-linearities in the context of structural models
can be found in Meese and Rose (1991), while an up-to-date review of the debate on the exchange
rate determination can be found in the recent contributions by Dixon (1999), Rogoff (1999), Flood
and Rose (1999) and MacDonald (1999).

Several other studies have been conducted in the context of univariate models, exploiting recent
developments in non-linear time series econometrics. These studies focus mainly on the dynamic
representation of exchange rates and on their short-run predictability, and are theoretically based
on the efficient market hypothesis. The main rationale for these models is that if the exchange rate
market is characterized by some degree of efficiency, it is plausible to assume that all the relevant
information is embodied in the most recent exchange rate returns, so that it becomes unnecessary to
include the economic fundamentals in the set of explanatory variables. Among the most commonly
applied non-linear models, the GARCH (generalized autoregressive conditional heteroscedastic) and
the SETAR (self-exciting threshold autoregressive) models have proved successful in describing the
dynamic behaviour of many economic and financial variables; moreover, they offer the advantage
of being readily interpretable in economic terms (see, among others, Kriager and Kugler, 1993, Peel
and Speight, 1994; Chappell et al., 1996). The GARCH models allow one to specify the process
governing both the mean and the variance of the series, while the SETAR models represent a
stochastic process generated by the alternation of different regimes.

In general, although there have been extensive applications of new techniques to describe the non-
linearities and asymmetries which characterize exchange rate dynamics, there are still few studies
on the forecasting performance of the different models for historical time series data. Typically,
comparisons have been carried out with respect to the random walk model or, more recently, by
means of simulated data based on Monte Carlo experiments (see, for example, Clements and Smith,
1997, 1999).

The aim of this paper is to compare the forecasting performance of alternative univariate models
for the returns of three of the most traded currencies: the French franc (FF/$), the German mark
(DM/$) and the Japanese yen (Y/$). Initially we conduct the analysis using data at different fre-
quencies: monthly and weekly. As has been shown in a number of studies, non-linearities are more
evident if a series is observed at high frequencies (daily and weekly), while they tend to disappear
for series observed at lower frequencies (monthly and quarterly); this result reflects the effects of
temporal aggregation or systematic sampling as documented in Weiss (1984) and Granger and Lee
(1999). The use of data at different frequencies also allows us to evaluate such effects from a
forecasting perspective.!

The evaluation of the forecast performance of the models is conducted according to different
criteria. We first evaluate the average performance of the monthly and weekly models on mean
square forecast errors (MSFEs), unconditionally, over the whole forecast period. Then, we evaluate
the weekly models conditioning the forecast observations on being in each of the regimes of the
SETAR models; this analysis should better exploit potential gains of the SETAR models in specific
regimes. Finally, in order to take into account the varying degrees of uncertainty associated with
the point forecasts, we compare the models on their ability to produce correct density forecasts. We
do this by implementing the methodology recently proposed by Diebold et al. (1998) and surveyed
by Tay and Wallis (2000). Applications of the methodology can be found in Diebold et al. (1999)
and Clements and Smith (2000, 2001).

1 An analysis of these series at a daily frequency was conducted in Boero and Marrocu (2000).

Copyright © 2002 John Wiley & Sons, Ltd. J. Forecast. 21, 513-542 (2002)



Forecasting Performance of Non-linear Exchange Rate Models 515

The rest of the paper is organised as follows. In the next section we present a review of
recent work on exchange rate determination and forecasting. The methodological issues, the models
adopted and the tests performed to detect the presence of non-linearities are described in the third
section. The statistical properties of the data are discussed in the fourth section, while the findings
from the modelling and forecasting exercises are reported in the fifth section. Finally, we summarize
the main results and make concluding remarks.

LITERATURE REVIEW

An extensive empirical literature documents the finding that although exchange rate changes are
weakly autocorrelated, there are strong dependencies in the data. In most empirical studies, which
refer to the post-Bretton Woods floating exchange-rate regime, it is shown that the nature of
the dependency can be adequately represented by the autoregressive conditional heteroskedastic
(ARCH) model proposed by Engle (1982), or by its generalization represented by the GARCH
model, suggested by Bollerslev (1986). This class of models is particularly suitable to describe the
typical behaviour of financial time series, namely the fact that large (small) price changes tend to
be followed by large (small) price changes of either sign; however, this kind of dependency can be
exploited only to improve interval or density forecasts, but not point forecasts. An improvement
in point forecasts can be achieved by the GARCH in Mean (GARCH-M) model, where the con-
ditional variance estimate enters as a regressor in the mean equation of the series. Recently, many
authors have also stressed the empirical relevance of non-linearity in mean for the exchange rate
returns; we refer, among others, to Meese and Rose (1991), Kriger and Kugler (1993), Peel and
Speight (1994), Chappell et al. (1996) and Brooks (1997). However, the significant presence of
mean non-linearities for the in-sample period only rarely has provided better out-of-sample fore-
casts compared with those obtained from a simple linear or a random walk model. Furthermore,
the results are often sensitive to the length of the forecast horizon and to the metric adopted to
measure the forecasting accuracy.

Kriger and Kugler (1993) estimate threshold autoregressive models for the returns of the French
franc, Italian lire, Japanese yen, German mark and Swiss franc, all quoted against the US dollar
(weekly observations for the period 1980.6—1990.1). Krédger and Kugler find evidence of three
different regimes, with the outer regimes exhibiting much higher estimated standard deviations
than the inner regime, and argue that this finding is probably due to the central bank interven-
tions aimed at avoiding excessive appreciation (first regime) or depreciation (third regime). The
theoretical background of the empirical analysis presented in Kriger and Kugler is the rational
expectations monetary model with stochastic intervention rules proposed by Hsieh (1989). Thus, a
three-regime autoregressive model is considered a good candidate to approximate Hsieh’s model,
which, according to Kriger and Kugler, provides a better understanding of the managed floating
exchange-rate regime than the target zone model (Krugman, 1991). In Hsieh’s model central bank
intervention is triggered by large exchange-rate changes, while in Krugman’s model the intervention
takes place when the level of the variable is in the vicinity of the bounds. In order to evaluate the
relative importance of mean and variance non-linearities, GARCH models are also estimated for
the variables listed above. Kriger and Kugler conclude that neither the threshold models nor the
GARCH models prove successful in describing adequately the non-linearity present in the series.

Peel and Speight (1994) analyse the changes of the British pound exchange rate against the
US dollar, the French franc and the Reichsmark for the interwar period (weekly data). Having
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found strong evidence of a generic form of non-linearity in all the series, the authors proceed by
estimating alternative non-linear models: GARCH, bilinear and threshold autoregressive models.’
The forecasting performance of the models is evaluated only for a one-step-ahead horizon: the
linear-ARCH models exhibit a lower MSFE compared to the bilinear models for all the series, but
in the case of the pound/US dollar exchange rate the most accurate forecasts are provided by the
threshold models.

The study in Chappell et al. (1996) differs from those presented in Kriger and Kugler (1993) and
in Peel and Speight (1994) since it is focused on the forecasting performance of non-linear models
fitted to the levels, rather than the changes, of some bilateral ERM exchange rates considered at
daily frequency. It is important to stress that if the forecast assessment (for more than one step
ahead) is carried out on the basis of criteria such as the MSFE, the choice of data transformations is
not neutral as shown by Clements and Hendry (1993, 1995): evaluation in differences is penalising
relative to evaluation in levels. The issue of whether to evaluate the forecasting performance for
the differences or the levels of the series is distinct from the issue of whether to estimate a model
in the differences rather than the levels. According to Chappell et al. (1996), the inherent design
of the ERM, based on the existence of a band in which the exchange rate is allowed to fluctuate
without intervention by the central banks, could be the rationale for the presence of at least one
threshold. Thus, the exchange rate follows a random walk process within the band but stationary
autoregressive processes in the proximity of the ceiling or the floor such that the whole process
exhibits mean-reverting features. In this case the process is globally, but not locally, stationary.® In
contrast with most of the studies in which it is documented that the forecasting superiority of the
non-linear models is often confined to the one-step-ahead horizon, the SETAR models estimated by
Chappell et al. (1996) yield noticeable gains outperforming the random walk and the linear model
at horizons as long as five and ten steps ahead.

Brooks (1996, 1997) analyses the daily British pound/US dollar exchange rate returns for the
period 1974.1-1994.7. The main findings are that the non-linear models adopted, namely GARCH,
SETAR and bilinear, produce forecasts only marginally more accurate than the ones obtained from
a random walk model for all the horizons considered (up to 20 steps ahead). Moreover, on the basis
of the Pesaran—Timmermann (1992) test, Brooks shows that the estimated models do not feature
any market timing ability.

Diebold and Nason (1990) suggest four different reasons why non-linear models cannot provide
better out-of-sample forecasts than the simpler linear model even when linearity is significantly
rejected. These are (1) non-linearities concern the even-ordered conditional moments and there-
fore are not useful for improving forecasts, (2) in-sample non-linearities are due to structural
breaks or outliers which cannot be exploited to improve out-of-sample forecasts, (3) conditional
means non-linearities are a feature of the DGP but are not large enough to offer better fore-
casts, and (4) non-linearities are present but they are captured by the wrong type of non-linear
model.

Dacco and Satchell (1999) and Clements and Smith (2001) argue that the alleged poor forecast-
ing performance of non-linear models can also be due to the evaluation and measurement method
adopted. On the basis of an extensive Monte Carlo study, Clements and Smith (2001), using the

2 The threshold autoregressive models estimated by Peel and Speight (1994) exhibit three regimes with symmetric thresholds
for the exchange rate against the dollar and two regimes for those against the French franc and the Reichsmark.

3 Pippinger and Goering (1993) show that the Dickey—Fuller test for time series which exhibit the same behaviour described
above has a very low power leading to a more frequent acceptance of the null of non-stationarity.
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SETAR specifications of Kriger and Kugler (1993) discussed above, show that whether the non-
linearities present in the data can be exploited to forecast better than a random walk depends both
on how forecast accuracy is measured and on the state of nature. As suggested in their study,
the evaluation of the whole forecast density may reveal gains to the non-linear models that are
systematically masked if the comparison is carried out only in terms of MSFE.

Dacco and Satchell (1999) point out the predominance of the random walk model in forecasting
exchange rates is mostly based on MSFE measures. Therefore, they suggest that the method of
evaluation has to be chosen according to the nature of the problem examined. Methods based on
the profitability criterion should turn out to be more adequate in the case of financial variables.
Tests for the percentage of correct sign predictions, such as that proposed by Pesaran and Tim-
mermann (1992), are expected to be more informative in deciding whether to buy or sell foreign
currencies.

METHODOLOGY

In this section we present the models adopted to describe and forecast the exchange rate returns
and the tests applied to detect the presence of non-linear features in the analysed series.

The models
The threshold autoregressive models
Threshold autoregressive models were first proposed by Tong (1978, 1983, 1990) and Tong and
Lim (1980). The essential idea of this class of non-linear model is that the behaviour of a
process can be described by a finite set of linear autoregressions. The appropriate AR model
that generates the value of the time series at each point in time is determined by the relation
of a conditioning variable to the threshold values; if the conditioning variable is the depen-
dent variable itself after some delay, d, the model is known as self-exciting, hence the acronym
SETAR.

Note that the threshold variable y;_, is continuous on i, so that partitioning the real line defines
the number of regimes that the process may follow:

—00 << <o < Ty < Fpyp <00

where the r; are referred to as thresholds. Thus, a SETAR model is piecewise-linear in the space of
the threshold variable, rather than in time. If the process is in the jth regime, the pth order linear
autoregression is formally defined as:

=0 + ¢ v+ Vv, +e forriy <y <7y (la)

et/ ~ 1ID(0, 6*)

Note that, in order to allow for different autoregressive structures across regimes, p can be seen as
the maximum lag order.

An interesting feature of SETAR models is that the stationarity of y, does not require the model
to be stationary in each regime. On the contrary, the limit cycle behaviour that this class of models
is able to describe arises from the alternation of explosive and contractionary regimes.
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A variant of the SETAR model, extensively explored by Terédsvirta and Anderson (1992) and
Granger and Terdsvirta (1993), can be obtained if the parameters are allowed to change smoothly
over time. The resulting model is called a smooth threshold autoregressive model (STAR) and has
the following general expression:

Vi =mo+ ﬂ;xt + (6o + 9§x,)F(y,_d) + u;

where the error is assumed to be n.i.d (0, 6?), x, = (y_1, ..., Yi—p), m = (w1, ..., mp) and
61 = (611, ...,061,), and F(.) is the transition function.
The most common specifications for the transition function are the logistic and the exponential:

F(yi—q) = {1 + exp[—y(Y—a — DI}
F(yi—a) = 1 — exp[—y(y1—q — 1)*]

In the logistic STAR (LSTAR) model the parameters change monotonically with y,_;. When y
tends to infinity, F(y,_;) becomes a Heaviside function which assumes value O if the threshold
variable is equal or smaller than r and value 1 if it is greater than r; in this case the model becomes
a SETAR model. On the other hand, if y tends to zero, the STAR reduces to a linear AR(p) model.
In the exponential STAR (ESTAR) case, the parameters change symmetrically about r with y,_;.
When y tends to either infinity or zero the model becomes linear because, on the boundary, one
regime has probability 1 and the other zero.

SETAR model estimation When the structural parameters, r and d, are known, a SETAR model
can be estimated by fitting an AR model to the appropriate subset of observations determined
by the relationship of the threshold variable to the value of the threshold (arranged autoregres-
sion). Alternatively, indicator functions, which implicitly constrain the residual error variance
to be constant across regimes, can be employed and the model can be reformulated as fol-
lows:

o=@+ o+ Dy A~ Iyg > 1])

(1b)
+ @+ Pyt 6Py ) yma > 1) +

where I[A] is an indicator function with I[A] = 1 if the event A occurs and /[A] = O otherwise.

In the more common case, in which the threshold parameter (r) and the delay parameter (d) are
unknown, Tong (1983) suggests an empirical procedure that allows selecting as the ‘best’ model the
one which yields the minimum Akaike Information Criteria (AIC). However, as stressed by Priest-
ley (1988), such a procedure has to be seen as a guide in choosing a small subclass of non-linear
models featuring desirable economic and statistical properties.

For the case of a SETAR (p;, p2;d) model Tong (1983) proposes a three-stage procedure: for
given values of d and r, separate AR models are fitted to the appropriate subsets of data, the
order of each model is chosen according to the usual AIC criteria. In the second stage r can
vary over a set of possible values while d has to remain fixed, the re-estimation of the separate
AR models allows the determination of the r parameter, as the one for which AIC(d) attains
its minimum value. In stage three the search over d is carried out by repeating both stage 1
and stage 2 for d =di,d»,...,d,. The selected value of d is, again, the value that minimizes
AIC(d).
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GARCH models
An ARCH process can be defined in terms of the error distribution of a model in which the variable
vy is generated by:

y,=xt,3+8t t=1,...,T (2)

where x; is a vector of k x 1 explanatory variables, which in our study includes only lagged values
of y;, and B is a k x 1 vector of autoregressive coefficients. The ARCH model proposed by Engle
(1982) specifies the distribution of &, conditioned on the information set W,_;, which includes
the actual values for the variables y,_i, y;_s,....y;—x. In particular, the model is based on the
assumption that:

&|Wi—1 ~ N(O, i) (3)

where b, = o + o8> + -+ - —I—aqgtz_q withg > 0anda; > 0,i = 1,..., g, in order to constrain
the conditional variance to be positive. Thus, the error variance is time-varying and depends on the
magnitude of past errors.

Bollerslev (1986) proposes a generalization of the ARCH model, which leads to the following
specification of the conditional variance:

he=ag+a1&] |+ ....+age , +Bihi+ ...+ Byl 4)

This process is known as GARCH(p,q). To guarantee that the conditional variance assumes only
positive values the following restrictions have to be imposed: o9 > 0, ; > 0 fori =1, ..., g, and
Bi >0 fori=1,..., p.* In practice, the value of ¢ in the GARCH model is much smaller than
the corresponding value of ¢ in the ARCH representation. Usually, a simple GARCH(1,1) model
offers an adequate description of most economic and financial time series.

GARCH in mean
Engle et al. (1987) extend the ARCH model by introducing the conditional variance as a regressor
in the mean equation of the variable:

y[:x;ﬂ+8h[+8t t=1,...,T (5)

where &;|W;_; ~ N(0, k) and &, is a (G)ARCH process.
In the (G)ARCH-M model the conditional variance is included in the mean equation according
to different functional forms: log(h,), «/h, and h,.

Asymmetric GARCH A relevant extension of the GARCH models is represented by the class of
asymmetric models. These allow one to capture possible asymmetries in the conditional variance
induced by the sign and the magnitude of past shocks. Most applied specifications are the threshold
heteroscedastic model (TARCH) (Glosten et al., 1993; Zakoian, 1994) and the Exponential GARCH
model (EGARCH; Nelson, 1991).

4 These are sufficient restrictions for the conditional variance to be positive, but they are not necessary (see Nelson and
Cao, 1992).
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Linearity tests

Testing for linearity is not a “standard testing situation” (Granger, 1993, p. 237) due to the char-
acteristics of the null and alternative hypotheses. In fact, the specification of the null of linearity
involves a very large number of parameters, while the alternative implies a ‘huge’ number of mod-
els, each one with many parameters (Granger, pp. 236—237). Therefore, Granger suggests a testing
strategy based on the application of a battery of tests. Each test needs not to be interpreted formally,
but rather as an indication of the presence of non-linear features in the data. In order to detect the
presence of non-linear components in the returns series of the French franc, the German mark and
the Japanese yen, we apply four different linearity tests: the RESET test, the Tsay (1986) test, the
S, test proposed by Luukkonen et al. (1988), and the McLeod and Li (1983) test. All the tests are
devised for the null hypothesis of linearity.

The RESET test is applied in its traditional form (Ramsey, 1969) and in the modified version
found to be superior by Thursby and Schmidt (1977). In its original form, a linear autoregression
of order p is run, followed by an auxiliary regression in which powers of the fitted values obtained
in the first stage are included along with the initial regressors. The modified RESET test requires
that all the initial regressors enter linearly and up to a certain power 4 in the auxiliary regression;
Thursby and Schimdt suggest using # = 4. The Lagrange multiplier form (Granger and Terisvirta,
1993) of the test is adopted in this study, thus the test is distributed as a x> with up to 3p degrees
of freedom for the modified version.

The Tsay (1986) test belongs to the class of tests based on Volterra expansions (Priestley, 1980)
and represents a generalization of the Keenan (1985) test. Under the null hypothesis the series
is described by a linear AR(p) model, while the auxiliary regression includes squares and cross-
products terms at different lag lengths, such as y,_;y,—;. Tsay shows that the test is more powerful
than Keenan’s test. Under the null hypothesis, which imposes the condition that all the coefficients
of the non-linear terms are jointly equal to zero, the test is distributed as an F with p(p + 1)/2 and
(T-p-p(p + 1)/2-1) degrees of freedom.

While the RESET and the Tsay tests are devised for a generic form of misspecification, the S,
test, suggested by Luukkonen et al. (1988), is formulated for a specific alternative hypothesis, i.e.
STAR-type non-linearity. However, the authors show that the S, test has reasonable power even
when the true model is a SETAR one. The S, test follows a x> with p(p + 1)/2 + 2p? degrees
of freedom and is calculated as S, = T(SSEy, — SSE;)/SSE,, where SSE, is the residual sum of
squares from a linear autoregression of order p for y;, and SSE; is the residual sum of squares
from the following model:

p p 14

PP P
Vet Bot Bwi Y Y Evimiviej+ Y Viv-ivi Y Y kijyeivi =&  (6)

i=1 j=1 i=1 j=I i=1 j=1

where the vector w, includes the lags of y;.

The maximum lag p is usually unknown and is determined from the data according to some
model selection criterion (AIC). If the true model is non-linear, it is possible that the maximum lag
in the AR(p) model is greater than the one in the non-linear model and this can lower the power
of the test compared with the case in which p is known. On the other hand, if p is so low that the
linear model has autocorrelated residuals, the test is then biased towards rejection if the true model
is linear, because the test also has power against serially correlated errors (Terdsvirta, 1994). If d
is assumed to be known, y,_4 can be substituted in the above auxiliary regression for y,_;, and
the resulting test has a x? distribution with 3p degrees of freedom under the null. Note that even
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when d is fixed the test statistic requires a large number of degrees of freedom if the lag p in the
linear model is high. For this reason, the S, test is applied assuming that the delay parameter d is
known and takes values in the range [1,6]. If the null is rejected for different values of d, the delay
parameter is selected as the one that yields the lowest probability value.

To check for the presence of non-linearity in variance we perform the McLeod and Li (1983)
test. The test is similar to the test proposed by Ljung and Box (1978); both tests are based on
the estimation of the correlation function of the squared residuals obtained from a linear model.
Granger and Anderson (1978) point out that even if the residuals from Box—Jenkins (1976) linear
models can appear to be non-correlated, the squared residuals are often correlated if the series is
non-linear. Therefore, according to Granger and Anderson (1978) the autocorrelation function is a
useful tool for identifying and selecting non-linear models. The McLeod and Li test is calculated
as follows. The estimated residual series i, is obtained from the best AR(p) or ARMA(p,g) model
and the autocorrelation function is computed according to the following expression:

T
> @ — %), —6%) 1
(k) = = where 6% = - S

T

E ~2 A2\2
(u[ — 0 )

=1

The test is computed as the portmanteau Q*(m) statistics,

mo A2,
0" =TT +2Y

i=1

which is distributed asymptotically as a x*> with m degrees of freedom, if the estimated residuals
ii; are independent.’

PRELIMINARY DATA ANALYSIS

The empirical analysis has been carried out on the exchange rate returns measured in log-differences.
The monthly series for the log-levels and the returns for the period 1973.1-1997.7 (294 observa-
tions) are depicted in Figure 1. Figure 1 also shows the behaviour of the weekly series over the
same period (1281 observations). All the returns series are mean-stationary, while the variance
features the typical volatility clustering phenomenon with periods of high volatility followed by
periods of low volatility, and this is particularly evident for weekly series. If such a feature turns
out to be relevant we expect the GARCH models to capture it adequately.

Table I reports the summary of the descriptive statistics for the exchange rate returns. All the
series, especially those at weekly frequencies, are characterized by excessive kurtosis and asym-
metry. The Jarque—Bera test strongly rejects the normality hypothesis for all the series.

Tables II(a) and II(b) report the probability values for the linearity test performed on the log-
differences of the series. For each test the linear model under the null hypothesis has been estimated

3 Note, however, that there are suggestions that the asymptotic distribution of this test may not be invariant to heteroscedas-
ticity (see Li and Mak, 1994).
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Monthly data 1973.1-1997.7 o Weekly data 1973.1-1997.7 L
A L 12 F 12

e s F 1.0 . 4 - 1.0

o \“\\ﬁ A - 0.8 W\*’W\V\m M ! -0.8

WA M A 0.6 v " 0.6

0.15 VISt 04 0.10 W P 08

0.10

r 0.2 0.05

0.05
0.00 0.00
-0.05
0.10 -0.05
-0.15 -0.10
50 100 150 200 250 200 400 600 800 1000 1200
[—DLOG(DM/$) - LOG(DM/$) ] [—DLOG(DM/$) - LOG(DM/$)]
24
L2.2
X 2.0
M \'\AW \ F1.8
AV ”‘W\/I Il
0.15 0.10 fy¢ P
0.10 0.05
0.05
0.00 0.00
-0.05 005
-0.10
-0.15 -0.10
50 100 150 200 250 200 400 600 800 1000 1200
[—DLOGF/$) - LOG(F/$) | [—DLOG(F/$) - LOG(F/$) |
6.0 R 6.0
55 "~ W\d\/\\/\, F5.5
5.0 i L5.0
0.10 .«“/\m\,\ y
4.5 0.05 " Las
4.0 0.00 1 40
-0.05
-0.10
'015 AR RAARE AR RRRRE AR RARRE RARRE AR RARAERARAE RARES RARES LRSS
50 100 150 200 250 200 400 600 800 1000 1200
[—DLOG(Y/$) - LOG(Y/$)] [—DLOG(Y/$) - LOG(Y/$)]

Figure 1. Exchange rate log-levels (dotted lines) and returns (solid lines)

assuming different lag structures (p = 2, ..., 6). As pointed out by Terdsvirta (1994), if the ‘true’
model is non-linear it is possible that the maximum lag in the AR(p) model is greater than the lag
order in the non-linear model and this can lower the power of the test compared with the case in
which p is known. In Tables II(a) and II(b) we report the results only for p =4, 5, 6.

The RESET test, in both its traditional and modified version, has been carried out according
to three different specifications. The first includes only the squared terms (fitted values or initial
regressors), the second adds the cubic terms, and the third includes terms up to the fourth power.
Focusing first on monthly series (Table 1I(a)), the S, test, performed under the specific alternative
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Table I(a). Descriptive statistics for the exchange rate returns (monthly data)
F/$ DM/$ Y/$
Mean 0.000700 —0.001851 —0.003179
Median —0.001087 —0.002323 0.000851
Maximum 0.116373 0.121743 0.115344
Minimum —0.104154 —0.118541 —0.109147
Std dev. 0.033329 0.034553 0.033336
Skewness 0.210835 0.008767 —0.241786
Kurtosis 3.968137 4.075787 3.954479
Jarque—Bera 13.65990 14.18089 14.02467
Probability 0.001081 0.000833 0.000901
Observations 294 294 294
Table I(b). Descriptive statistics for the exchange rate returns (weekly data)
F/$ DM/$ Y/$
Mean —0.000435 0.000147 —0.000740
Median —0.000118 0.000000 0.000000
Maximum 0.072321 0.075292 0.063120
Minimum —0.071506 —0.075878 —0.105679
Std dev. 0.015196 0.014831 0.014186
Skewness —0.166860 —0.069270 —0.702024
Kurtosis 4.932147 5.754028 7.815579
Jarque—Bera 205.2034 405.8562 1342.976
Probability 0.000000 0.000000 0.000000
Observations 1281 1281 1281
Table II(a). Linearity tests— P-values (monthly data)
French franc German mark Japanese yen
p 4 5 6 4 5 6 4 5 6
RESET-2 0.404 0.899 0.271 0.236 0.267 0.660 0.383 0.429 0.217
RESET-3 0.673 0.570 0.095 0.032 0.228 0.895 0.311 0.395 0.374
RESET-4 0.687 0.685 0.182 0.075 0.372 0.962 0.420 0.520 0.448
Mod.RESET-2 0.764 0.982 0.930 0.718 0.894 0.893 0.645 0.120 0.132
Mod.RESET-3 0.336 0.563 0.465 0.156 0.492 0.152 0.852 0.432 0.485
Mod.RESET-4 0.085 0.208 0.228 0.194 0.574 0.060 0.796 0.460 0.602
Tsay?® 0.315 0.428 0.472 0.749 0.819 0.739 0.554 0.334 0.097
Sy, d=1 0.004 0.01 0.026 0.000 0.000 0.001 0.046 0.054 0.121
Sy, d=2 0.508 0.505 0.516 0.517 0.311 0.059 0.243 0.299 0.257
Sy, d=3 0.877 0.921 0.837 0.980 0.970 0.990 0.970 0.453 0.557
Sy, d =4 0.312 0.441 0.667 0.190 0.536 0.642 0.645 0.046 0.069
Sy, d=5 0.144 0.194 0.144 0.005 0.216 0.115 0.245 0.154 0.076
Sy, d=06 0.192 0.576 0.866 0.069 0.781 0.970 0.587 0.713 0.442
0*(12) 0.883 0.991 0.998 0.007 0.186 0.045 0.000 0.000 0.000

Copyright © 2002 John Wiley & Sons, Ltd.
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Table II(b). Linearity tests— P-values (weekly data)

French franc German mark Japanese yen
p 4 5 6 4 5 6 4 5 6
RESET-2 0.906 0.983 0.677 0.113 0.116 0.524 0.036 0.028 0.061
RESET-3 0.060 0.344 0.475 0.000 0.000 0.023 0.025 0.013 0.006
RESET-4 0.131 0.520 0.518 0.000 0.000 0.058 0.055 0.011 0.003

Mod.RESET-2 0.042 0.047 0.075 0.057 0.034 0.058 0.166 0.193 0.160
Mod.RESET-3 0.004 0.001 0.001 0.015 0.003 0.005 0.323 0.099 0.070
Mod.RESET-4 0.014 0.002 0.002 0.047 0.015 0.027 0.099 0.011 0.005

Tsay* 0.025 0.035 0.092 0.022 0.024 0.024 0.099 0.024 0.000
Sy, d =1 0.001 0.000 0.000 0.007 0.002 0.003 0.032 0.000 0.000
Sy, d =2 0.001 0.001 0.002 0.018 0.026 0.022 0.001 0.002 0.002
Sy,d=3 0.548 0.764 0.577 0.000 0.001 0.002 0.093 0.169 0.084
S,,d =4 0.342 0.038 0.064 0.308 0.015 0.023 0.637 0.388 0.231
Sy,d=5 0.146 0.082 0.052 0.103 0.110 0.194 0.000 0.000 0.000
Sy, d=06 0.000 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.001
0*(12) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p is the autoregressive lag order under the null hypothesis of linearity.
4The Tsay test follows an F-distribution, while all the other tests are distributed as XZ,

hypothesis of STAR-type non-linearity, indicates the presence of non-linearities in a number of
cases. The test is robust with respect to the autoregressive structure and the lowest P-values are
found for d = 1. The results of the RESET and Tsay tests, devised for a generic alternative hypoth-
esis of non-linearity, lead to a rejection of the null only in a small number of cases. Finally, the
McLeod-Li test shows the presence of non-linearity in variance for the Japanese yen and for the
German mark. Although the test was carried out for m = 1,2, ..., 12, we report results only for
m = 12, since the statistic did not change appreciably for different values of m.

Turning to weekly series, the linearity tests (Table II(b)) lead to the rejection of the null in
a higher number of cases compared with the monthly series. There is, therefore, stronger evi-
dence of non-linear components for the high-frequency data. In particular, the RESET test in the
Thursby—Schmidt version turns out to be more powerful than the traditional formulation, allowing
rejection of the null hypothesis in a larger number of cases with respect to the French franc and the
German mark. The Japanese yen series, on the other hand, appears more non-linear if the evidence
is based on the classic RESET test.

The results of the S, test show rejections in most cases, with only few exceptions depending
on the selected delay parameter d. The Tsay test and the McLeod-Li test, for which the results
are reported for m = 12, leads to rejection of linearity for all the series, regardless of the dynamic
structure adopted.

EMPIRICAL RESULTS

Model estimation results

Linear models

The models were estimated over the period 1973.2—1991.6. Examination of the in-sample returns
data revealed more significant serial correlation in the weekly than in the monthly series. The
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monthly returns of the German mark and Japanese yen showed marginal evidence of serial corre-
lation at lags 2 and 3, respectively. Thus, on the basis of the AIC and SC criteria an AR(2) model
was selected for the German mark and an AR(3) for the yen. Both specifications were restricted
with intermediate autoregressive coefficients equal to zero and marginally preferred to a random
walk with drift specification (lag order equal zero). More distinct evidence of serial correlation
emerged in the monthly returns of the French franc, for which a restricted AR(4) specification was
clearly selected against the random walk with drift.

For weekly returns, we selected a restricted AR(2) model for the French franc and the Japanese
yen, and an unrestricted AR(2) for the German mark.

SETAR and STAR models

With regard to the SETAR models, we estimated specifications with one threshold (two regimes) and
two thresholds (three regimes), following the estimation procedure suggested by Tong (1983).% The
model selection has been conducted on the basis of the AIC criterion. However, when it appeared
that the AIC overestimated the autoregressive order of the model, we selected the model with the
most parsimonious dynamic structure. Moreover, we considered only models with a maximum lag
order p = 6. The models selected are reported in Table II1.7 In general, the dynamic structure and
the estimated error variance differ across regimes, indicating that both monthly (Table III(a)) and
weekly (Table III(b)) series are strongly characterized by non-linearities.

Looking in more detail at the results for monthly data, according to the two-regime specifica-
tion, the French franc returns are described by an AR(2) process in the first regime and simply
by a constant term in the second regime. For the three-regime model, the French series fol-
lows an AR(2) process in the middle regime, while it is represented by a constant in the outer
regimes of strong appreciation and depreciation, respectively. We also note that for this speci-
fication the estimated standard deviation is considerably lower in the inner regime. Noticeable
differences across regimes were also found in the case of the German mark and the Japanese yen.
Moreover, the dynamics of the three-regime SETAR model for the latter currencies are very sim-
ilar to those discussed above for the French franc. These results are in line with the theoretical
model described in Hsieh (1989) and with the empirical evidence reported by Kriger and Kugler
(1993).

Further evidence of this kind of non-linearity is provided by the SETAR specifications selected
for the weekly data, and shown in Table III(b). It is also interesting to note that for all SETAR
specifications the estimated total standard deviation is always smaller than the one obtained from
linear models, which to facilitate the comparison has also been reported in the last columns of
Tables III(a) and III(b). The improved goodness-of-fit of the non-linear models with respect to the
AR models is driven by the lower residual standard deviation for the upper regime in the SETAR-2
models, and for the middle regime in the SETAR-3 specification.

For weekly frequencies data we have also estimated STAR models, specifically a logistic STAR
for the French franc and the German mark, and an exponential STAR for the Japanese yen. The
results of this estimation are reported in Table III(c).

6 All the models have been selected and estimated with Eviews codes; the codes are available from the authors upon
request. Note that in carrying out the selection procedure we allow each regime to include at least 10% of the total number
of observations included in the estimation sample.

7 Note that even the simplest SETAR models with an AR(1) process in each regime can generate complex dynamic
behaviour. Moreover, it is worth stressing that the constant term plays a relevant role in non-linear models.
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Table III(c). STAR model specifications for the exchange rate returns (weekly data)

STAR Threshold d Total st. dev. y AR AR terms
linear multiplying
terms? F(y—a)?
French franc —0.0058 1 0.0144 2.82 2 5
German mark —0.0027 1 0.0149 6.96 2 3
Japanese yen —0.0025 1 0.0136 2.40 5 3

4 Number of estimated coefficients including the constant.

GARCH models

While GARCH components turned out to be significant only for the yen returns when considering
the data at monthly frequencies, they were strongly present in all the weekly series, thus capturing
the evident volatility clustering illustrated in Figure 1. In order to describe appropriately such com-
ponents, we identified some alternative models—namely, a simple GARCH(1,1), an EGARCH(1,1)
and a TARCH(1,1)—to take into account possible asymmetries in the conditional variance, and a
GARCH in mean (GARCH-M(1,1)). The best model was selected according to the Akaike (AIC)
and Schwarz (SIC) information criteria. A significant variance component was found in the mean
equation for the monthly and weekly returns of the Japanese yen and for the weekly returns of
the German mark. In these cases, the resulting joint estimated AR models for the mean of the
returns were of a lower order (AR(1) processes) than that reported under AR estimation alone. In
the case of the weekly returns of the French franc, the model order (AR(2)) continued to hold for
jointly estimated GARCH, and a variance component was found only marginally significant in the
mean equation. Therefore, as shown in the next section, the mean forecasts for this model, when
computed over the whole forecast period, are virtually the same as those obtained from the AR
linear model.

The forecasting exercise

The forecasting performance of the models is evaluated in different ways. First, we compute MSFEs
for the various models for different steps ahead and compare the relative performance of the
models by means of the Diebold and Mariano (1995) test. This exercise is conducted over the
forecast period as a whole, and we refer to it as unconditional (without conditioning on being in
a particular regime). Second, following other authors (Tiao and Tsay, 1994; Clements and Smith,
1999, 2001), we analyse the forecasting performance of the models conditional on the regimes of
the SETAR models. This evaluation, also conducted on MSFEs, will explore whether the SETAR
and STAR models show a better performance for observations falling in specific regimes. Third,
we supplement the evaluation on MSFEs by assessing the ability of the models to produce ‘correct’
density forecasts. For this analysis we employ recently developed techniques discussed in Diebold
et al. (1998) and surveyed by Tay and Wallis (2000). Previous applications of these techniques have
shown some gains of SETAR models over linear counterparts, using Monte Carlo methods (see
Clements and Smith, 2000, 2001). It is therefore interesting to see whether these gains hold in our
evaluation with historical data. Furthermore, models of conditional variance such as GARCH are
mostly useful when the object of the analysis is also to provide some indication of the uncertainty
around the mean. Potential gains of the GARCH models over the linear models can therefore be
better exploited in a comparative evaluation of density forecasts.

Copyright © 2002 John Wiley & Sons, Ltd. J. Forecast. 21, 513-542 (2002)
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Unconditional point forecasts

The forecasts of the exchange rate returns have been calculated recursively for the monthly and
weekly series from one to 24 steps ahead and from one to five steps ahead, respectively. The models
were identified and specified only once, over the first estimation periods, 1973.2—1991.6. They were
then re-estimated (but not re-specified) by expanding the sample with one observation each time,
over the period 1991.7-1997.7, thereby obtaining 50 point forecasts in the case of monthly data
and 313 point forecasts with weekly data for each forecasting horizon (%).

We recall that the computation of multi-step-ahead forecasts (4 > 1) from non-linear models
(SETAR) involves the solution of complex analytical calculations and the use of numerical inte-
gration techniques or, alternatively, the use of simulation methods. In this study the forecasts are
obtained by applying the Monte Carlo® method, following the suggestions in Clements and Smith
(1997, 1999).

In this comparative exercise the model forecasting ability is firstly assessed by means of the
MSFE and in terms of the percentage of correct sign predictions. For returns series, in fact, it
may be particularly informative to accompany standard measures of forecast accuracy, such as the
MSFE, with an indicator of the number of times the sign is correctly predicted.” The results of our
forecasting exercise (MSFE and Sign) are reported in Table IV, while in Table V we present the
MSEFE normalized with respect to the linear model, which represents our benchmark. The values are
calculated as the ratio MSFEyN; /MSFE| ; a number less than one means that the non-linear model
provides more accurate forecasts than the simple linear model. Furthermore, in order to assess

Table IV(a). Forecasting performance (monthly data)

Number of steps ahead

1 3 6 9 12 24

MSFE Sign MSFE Sign MSFE Sign MSFE Sign MSFE Sign MSFE Sign

French franc

Naive 10860 — 10733 — 10.636 — 8990 — 8979 — 7.190 —
Linear AR(4) 11.560 0.44  11.089 0.50 10.628 0.34**  9.000 0.34** 9.000 0.34** 7.182 042
SETAR-2 12.532 0.44  11.492 0.56 10.563 0.44 9.303 0.40 8.880 0.48 7.076 0.50
SETAR-3 11492 0.54 11.424 046 10.628 0.54 9.364 0.34**  8.880 0.38 7.023 0.56

German mark

Naive 10,640 — 10584 — 10510 — 8.976 — 9.003 — 7575 —
Linear AR(2) 11.022 0.54 10.628 0.60 10.498 0.58 8.940 0.5 7.508 0.60 7.508 0.52
SETAR-2 10.240 0.58 10.890 0.54 10.240 0.56 9.610 0.52 7.290 0.58 7.290 0.50
SETAR-3 11.560 0.38* 10.758 0.46 10.433 0.52 9.303 0.58 7.290 0.58 7.290 0.52

Japanese yen

Naive 10296 — 10.618 — 10873 — 10589 — 10442 — 11441 —
Linear AR(3) 10.563 0.56  10.890 0.52 10.890 0.54  10.563 0.56 10433 0.56  11.357 0.48
GARCH-M 9.672 0.62 10433 0.58 10.824 0.54 10.628 0.56 10.498 0.56 11.424 0.48
SETAR-2 11.022 042 11.290 0.44 10.824 0.54 10.890 0.56 10.433 0.56 11.560 0.48
SETAR-3 11.424 0.64* 11.156 0.50 10.824 0.54 10.956 0.56 10.433 0.56 11.560 0.48

8 Bach point forecast is obtained as the average over 500 replications.
° As pointed out by an anonymous referee, recent work by Christoffersen and Diebold (2001) has shown that sign forecasting
may be comparatively simple and does not imply any superiority in mean forecasting.
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Table IV(b). Forecasting performance (weekly data)

Number of steps ahead

1 2 3 4 5

MSFE Sign MSFE Sign MSFE  Sign MSFE Sign MSFE Sign

French franc

Naive 21333 — 2.1329 — 2.1262 — 2.1147 — 2.1308 —
Linear AR(2) 2.1461 0.51 21470 051 21260 0.51 21145 052 2.1309 0.50
GARCH-M 2.1461 0.51 21470 051 21260 0.51 21145 052 2.1309 0.50

SETAR-2 21120 053 22261 047 2.1780 045 21619 048 2.1316 0.51
SETAR-3 22053 048 22144 0.50 2.1889 047 2.1467 049 21262 0.52
LSTAR 2.1804 048 2.2418 0.49 2.1680 0.48 2.1675 047 2.1338 049
German mark

Naive 2.3214 2.3210 2.3129 2.3004 2.3215

Linear AR(2) 23276 0.50 23278  0.50 23124 0.50 22999 049 23215 049
GARCH-M 23549 049 23116 0.0 22964 0.51 22880 050 2309 0.50

SETAR-2 23784 050 23778  0.53 23513 0.48 23384 050 22848 0.50
SETAR-3 24204 050 24383  0.51 23817 049 23182 051 22866 0.49
LSTAR 23663 0.50 24095 0.53 2.3422  0.50 23464 052 22864 0.50
Japanese yen

Naive 1.8917 1.8944 1.8915 1.8985 1.8992

Linear AR(2) 1.8929 0.51 1.8892 0.53 1.8837  0.49 1.8948 0.49 1.8992 0.49
GARCH-M 1.8980 0.55 1.8903 0.55 1.8785 0.49 1.8913 049 1.8965 0.49

SETAR-2 1.8643 055 18777 0.51 1.8569  0.55 1.9306 046 1.8686 0.54
SETAR-3 1.9324 0.53 19384 0.56** 1.8847  0.51 19153 049 1.8747 0.50
ESTAR 1.9210 0.53 1.9220 0.58** 1.8525 0.53 19192 048 18617 0.53

Note: The value of MSFE has been rescaled by multiplying by 10%.
*, ** indicates statistically different from 0.50 at 10% and 5% respectively.

Table V(a). Normalized MFSE (monthly data)

Number of steps ahead

1 3 6 9 12 24

French franc

SETAR-2 1.084** 1.036* 0.994 1.034* 0.987 0.985
SETAR-3 0.994 1.030 1.000 1.040** 0.987 0.978
German mark

SETAR-2 0.929 1.025* 0.975 1.075* 1.000 0.971
SETAR-3 1.049 1.012 0.994 1.041** 0.993 0.971
Japanese yen

GARCH-M 0.916** 0.958* 0.994 1.006* 1.006 1.006
SETAR-2 1.044% 1.037** 0.994 1.031** 1.000 1.018
SETAR-3 1.082 1.024 0.994** 1.037** 1.000 1.018

whether such a superiority is statistically significant we perform the Diebold—Mariano (DM) test.
Values leading to the rejection of the null hypothesis of equality of forecast accuracy are indicated
with asterisks in Tables V(a) and V(b). Similarly, sign predictions that are statistically different
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Table V(b). Normalized MSFE (weekly data)

Number of steps ahead

1 2 3 4 5
French franc
GARCH-M 1.000 1.000 1.000 1.000 1.000
SETAR-2 0.984 1.037** 1.024** 1.022* 1.000
SETAR-3 1.028 1.031** 1.030** 1.015 0.998
LSTAR 1.016 1.044** 1.020** 1.025* 1.001
German mark
GARCH-M 1.012 0.993 0.993 0.995 0.995
SETAR-2 1.022** 1.021* 1.017* 1.017* 0.984**
SETAR-3 1.040** 1.047* 1.030** 1.008 0.985*
LSTAR 1.017 1.035** 1.013 1.020** 0.985**
Japanese yen
GARCH-M 1.003 1.001 0.997 0.998 0.999
SETAR-2 0.985 0.994 0.986 1.019** 0.984**
SETAR-3 1.021 1.026** 1.001 1.011 0.987
ESTAR 1.015 1.017 0.983* 1.013 0.980**

Notes: The normalized MSFE is calculated as the ratio MSFENL./MSFE] .
*, ** denote significance of the Diebold—Mariano test at 10% and 5%.

from a proportion of 50% (under the assumption of independence between forecasts and actual
values) are indicated in Table IV with asterisks. Table IV also reports the MSFE obtained from a
naive forecast by assuming that the levels of the exchange rates follow a random walk with drift
process.

Focusing first on monthly data, an interesting result is that the random walk model shows some
gains in terms of MSFE over the other models only in a limited number of cases (for one, three, and
nine steps ahead for the French franc and for the three steps ahead for the German mark). In fact,
the oft-claimed superiority of the random walk, as emphasized in previous studies, is questioned by
the more accurate forecasting performance of the non-linear models as appears from the highlighted
values reported in Table IV(a). These models also show some gains over the linear AR(p) model
in terms of either MSFE or Sign, although there are only few cases when the proportion of correct
sign predictions is greater than 50%. Moreover, in the case of the French franc and the German
mark, gains of non-linear models appear to be only marginal when assessed by means of the DM
test. A close look at Table V(a), in fact, shows a larger number of values greater than one that
indicate a significantly better performance of the linear models.

A more supportive picture in favour of the non-linear models emerges for the Japanese yen.
In particular, the SETAR-3 model shows the highest percentage of correct sign predictions in the
one-step-ahead, and offers significant forecasting gains over the linear model in the six-step-ahead
forecasts. Even more substantial gains are obtained in terms of MSFEs with the GARCH-M model
in the one- and three-step-ahead forecasts. This latter result reflects a significant contribution of the
mean component of the GARCH model in forecasting the conditional mean of this variable.

Turning now to the weekly forecasts, in Tables IV(b) and V(b) we report the results for the
one-to five-step-ahead forecasts. For this comparison, we have extended the forecasting experiment
to include an alternative specification of threshold models, namely the STAR models. As pointed
out above, one of the tests presented in Table II(b), the S, test, showed strong evidence in favour of
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a STAR form of non-linearity. These models, as discussed above, assume a more gradual transition
between the different regimes, and are obtained by replacing the indicator function in the SETAR
models (equation 1b) by a continuous function, typically logistic or exponential, which changes
smoothly from O to 1. It seems interesting to examine whether the kind of non-linearity captured by
the STAR models provides some forecasting gains over the linear models which cannot be observed
with SETAR models. We have estimated a Logistic STAR (LSTAR) model for the French franc
and the German mark, while an Exponential STAR (ESTAR) turned out to be appropriate in the
case of the Japanese yen.

From Table IV(b) it is interesting to note that in terms of both MSFE and Sign, generally
the models exhibit similar values. In particular, for the French franc, we find that the apparent
advantages of the SETAR-2 model for the one-step-ahead and of the SETAR-3 model for the
five-step-ahead forecasts (Table IV(b)) are not significant in terms of the DM test (Table V(b)).
Moreover, for the intermediate steps ahead (two to four) the DM test detects a significantly different
performance that favours the linear model against the SETAR and LSTAR models. With regard to
the German mark, the linear model turns out to be superior to both specifications of the SETAR
models (with two and three regimes) and to the LSTAR model in the majority of cases, with the
exception of the five-step-ahead forecasts, when the non-linear models are clearly superior in terms
of the DM test. For the Japanese yen the performance of the models is significantly different in
five cases out of the twenty considered, with three cases in favour of the non-linear models. In
particular the SETAR-2 and the ESTAR model dominate the linear model in the five-step-ahead
forecasts, with the ESTAR model showing a significant advantage also in the three-step-ahead
forecasts. SETAR-3 and ESTAR also show a percentage of correct sign predictions significantly
higher than 50%, for the two-step-ahead forecasts.

Overall, the performance of SETAR and STAR models appears similar. In particular it is inter-
esting to note that the STAR models do not provide more gains over the linear models than those
observed in the SETAR specifications. The performance of the GARCH models is in no case
distinguishable from that of the linear AR models, indicating that the ‘in mean’ component of
the GARCH-M models contributes only marginally to the point forecasts. However, as discussed
in the next sub-section, potential forecasting gains of GARCH models can be better explored by
evaluating density forecasts.

More generally, although the linearity tests showed clearer evidence of non-linearity in the weekly
returns, from Tables V(a) and V(b) it appears that non-linear models applied to high-frequency data
do not offer greater forecasting gains with respect to the same models estimated on monthly data.
Various explanations for the inadequate forecasting performance of the non-linear models have
been offered. As already discussed, Diebold and Nason (1991) argue that non-linearity may not
be pronounced enough over the whole forecast period to guarantee greater forecasting accuracy.
Others have shown that forecasting gains of non-linear models may be masked by the evaluation
method adopted or may depend on the state of nature (Clements and Smith, 2001). To investigate this
possibility, in what follows we conduct a forecast exercise by conditioning the forecast observations
on the regimes of the SETAR models and examine whether, as suggested by other authors, the
SETAR forecasts are superior to the linear forecasts conditional on a specific regime. Tiao and
Tsay (1994), for example, have shown that SETAR models produce US GNP forecasts which are
superior to those obtained from a linear model, when the forecasts are obtained from the regime
with fewer observations (when the economy is recovering from recession). Similarly, Clements and
Smith (2001) have shown, by means of Monte Carlo simulations, that a three-regime SETAR model
for the yen exchange rate returns records significant gains (over 40%) relative to the random walk
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model for the one-step-ahead forecasts conditional on being in the middle regime. As in the study by
Tiao and Tsay, the regime for which it was possible to exploit gains was the minority-observations
regime (with 15% of the total observations).

Point forecasts conditional on the regimes of the SETAR models

In this exercise, we have divided up the forecast sample by the regimes of the SETAR models
to explore the dependence of forecast performance of the non-linear models on the regime at the
forecast origin. In Tables VI(a) and VI(b) we report the results for the one-step-ahead point forecasts
for the weekly models of the three exchange rate returns. The models under comparison are, as in
the previous assessment, the non-linear SETAR and STAR models, the GARCH, and AR models.
The tables report the MSFEs for each model, the MSFEs normalized by those for the linear AR
model and the P-values of the Diebold and Mariano (1995) test of equal forecast accuracy. Focusing
on the performance of the SETAR and STAR models relative to that of the AR counterparts, the
results reveal significant forecast gains that can be achieved in specific regimes with the SETAR
and STAR models, gains that were not noticeable when the models were assessed unconditionally
over the entire forecast period. Interestingly, and in line with previous findings, our results across
exchange rates show that gains of the non-linear models over the linear AR alternatives occur,
in most cases, for the minority-regime observations. More specifically, for the French franc, the
SETAR-2 model (Table VI(a)) significantly outperforms the AR model conditional on being in
regime 1 (17% observations), while the two models show a similar performance for observations
in regime 2. Similar gains are achieved by the LSTAR model and SETAR-3 model (Table VI(b)).
The latter, however, is significantly outperformed by the linear model in regimes 2 and 3. For
the German mark, the SETAR-2 and LSTAR models significantly outperform the linear AR model

Table VI(a). Point forecasts conditional on the regimes of the SETAR-2 model: one-step-ahead MSFE and
normalized MSFE (weekly data)

MSFE Normalized MSFE

Entire sample Regime 1 Regime 2 Entire sample Regime 1 Regime 2
French franc
no. obs. 313 53 260 313 53 260
Linear AR(2) 2.146 2.867 1.999 — — —
GARCH-M 2.146 2.888 1.998 1.000 1.007 0.999
SETAR-2 2.112 2.446* 2.044 0.984 0.853* 1.023
LSTAR 2.180 2.563* 2.000 1.016 0.894* 1.001
German mark
no. obs. 313 71 242 313 71 242
Linear AR(2) 2.328 2.794 2.229 — — —
GARCH-M 2.355 2.725 2.246 1.012 0.975 1.008
SETAR-2 2.378** 2.690** 2.287 1.022** 0.963** 1.026
LSTAR 2.366 2.515% 2.221 1.017 0.900** 0.996
Japanese yen
no. obs. 313 235 78 313 235 78
Linear AR(2) 1.893 1.921 1.791 — — —
GARCH-M 1.898 1.939 1.784 1.003 1.009 0.996
SETAR-2 1.864 1.924 1.685* 0.985 1.002 0.941*
ESTAR 1.921 2.002** 1.711* 1.015 1.042** 0.955*
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Table VI(b). Point forecasts conditional on the regimes of the SETAR-3 model: one-step-ahead MSFE and
normalized MSFE (weekly data)

MSFE Normalized MSFE

Entire Regime 1 Regime 2 Regime 3 Entire Regime 1 Regime 2 Regime 3

sample sample
French franc
no. obs. 313 74 184 55 313 74 184 55
Linear AR(2) 2.146 2.460 2.008 2.186 — — — —
GARCH-M 2.146 2.480 2.003 2.193 1.000 1.008 0.997 1.004
SETAR-3 2.205 2.166* 2.067  2.662** 1.028 0.881* 1.029*  1.218*
LSTAR 2.180 2.235% 2.070*  2.478* 1.016 0.908* 1.031*  1.134*
German mark
no. obs. 313 71 187 55 313 71 187 55
Linear AR(2) 2.328 2.794 2.320 1.917 — — — —
GARCH-M 2.355 2.725% 2321 1.992 1.012 0.975** 1.000 1.039
SETAR-3 2.420* 2.689*  2.446* 1.982 1.010** 0.963** 1.054*  1.034
LSTAR 2.366 2.515% 2420  1.992* 1.017 0.900** 1.043**  1.039*
Japanese yen
no. obs. 313 116 103 94 313 116 103 94
Linear AR(2) 1.893 1.994 1.816 1.838 — — — —
GARCH-M 1.898 2.059 1.821 1.792 1.003 1.032 1.003 0.975
SETAR-3 1.932 2.093* 1.911*  1.759* 1.021 1.050* 1.052*  0.957*
ESTAR 1.921 2.038 1.914*  1.784 1.015 1.022 1.054* 0971

Notes: The normalized MSFE is calculated as the ratio MSFEN; /MSFE] .
*, ** denotes significance of the Diebold—Mariano test at 10% and 5%.

conditional on being in regime 1 (23% observation), while their performance is indistinguishable
from that of the linear model in regime 2. The SETAR-3 model also shows significant gains over
the linear model in regime 1 (coinciding with regime 1 in SETAR-2), it is outperformed in regime
2, and the performance of the models is not distinguishable in regime 3. Finally, for the Japanese
yen, there is some evidence of gains for the SETAR-2 and ESTAR models conditional on being
in regime 2 (25% observations) over the AR model. There is no evidence of the SETAR-2 model
outperforming the linear counterpart in regime 1, which is the regime with the largest number of
observations, while the ESTAR model is, in this regime, significantly outperformed by the linear AR
model. Some gains are also obtained for the SETAR-3 model over the AR model when conditioning
on regime 3, which is again the regime with the fewest observations. Conversely, the AR model
does significantly better than the SETAR-3 model conditional on being in regimes 1 and 2.

To conclude, the evaluation of the models has shown significant gains of the SETAR and STAR
models versus the linear alternative when the forecast origin is conditioned on the regimes. The
forecast performance of the non-linear models is in most cases superior to that of the linear coun-
terparts conditional on the regime with fewer observations. On the other hand, when conditioning
on the regime(s) with more observations, model performance is either not distinguishable or the
SETAR and STAR models are outperformed by the linear models. These results, based on actual
data and on a genuine out-of-sample forecast exercise, confirm previous findings by Tiao and Tsay
(1994) for the US GNP, and those obtained by Clements and Smith (2001), by means of a Monte
Carlo study for the exchange rate returns.
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Consideration of the performance of the GARCH models versus the AR models shows, again,
that there is not much to choose between these two models when they are evaluated on their ability
to produce point forecasts. This confirms the marginal contribution that the ‘mean component’ of
the GARCH models plays in forecasting the conditional mean.

Density forecasts

Previous authors have found that non-linear models of the TAR-type perform well in terms of
predicting the overall density, rather than just the first moment (Clements and Smith, 2000). More-
over, GARCH models are useful for providing some indication of the uncertainty around the mean
by modelling the conditional variance of the process. Thus, an evaluation based on density fore-
casts may reveal greater discrimination over the linear models than evaluations based on the first
moment. In this section, we apply the density forecasts evaluation methods suggested by Diebold
et al. (1998) and surveyed by Tay and Wallis (2000). The approach is based on the analysis of
the probability integral transforms of the actual realizations of the variables with respect to the
forecast densities of the models (see also Dawid, 1984). These are defined as z;, = F,(y;), where
F(-) is the density forecast distribution function and y is the observed outcome. Thus, z; is the
cumulative density function corresponding to the density F,(y,) evaluated at y,, that is, the forecast
probability of observing an outcome no greater than that actually realized. If a sequence of density
forecasts correspond to the true density, then Diebold ef al. (1998) show that the corresponding
sequence of probability integral transforms {z;}>13 is i.i.d. uniform (0,1). The forecast densities are
then assessed by testing whether the sequence of probability integral transforms departs from the
i.i.d. uniform hypothesis. The evaluation of the density forecasts proceed, as suggested by Diebold
et al. (1998), by examining the distributional and autocorrelation properties of the z; series. The
distributional properties can be examined by visual inspection of plots of either the histogram or
the empirical distribution function of the z; series, which are visually compared with those of a
uniform (0,1). These graphical devices are then supplemented by more formal tests. Confidence
intervals are computed for the histograms under the null hypothesis of i.i.d. U(0,1), exploiting the
binomial structure bin-by-bin (Diebold et al., 1998). Equivalently, the Kolmogorov—Smirnov test
(the maximum absolute difference between the empirical distribution function and the distribution
function under the null hypothesis of uniformity) is used on the sample distribution function of the
z; series (see Diebold et al., 1999; Tay and Wallis, 2000). These two approaches address the uncon-
ditional uniformity hypothesis. Alternatively, unconditional uniformity can be tested by applying
the Pearson’s chi-squared goodness-of-fit test (see the recent discussion in Wallis, 2001, with appli-
cations to inflation forecasts). In our analysis below, we use both the Kolmogorov—Smirnov test
and the Pearson x? test. With respect to the i.i.d. part of the hypothesis for the z; series, Diebold
et al. (1998) again suggest visual assessment of graphical tools, such as correlograms, combined
with the usual confidence intervals. Along similar lines, other authors have used in their applications
the LM test for higher order serial correlation (Clements and Smith, 2000). Dependence is assessed
not only linearly, but also with regard to higher-order moments (conditional variance, skewness
and kurtosis).

In what follows, we assess the one-step-ahead density forecasts of the three exchange rate returns,
obtained under the assumption of Gaussian errors, for the AR, GARCH and S(E)TAR models. In
Figure 2 we report a selection of plots of the empirical distribution function of the z, series against
the 45° line—the theoretical uniform distribution function. The 95% confidence intervals along
side the 45° line are calculated using the critical values of the Kolmogorov—Smirnov test, reported
in Lilliefors (1967, Table 1, p. 400), in the presence of estimated parameters. Although not much
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is known about parameter estimation errors in the density evaluation literature, the standard critical
values of the Kolmogorov—Smirnov test are probably a conservative estimate of the ‘correct’ critical
values when certain parameters of the distribution must be estimated from the sample.!® Table VII
reports the results from the Pearson x? test, and Table VIII the P-values of the Ljung—Box Q-
statistics for serial correlation, computed on the first six sample autocorrelations for (z — 7), (z — 2)%,
(z—72)* and (z —2)*.

By examining Figure 2 we see that some models exhibit greater evidence of departure from the
uniform null than do others. In the case of the Japanese yen, we found that all models approached
the bounds very closely, but the AR showed more evidence of departure from the null hypothesis
by crossing the bounds at various ranges of the density. Also, there was clear evidence that the
GARCH, SETAR and STAR models did comparatively better than the AR model in the case of
the French franc, exhibiting empirical distribution functions which were overall closer to the 45°
line. Finally, the evidence for the German mark was somewhat mixed, giving stronger indication
of departure for the AR and STAR model.

Next, unconditional uniformity is tested by applying Pearson’s chi-squared goodness-of-fit test.
The use of complementary techniques may offer further guidance on the nature and strength of the
deficiencies of the density forecasts, and be particularly useful in real data applications. We have

Table VII. x? goodness-of-fit test (weekly data)

k=20
x> P-value*

French franc

Linear AR(2) 21.505 0.309
GARCH-M 16.137 0.648
SETAR-2 16.521 0.622
SETAR-3 19.971 0.396
LSTAR 25.083 0.158
German mark

Linear AR(2) 26.617 0.114
GARCH-M 24.188 0.189
SETAR-2 25.978 0.131
SETAR-3 31.601 0.035
LSTAR 37.863 0.006
Japanese yen

Linear AR(2) 39.012 0.004
GARCH-M 35.818 0.011
SETAR-2 27.128 0.102
SETAR-3 31.728 0.033
ESTAR 21.505 0.309

* Asymptotic P-values.

10 We are grateful to an anonymous referee for bringing this point to our attention. The formula reported in Lilliefors (1967)
for T > 30, level of significance 0.05, is given by 0.886/,/T. As we have T = 313 observations, the 95% confidence intervals
are then the 45° line £0.05008. In a previous version of this paper we used standard asymptotic critical values, as in Miller
(1956, Eq. 3, page 115), and obtained more conservative results.
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Table VIII. P-values of the Ljung—box Q-statistics for serial correlation (weekly data)

Moments
(z—-2) (z—-27 (-2 (-2
French franc Linear AR(2) 0.264 0.001 0.858 0.000
GARCH-M 0.465 0.586 0.962 0.665
SETAR-2 0.084 0.028 0.228 0.001
SETAR-3 0.099 0.003 0.742 0.010
LSTAR 0.030 0.000 0.228 0.000
German mark Linear AR(2) 0.078 0.002 0.495 0.004
GARCH-M 0.147 0.837 0.821 0.863
SETAR-2 0.051 0.018 0.302 0.021
SETAR-3 0.053 0.023 0.454 0.084
LSTAR 0.022 0.001 0.412 0.000
Japanese yen Linear AR(2) 0.178 0.207 0.054 0.033
GARCH-M 0.019 0.862 0.116 0.736
SETAR-2 0.258 0.322 0.178 0.131
SETAR-3 0.066 0.839 0.149 0.840
ESTAR 0.419 0.304 0.589 0.070

divided the range of the z; series into k equiprobable classes and computed the test

X* =" (n;—n/k)/(n/k) = (k/n) Y ni—n

where k is the number of classes, n; the observed frequencies, n the number of observations (313
forecasts). This test has a limiting x? distribution with k — 1 degrees of freedom under the null
hypothesis. In Table VII we report the results of the tests computed for k = 20.!! The table shows
that for the French franc, all models produce density forecasts with correct coverage which, a part
from the AR case, is consistent with the assessment of unconditional uniformity in Figure 2. For
the German mark, SETAR-3 and LSTAR density forecasts seem to departure significantly from
the correct density, while the AR forecasts appear correct, somewhat in contrast to the indications
from the Kolmogorov—Smirnov test. Finally, for the Japanese yen, only the SETAR-2 and ESTAR
models give correct density forecasts, whereas there is stronger evidence against uniformity for the
AR and GARCH models.

One well-known limitation of these tests is that they rest on an assumption of random sampling
and little is known about the impact on the distribution of these tests of departures from indepen-
dence.!? This means that when rejection occurs, the tests provide no guidance as to why (Diebold
et al., 1998, p. 869); departure from uniformity may suggest improper distributional assumptions, or
poorly captured dynamics, or both these aspects. As we can see from the results of the Ljung—Box
QO-statistics reported in Table VIII, there are cases of violation of the independence assumption
mostly for the second (conditional heteroscedasticity) and fourth (conditional kurtosis) moments.
More specifically, in the case of the French franc and German mark, the GARCH model is the

11 Since the results of the test may depend on the selected value for k, as discussed in Stuart et al. (1999), we performed
the test for values of k up to 40 but the results did not lead us to substantial different conclusions from those reported
above.

2 For a preliminary study of the size and power of alternative tests see Noceti ez al. (2000).
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only model which shows no evidence of any kind of autocorrelation, while there is some evidence
of misspecification in the second and fourth moment for the other models. Thus, combined with
the evidence in Figure 2 and Table VII, we can conclude that for these two exchange rates (French
franc and German mark) there is strong support for the GARCH model in favour of the hypothesis
of correct density forecasts. Similarly, a clear conclusion can be reached in the case of the Japanese
yen, but this time in favour of the TAR-type models, which seem to be the only models to pro-
duce z; series consistent with the i.i.d. hypothesis. In the case of the Japanese yen, there is in fact
evidence of violation of the independence assumption for the AR model (third- and fourth-ordered
moments) and for the GARCH-M model (first-order moment).'3

Overall, the results presented in this section allow for clearer discrimination among the competing
models, providing more evidence supporting the forecasting superiority of both classes of non-linear
models than in evaluations based on just the first moment.

CONCLUSIONS

In this study we have compared the forecasting performance of alternative univariate time series
models for the returns of three exchange rates quoted against the US dollar: the French franc, the
German mark and the Japanese yen. Application of linearity tests to monthly and weekly series has
provided evidence of non-linear components at both frequencies although, as expected, the evidence
of non-linearities was more marked in the weekly series. Various non-linear models, namely a two-
regime SETAR, a three-regime SETAR, and a GARCH-M model, were compared and contrasted
with simpler linear alternatives (AR and random walk processes). STAR models were also used
with weekly returns.

The SETAR and GARCH models proved successful in describing non-linear features of the data.
In particular, the SETAR models have provided strong in-sample evidence for the existence of
different regimes, in which the exchange rate returns exhibit quite different dynamics, whereas
the GARCH models appeared to capture adequately non-linearities in the second-order conditional
moment.

In comparing the forecast performance of different models, we have used different criteria and,
within the same criterion, we have adopted alternative procedures. The steps taken in this paper
can be used as examples to illustrate the kind of problems and choices faced in applications with
actual data. The forecast comparison has been conducted initially on both monthly and weekly data
using the MSFE and the percentage of the correct sign predictions, for one-step- and multistep-
ahead forecasts. The percentage of correct sign predictions was tested against the null hypothesis of
independence between forecasts and actual values, and differences in MSFEs between models were
evaluated by means of the Diebold and Mariano test. This analysis was conducted over the entire
forecast period and did not show significant forecast gains for the non-linear models over the linear
benchmark. In a second exercise, we have assessed the forecast performance of the weekly models
by conditioning the forecast origin on each of the regimes of the SETAR models. This exercise was
carried out for the one-step-ahead forecasts and enabled us to explore further the added value of the
non-linear features of the SETAR and STAR models. Finally, we have evaluated the one-step-ahead
density forecasts associated with each model by examining the distributional and autocorrelation

13 As an interesting extension, one could explore whether joint estimation of threshold and GARCH models offer further
opportunities of forecasting gains.
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properties of the probability integral transforms of the actual exchange rates returns with respect to
the forecast densities of the models (Diebold et al., 1998). The comparative evaluation of density
forecasts has provided stronger evidence supporting the forecasting superiority of both classes of
non-linear models, GARCH and TAR, and allowed for clearer discrimination with respect to the
linear competing models.

Overall, our results, based on actual data for exchange rate returns and on a genuine out-of-sample
forecasting exercise, confirm and reinforce recent findings that have shown that the comparative
advantages of non-linear models over the linear counterparts depend on both the criteria used to
assess forecast accuracy (MSFE, Sign, Density Forecasts) and on the ‘state of nature’ (Clements
and Smith, 2001). These results question the oft-claimed forecasting superiority of the linear models
and call for a more articulate analysis of forecast performance and of the stochastic characteristics
of the period considered.

Finally, on methodological issues, the procedures adopted in the evaluation of density forecasts
are relatively new, and currently there is little experience of their use. Moreover, comparison
of alternative approaches to testing forecast densities is at an early stage, and more research is
required in this area. In the meantime, as more experience and research develop, we have shown
that application of complementary techniques may provide useful indications on the nature and
strength of the deficiencies of the forecasts and, more generally, can offer further guidance to
‘rank’ the models in a comparative exercise.
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