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Rolando Chuaqui y yo, nos encontramos una única vez,
en Bah́ıa Blanca en agosto 1992, en el Simposio Latino-
Americano de Lógica Matemática. Lamentablemente, Chuaqui
murió antes de mi próxima visita a América del Sur, igual que
otro gran lógico latinoamericano, Carlos Alchourrón.
Chuaqui estuvo en Bah́ıa Blanca juntos con varios alumnos
que hablaron sobre aspectos de la lógica algebraica. Desde en-
tonces, he tenido muchos deseos de visitar Chile, y fue con
mucho gusto que recib́ı en septiembre del año pasado una in-
vitacin del Profesor Quezada para dictar una conferencia en
estas jornadas. Agradezco al comité de organización por esta
invitación, y además a la Academia Británica, quien ha aus-
piciado mi vuelo transatlántico.
Por que estas jornadas son en memoria de Rolando Chuaqui,
parece apropiado de hablar sobre un tópico de lógica algebraica.
He escogido el v́ınculo entre la lógica deductiva y la proba-
bilidad, un tema muy caro a los sentimientos de Chuaqui.
Lamento que no tuve nunca la oportunidad de discutir per-
sonalmente estas ideas con él.



Summary: Nearly half a century ago Popper [1959],
appendices *iv and *v, presented a number of related
axiomatizations of the theory of probability in each of
which p(x | z) is defined for all x and z, even z = yy′

(where concatenation turns out to represent meet, and
the accent complementation). These systems are too
little known amongst mathematicians. Popper went on
to claim that his systems provide a context within which
it is possible to give fully correct definitions of the re-
lation of derivability between sentences (in the sense of
the classical sentential calculus), and of the property of
sentential demonstrability, by means of the formulas

z ` x =Df p(x | zx′) = 1

` x =Df p(x |x′) = 1.

This claim has been challenged by Stalnaker [1970],
Harper [1975], and by Leblanc & van Fraassen
[1979]. The challenge has never been properly answered
(though a start was made in Popper & Miller [1994],
§4). The aim of this talk is to answer it, and to contrast
Popper’s enterprise with what is known as probabilistic
semantics .
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The System B+

(nontrivial) ∃x∃z p(x | z) 6= p(z | z)

(sub2) x ' z =⇒ ∀y[p(y |x) = p(y | z)]

(identity) p(x |x) ≤ p(z | z)

(monotony) p(xz | y) ≤ p(x | y)

(product) p(xz | y) = p(x | zy)p(z | y)

(sum) p(x | y) + p(z | y) = p(xz | y) + p(x ∨ z | y)

(negation) p(y | z) 6= p(z | z) =⇒ p(x | z) + p(x′ | z) = p(z | z)

Here the symbol ' stands for the relation of probabilistic indi-
stinguishability, defined by

(0) x ' z =Df ∀y[p(x | y) = p(z | y)]

It is helpful to define in the same way

(1) z � x =Df ∀y[p(z | y) ≤ p(x | y)]
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The axiom system B+ (Popper & Miller [1994], §4) is an

adaptation of that given in Popper [1959], appendix *v. The

principal difference is the presence of the axiom (sum). In Pop-

per’s system the symbol ∨ is introduced by means of the explicit

definition

(2) x ∨ z =Df (x′z′)′

It is not hard to show that the two systems are equivalent. Note

that no other assumptions are made about the elements x, y, z, . . .,

or about the operations represented by concatentation, ∨, and ′.

The properties of the axiomatic system B+ are illuminatingly ana-

lysed through a series of weaker systems. Each system is formu-

lated in a language with denumerably many variables x, y, z, . . .,

a (real-valued) functor p, and one or more operators (concatenta-

tion, and perhaps also ∨, ′). The letters X, Y, Z, . . . are used for

terms composed from variables and operators. We shall suppose

that each system is supplemented by the definitions (0) and (1).
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The System M–

(downbound) 0 ≤ p(x | z)

(upbound) p(x | z) ≤ p(y | y)

(monotony) p(xz | y) ≤ p(x | y)

(product) p(xz | y) = p(x | zy)p(z | y)

M– is an extremely weak system, and has models in which p is

interpreted by a function µ that is everywhere 0. Yet it may be

shown that the concatenation operation has all the properties of

a semilattice operation, in the sense that each of the following

indistinguishabilities holds in M–.

(3) xx ' x

(4) xz ' zx

(5) x(yz) ' (xy)z

The following result shows that probabilistically indistinguishable

elements are mutually exchangeable in the first argument of the

functor p.
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Suppose that X is a subterm of Y. Let Y◦ be any result of replacing

or not replacing occurrences of X in Y by Z. In M– the following

substitution principle holds.

(6) X ' Z =⇒ p(Y | y) = p(Y◦ | y)

Proof : By induction on the length of the term Y. If Y is a variable

then Y = Y◦ and there is nothing to prove. For the induction step

suppose that (6) holds for terms U and W, and that Y = UW.

Then

(7) p(UW | y) = p(U |Wy)p(W | y) by (product)

(8) = p(U◦ |Wy)p(W | y) by hypothesis

(9) = p(U◦W | y) by (product)

(10) = p(WU◦ | y) by (4)

(11) = p(W |U◦y)p(U◦ | y) by (product)

(12) = p(W◦ |U◦y)p(U◦ | y) by hypothesis

(13) = p(W◦U◦ | y) by (product)

(14) = p(U◦W◦ | y) by (4)

Since Y◦ = (UW)◦ = U◦W◦, the proof is complete.

It is well known that this result cannot be immediately extended

to the second argument of p. It is the purpose of the axiom (sub2)

in system B+ above to enable the proof that probabilistic indist-

inguishability is a congruence.
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The system composed of M– together with (sub2) may be called

M∓. It is plain that each structure M that satisfies the axioms

of M∓ is reducible to a lower semilattice (with concatenation in-

terpreted as meet) by factoring by the equivalence relation in M

that is the interpretation of '.

If the interpretation of p in M is a function taking only a single

value, the quotient semilattice will consist only of a single element.

Adding to M∓ the axiom

(nonzero) ∃x∃z p(x | z) 6= 0

yielding the system M+, ensures that each such semilattice con-

tains at least two elements. The addition of this axiom to M–,

yielding the system M, is sufficient to ensure also the crucial iden-

tity

(unity) p(y | y) = 1

In the case of (lower) semilattices it is straightforward to prove a

converse to the representation theorem. Indeed if M = 〈M,v〉
is a lower semilattice, and • its meet operation (so that for all

a, c ∈M, c v a if & only if c = a•c), then the function µ defined

on M×M by

µ(a, c) =

 1 if c v a

0 otherwise

satisfies the axioms of the system M+.
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The System D

(nonzero) ∃x∃z p(x | z) 6= 0

(downbound) 0 ≤ p(x | z)

(upbound) p(x | z) ≤ p(y | y)

(monotony) p(xz | y) ≤ p(x | y)

(product) p(xz | y) = p(x | zy)p(z | y)

(sum) p(x | y) + p(z | y) = p(xz | y) + p(x ∨ z | y)

The system D– is what results from D by the deletion of axiom

(nonzero).

Each of the following indistinguishabilities holds in D–.

(15) x ∨ x ' x

(16) x ∨ z ' z ∨ x

(17) x ∨ (y ∨ z) ' (x ∨ y) ∨ z

(18) (x ∨ z)x ' x

(19) x ' (xz ∨ x)

(20) (x ∨ z)y ' xy ∨ zy.

9



Here is a proof of the most important of these, the distributive law

(20), using successively (product), J, (product), the semilattice

laws ((3), (4), (5)), and finally J again.

p((x ∨ z)y |w) = p(x ∨ z | yw)p(y |w)

= [p(x | yw) + p(z | yw)− p(xz |w)]p(y |w)

= p(xy |w) + p(zy |w)− p((xz)y |w)

= p(xy |w) + p(zy |w)− p((xy)(zy) |w)

= p(xy ∨ zy |w)

The system D may also be augmented by

(sub2) x ' z =⇒ ∀y[p(y |x) = p(y | z)]

to yield a system D+ in which the relation of probabilisitic indi-

stinguishability is a congruence. Each structure D that satisfies

the axioms of D+ is reducible to a distributive lattice (with con-

catenation interpreted as meet and ∨ as join) by factoring by the

equivalence relation in D that is the interpretation of '.
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We now return to the system B+, where similar results may be

obtained. In particular we may establish the following identities,

inequalities, and indistinguishabilities.

(21) p(x | y) + p(x′ | y) = p(z | y) + p(z′ | y)

(22) p(x′′ | z) = p(x | z)

(23) 0 = p(zz′ | y) ≤ p(x | y)

(24) p(x | y) ≤ p(z ∨ z′ | y) = 1

(25) x ∨ z ' (x′z′)′

In the light of (23) and (24) we may choose some variable y and

adopt the definitions

(26) s =Df yy′

(27) t =Df y ∨ y′

of selfcontradictory elements s and tautological elements t. These

of course depend on y, but any two selfcontradictory elements are

indistinguishable, as are any two tautological elements.
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The following are a selection from the many striking results that

we can prove about s and t.

(28) p(y | s) = p(t | y)

(29) z ' s ⇐⇒ p(s | z) 6= 0

(30) z ' s ⇐⇒ ∀x p(x | z) = 1

(31) z ' s ⇐⇒ p(z′ | z) 6= 0

(32) z ' s ⇐⇒ p(z′ | z) = p(z | z)

(33) x ' t ⇐⇒ ∀z p(x | z) = 1

(34) x ' t ⇐⇒ p(x |x′) 6= 0

(35) x ' t ⇐⇒ p(x |x′) = p(x |x)

(36) z � x ⇐⇒ p(x | zx′) = 1

(37) z � x ⇐⇒ p(x | zx′) 6= 0

Each structure B that satisfies the axioms of B+ is reducible to

a Boolean algebra (with concatenation interpreted as meet, ∨ as

join, ′ as complement, s as zero, and t as unit) by factoring by the

equivalence relation in B that is the interpretation of '.

In the case of B+ it is possible to prove a weak converse (which

transfers also to D+) to the representation theorem. Indeed if B

= 〈B,v〉 is a Boolean lattice, and ∆ a maximal filter on it, then

the function µ defined on B × B by

µ(a, c) =

 1 if a ∈ ∆ or c 6∈ ∆

0 otherwise

satisfies the axioms of the system B+.
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The Central Problem

It is obvious from these results that there is a close connection

between the theory B+ and classical sentential logic (and par-

allel connections between M+ and D+ and what we might call

conjunctive and distributive logic). How are we to articulate this

connection?

Popper claims that classical sentential derivability and demon-

strability are actually definable within B+, and offers the defin-

itions

(38) z ` x =Df z � x

(39) ` x =Df ∀z z ` x

In view of (36) and (unity), more immediate equivalences are

(40) z ` x ⇐⇒ p(x | zx′) = 1

(41) ` x ⇐⇒ p(x |x′) = 1

The correctness of (41) — and implicitly of (38)–(40) — has been

challenged by Leblanc & van Fraassen [1979], p. 369 (see

also their note 5), on the grounds that we can easily construct a

function µ, satisfying the axioms of B+, under which µ(x, x′) = 1

if & only if x is true. Hence, they say, the formula p(x |x′) = 1

cannot be a correct rendering of ‘x is demonstrable [or necessary]’.
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That such a function µ can indeed be constructed is the content

of the weak converse above to the representation theorem for B+.

What does it show? According to Leblanc & van Fraassen

[1979], loc.cit., it shows that the system B+ must be strengthened

by an additional assumption called B7.

By a state description of PC [propositional calculus] un-

derstand any wff of PC of the form

(· · · (±P1 & ± P2 & · · ·) & ± Pp,

where (i) p is a positive integer, (ii) P1, P2, . . . Pp are dis-

tinct propositional variables, and (ii) for each i from 1

through [p], ±Pi is either Pi or ∼ Pi. [footnote] Our

requirement will then run:

B7. If A is a state description of PC, then

Pr(∼ A, A) = 0.

A Popper function Pr is a function for which B+ holds. Leblanc

& van Fraassen announce the theorem

If Pr is a Popper function that meets requirement B7

. . . and Pr(A, ∼ A) = 1, then A is a tautology.

It must be said that B7 is a most unattractive postulate to have to

introduce into an axiomatic system such as B+. Unlike any of the

other axioms it makes explicit reference to propositional variables.

It is fortunately not necessary.
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In Field [1977], Leblanc [1979], Leblanc [1983], and many

related works alternative ways have been given of characterizing

various logical relations. For example,

¶ A is logically true if & only if Pr(A, B) = 1 for all B and for

all probability functions Pr [Field, Leblanc [1979]]

¶ A is entailed by C if & only if Pr(C, B) ≤ Pr(A, B) for all

B and for all probability functions Pr [Field]

¶ A is entailed by C if & only if, for all B and for all probabi-

lity functions Pr, Pr(A, B) = 1 if Pr(C, B) = 1 [Leblanc

[1979]]

Each of these characterizations quantifies over all probabiltiy func-

tions Pr, and is in an obvious sense external to the axiomatic

system. This is not perhaps surprising, since these authors see

probability theory (in particular B+) as a generalization of, per-

haps even an improvement on, traditional truth-table semantics.

Leblanc [1983], p. 264 writes of the result that every model of

Popper’s axioms is reducible to a Boolean algebra:

The earliest theorem that probabilistic semantics boasts of

is in Popper (1959), Appendix *v. A soundness theorem,

it is roughly to the effect that if a boolean identity A = B

. . . is provable by means of the ‘fourth set’ of Huntington

(1933), then P (A/C) = P (B/C) for any statement C

and any binary probability function P meeting Popper’s

constraints.
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This is by no means my view. I see Popper’s result not as proving

soundness for a new semantics for an old formulation of proposi-

tional logic, but as proving completeness for an old semantics for

a new formulation of propositional (meta)logic: indeed, it estab-

lishes that the axiomatic system is strong enough to yield X ' Z,

the probabilistic indistinguishability of the terms X and Z, when-

ever X = Z is an identity of Boolean algebra.

This is not to say that there is anything incorrect about probabi-

listic semantics; only that there is not anything incorrect about

probabilistic syntax either.

Where Leblanc & van Fraassen have gone wrong, perhaps

understandably given how little Popper said about this matter,

is in not seeing that the terms ‘x’, ‘y’, ‘z’, . . . that appear in the

second argument of the functor p may be understood not only as

names of sentences but as names of sentence forms. More explicitly

we may use the letters ‘X’, ‘Y’, ‘Z’, . . . to stand for sentence forms,

and assign the value r to p(X |Z) if & only if for every (uniform)

substitution instance of terms to the variables in X and Z, the

outcome p(X◦ |Z◦) has the value r. (The only values of r for which

this will be of interest are 0 and 1.)
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In these terms, let us rewrite (41), which defines ` x as p(x |x′) =

1, as

(42) ` X ⇐⇒ p(X |X′) = 1

Given the presence of the axiom (nontrivial), any function µ that

interprets the functor p in B+ will take more than one value. In

these circumstances it is obvious that there is always a substitution

instance of p(X |X′) that does not take the value 1; and so ` X

does not hold. This is indeed the point of the criticism levelled

by Leblanc & van Fraassen. But if we write (ZZ′)′, for

example, for X in (42), the right side becomes p((ZZ′)′ | (ZZ′)′′) = 1,

which indeed is a theorem of B+. Thus we may conclude, quite

correctly, that (ZZ′)′ is demonstrable in classical logic. Exactly

similar considerations prevail in the understanding of (40). If x

and z are distinct variables, then the formula z � x is not generally

true. But then z ` x is not valid in classical (or any other non-

trivial) logic.

All these results hold, to be sure, for each function µ that interprets

p in B+. But it is not necessary to consider every such µ, or even

more than one, in order to determine whether or not Z ` X. If

Z 6` X then for each µ there will be substitution instances of X and

Z that provide a suitable counterexample.

There is, therefore, a genuine probabilistic generalization of classi-

cal metalogic. But what would be a probabilistic generalization

of logic?
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We may take the matter a little further by considering how a prob-

abilistic generalization of intuitionistic logic might be formulated.

The following system H+ of axioms (‘H’ for Heyting) is equivalent

to one developed in 1981 and published (with several misprints) by

Miller & Popper [1986]. The letter ‘s’ is here a constant sym-

bol, whose referent is eventually identified with the zero element

of the resulting lattice. It will be recalled that z � x was defined

in (1) by the formula ∀y[p(z | y) ≤ p(x | y)].

The System H+

(nontrivial) ∃x∃z p(x | z) 6= p(z | z)

(sub2) x ' z =⇒ ∀y[p(y |x) = p(y | z)]

(identity) p(x |x) ≤ p(z | z)

(monotony) p(xz | y) ≤ p(x | y)

(product) p(xz | y) = p(x | zy)p(z | y)

(sum) p(x | y) + p(z | y) = p(xz | y) + p(x ∨ z | y)

(zero†) p(x | z) ≤ p(z | s)

(zero‡) p(x | z) 6= p(x |x) =⇒ p(x | s) + p(s | z) = p(x |x)

(conditional†) p(x → y |xz) ≤ p(y |xz)

(conditional‡) xy � z =⇒ x � y → z

Each model of these axioms can be reduced, in the same way as

before, to a Heyting algebra. If the two axioms (conditional†) and

(conditional‡) for the conditional are omitted, the residual system

characterizes the class of distributive lattices with zero.
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Other system of probability axioms for intuitionistic logic have

been given in

van Fraassen, B.C. [1981]. ‘Probabilistic Semantics Ob-

jectified: I. Postulates and Logics’. Journal of Philosophical

Logic 10, pp. 371-394

Morgan, C.G. & Leblanc, H. [1983a]. ‘Probabilistic Se-

mantics for Intuitionistic Logic’. Notre Dame Journal for Formal

Logic XXIV, pp. 161-80

Morgan, C.G. & Leblanc, H. [1983b]. ‘Probability The-

ory, Intuitionism, Semantics, and the Dutch Book Argument’. Not-

re Dame Journal for Formal Logic XXIV, pp. 289-304

None of these sytems, including our own, is entirely satisfactory.

The system of Morgan & Leblanc contains the axiom

(43) p(x → y | z) = p(y |xz)

which does not hold generally for the classical conditional (that is,

it fails in B+ when we write x → y = x′ ∨ y); though one half of

it,

(44) p(x → y | z) ≥ p(y |xz)

is classically correct. Indeed, a classic result of D.K. Lewis, ex-

tended to B+ by Leblanc & Roeper, shows that (43) does not

hold for any operation →. The system of van Fraassen, on the

other hand, from the outset simply excludes the possibility that

probabilistically indistinguishable elements might not be intersub-

stitutable in the second argument of p. In this way it manages to

miss some of the more interesting problems.
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The main bother with the system H+ is the axiom (conditional‡),
which more or less postulates outright that probabilistic indistingu-

ishability is a congruence, and comes close to postulating outright

the principal relative pseudocomplement properties for the opera-

tion →. To be sure, it is not as strong as

(45) p(xy |w) ≤ p(z |w) =⇒ p(x |w) ≤ p(y → z |w)

but it is still an unattractive axiom.

It may be asked whether this axiom (conditional‡) can not be

replaced by the converse of (conditional†), so that we assume about

the conditional → only the identity

(conditional?) p(x → y |xz) = p(y |xz)

(which is classically correct). The answer is No. Unlike (43), the

identity (conditional?) is insufficient to ensure that probabilistic

indistinguishability is a congruence. We show this by constructing

a model in which hold all the axioms of the system H+, except

(conditional‡), and also (conditional?) holds.
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Consider the 4-element Heyting algebra depicted below, where ∂

is a (pseudo)metric operation and α ≤ γ < 1.

⊥ x
a x
c x
> x

}α}γ}1

Define

µ(x, z) =
∂(xz,⊥)

∂(z,⊥)
if z 6= ⊥

µ(x,⊥) = 1

The following tables identify for each row x and column z the

element z → x and the value of µ(x, z).

z → x > c a ⊥
> > > > >
c c > > >
a a a > >
⊥ ⊥ ⊥ ⊥ >

µ(x, z) > c a ⊥
> 1 1 1 1

c γ 1 1 1

a α α/γ 1 1

⊥ 0 0 0 1

All the axioms of H+ hold in this model if α < γ. If α = γ < 1,

however, the controversial axiom (conditional‡) fails, and probabil-

istic indistinguishability is no longer a congruence. For a and c are

probabilistically indistinguishable, yet c → a, which is identical

with a, is not indistinguishable from c → c, which is identical

with >.



Indeed

∀y[µ(>c, y) ≤ µ(a, y)]

(since >c = c), yet

µ(>,>) = 1 > α = µ(a,>) = µ(c → a,>).

It is worth noting that when α < γ < 1, so that the Heyting

algebra is a model for the whole of H+, the classically correct in-

equality (44) fails. For

µ(c → a,>) = µ(a, t) = α < α/γ = µ(a, c) = µ(a, c>)

(44) therefore plays a role in the theory of probability somewhat

similar to that played by Peirce’s law in logic. It would be inter-

esting if it turned out that the addition of this axiom to H+ were

to produce a system logically equivalent to B+.

What is clear, is this: in any class of structures in which there

exists an operation, in this case the conditional, that is not con-
tinuous, a strong axiom will be needed to ensure that probabilistic

indistinguishability is a congruence. The conditional is not contin-

uous in any Heyting algebra (unless it is a Boolean algebra), since

there may be two adjacent elements x, z of the algebra, such as a

and c in our example, such that x → y is not adjacent to z → y,

or y → x is not adjacent to y → z. (Neither a → a nor c → c,

each of which is >, is adjacent to c → a, which is a.)
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It is intriguing too that those varieties of algebras that we have suc-

ceeded in giving decent probabilistic characterizations of — lower

semilattices, distributive lattices (with or without zero), Boolean

algebras — these were, with Heyting algebras, almost exactly the

varieties singled out also by van Fraassen [1981] for probabi-

listic treatment — are also those varieties that are, in the term-

inology of Kalicki & Scott [1955], equationally complete.

What this means is that it is impossible to add to the theory of

the variety any equation that does not trivialize the theory. The

variety of lattices is not equationally complete, since we can add

the modular law or the distributive law. Heyting algebras are not

equationally complete, for we may add the identity x′′ = x, for

example, and obtain the subvariety of Boolean algebras.

Otherwise put: if A is an equation and A an algebra in which every

substitution instance of A is true, then every substitution instance

of A is true in every other algebra in the variety.

Equational completeness is crucial to the present response to Stal-

naker, Harper, and Leblanc & van Fraassen. In H+ it

is not admissible to define z ` x by the identity p(x | zx′) = 1, for

there are models of H+ (Boolean algebras) in which every substit-

ution instance of x′′ ' x holds , even though x′′ = x is not a law

of intuitionistic logic.

Yet equationally complete varieties and varieties in which all op-

erations are continuous are not the same. Both meet and join are

continuous in modular lattices, but modular lattices do not com-

prise an equationally complete variety.

More work is needed on the problem of why it is so difficult to give

a decent probabilistic characterization of intuitionistic logic . . . .
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