
Adjacency labelling for planar graphs

Vida Dujmović

Carleton University

Pat Morin

University of Ottawa

DIMAP Seminar

University of Warwick, March 1, 2021

Université libre de Bruxelles

Gwenaël Joret

Jagiellonian University

Piotr Micek

Université Grenoble Alpes

Louis Esperet

Université de Bordeaux

Cyril Gavoille

Centre for Discrete Mathematics and its Applications

Adjacency labelling for planar graphs

DIMAP Seminar

University of Warwick, March 1, 2021
Centre for Discrete Mathematics and its Applications

adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

G

adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

000

010 011

001

100

110 111

101
G

adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

000

010 011

001

100

110 111

101
G

A(000, 100) = 1

adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

000

010 011

001

100

110 111

101
G

A(000, 100) = 1

A(010, 111) = 0

. (G, `) works with A

A family of graphs G has an

f(n)-bit adjacency labelling scheme
if∃ a function A : ({0, 1}∗)2 → {0, 1}

∀
such that

n-vertex graph G ∈ G ∃ ` : V (G)→ {0, 1}∗ such that

. |`(v)| 6 f(n) for each v in G

. (G, `) works with A

A family of graphs G has an

f(n)-bit adjacency labelling scheme
if∃ a function A : ({0, 1}∗)2 → {0, 1}

∀
such that

n-vertex graph G ∈ G ∃ ` : V (G)→ {0, 1}∗ such that

. |`(v)| 6 f(n) for each v in G

Theorem. The family of planar graphs has a

(1 + o(1)) log n-bit adjacency labelling scheme.

Examples

. when G contains a single n-vertex graph
labels ≡ unique ids of length

000

001

010

011
100

101

110

111

function A ≡ adjacency matrix

000 001 010 011 100 101 . . .

000

001

010

011

100

101

0

1

1

0

1

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

. . .
.
.
.

dlog ne

A

G

Examples

. when G contains a single n-vertex graph
labels ≡ unique ids of length
function A ≡ adjacency matrix

dlog ne
than dlog ne
you cannot do better

Examples

. when G contains a single n-vertex graph
labels ≡ unique ids of length
function A ≡ adjacency matrix

dlog ne

. when G is a family of linear forests
labels ≡ unique ids assigned along the paths

000 001 010 011 100 101 110 111

plus an extra bit
indicating . . .

than dlog ne
you cannot do better

Examples

. when G contains a single n-vertex graph
labels ≡ unique ids of length
function A ≡ adjacency matrix

dlog ne

. when G is a family of linear forests
labels ≡ unique ids assigned along the paths

plus an extra bit

100 · 0 111 · 1 if a vertex is adjacent
to a vertex to the left

indicating . . .

log n+O(1) scheme

than dlog ne
you cannot do better

Examples

. when G contains a single n-vertex graph
labels ≡ unique ids of length
function A ≡ adjacency matrix

dlog ne

. when G is a family of linear forests
labels ≡ unique ids assigned along the paths

plus an extra bit

100 · 0 111 · 1 if a vertex is adjacent
to a vertex to the left

indicating . . .

log n+O(1) scheme
. when G is a family of planar graphs

take a vertex ordering witnessing that G is 5-degenerate

6 5 assign unique ids
labels ≡ concatenation of
vertex id and ids of left neighbors

6dlog ne scheme

than dlog ne
you cannot do better

Forests

log n+O(log log n)-bit scheme
(Chung 1990)

history and related work

Forests

log n+O(log log n)-bit scheme
(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

history and related work

Forests

log n+O(log log n)-bit scheme
(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

history and related work

log n+O(1)-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017)

Forests

log n+O(log log n)-bit scheme

planar graphs have

(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

(3 + o(1)) log n-bit
scheme

=⇒

history and related work

log n+O(1)-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) arboricity 3

Forests

log n+O(log log n)-bit scheme

planar graphs have

(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

Bounded treewidth graphs

(1 + o(1)) log n-bit scheme
(Gavoille, Labourel 2007)

(3 + o(1)) log n-bit
scheme

=⇒

history and related work

log n+O(1)-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) arboricity 3

Forests

log n+O(log log n)-bit scheme

planar graphs have

(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

Bounded treewidth graphs

(1 + o(1)) log n-bit scheme
(Gavoille, Labourel 2007)

every graph with no Kt-minor
can be edge 2-colored so that
each monochromatic subgraph has bounded tw

=⇒
(2 + o(1)) log n-bit

(3 + o(1)) log n-bit
scheme

scheme

=⇒

history and related work

log n+O(1)-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) arboricity 3

Forests

log n+O(log log n)-bit scheme

planar graphs have

(Chung 1990)

log n+O(log∗ n)-bit scheme
(Alstrup, Rauhe 2006)

Bounded treewidth graphs

(1 + o(1)) log n-bit scheme
(Gavoille, Labourel 2007)

every graph with no Kt-minor
can be edge 2-colored so that
each monochromatic subgraph has bounded tw

=⇒
(2 + o(1)) log n-bit

(3 + o(1)) log n-bit
scheme

scheme

Planar graphs

(
4
3 + o(1)

)
log n-bit scheme

(Bonamy, Gavoille, Pilipczuk 2020)

=⇒

history and related work

log n+O(1)-bit scheme
(Alstrup, Dahlgaard, Knudsen 2017) arboricity 3

strong product of graphs �

� =

The strong product H � P of two graphs H and P is the graphs whose
vertex set is the Cartesian product V (H � P) = V (H)× V (P) and
in which two distinct vertices (x1, y1) and (x2, y2) are adjacent if

x1x2 ∈ E(H) and y1y2 ∈ E(P)

x1 = x2 and y1y2 ∈ E(P)x1, x2 ∈ E(H) and y1 = y2 or
or

strong product of graphs �

� =

The strong product H � P of two graphs H and P is the graphs whose
vertex set is the Cartesian product V (H � P) = V (H)× V (P) and
in which two distinct vertices (x1, y1) and (x2, y2) are adjacent if

x1x2 ∈ E(H) and y1y2 ∈ E(P)

x1 = x2 and y1y2 ∈ E(P)x1, x2 ∈ E(H) and y1 = y2 or
or

strong product of graphs �

� =

The strong product H � P of two graphs H and P is the graphs whose
vertex set is the Cartesian product V (H � P) = V (H)× V (P) and
in which two distinct vertices (x1, y1) and (x2, y2) are adjacent if

x1x2 ∈ E(H) and y1y2 ∈ E(P)

x1 = x2 and y1y2 ∈ E(P)x1, x2 ∈ E(H) and y1 = y2 or
or

strong product of graphs �

� =

The strong product H � P of two graphs H and P is the graphs whose
vertex set is the Cartesian product V (H � P) = V (H)× V (P) and
in which two distinct vertices (x1, y1) and (x2, y2) are adjacent if

x1x2 ∈ E(H) and y1y2 ∈ E(P)

x1 = x2 and y1y2 ∈ E(P)x1, x2 ∈ E(H) and y1 = y2 or
or

product structure theorem

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2020)
Every planar graph G is a subgraph of a strong product H � P where
H is a graph of treewidth at most 8 and P is a path.

H �

G

⊆

tw(H) 6 8 path P

Product structure theorem
Every planar graph G is a subgraph of a strong product

P is a path.
H � P where H is a graph of treewidth at most 8 and

Product structure theorem
Every planar graph G is a subgraph of a strong product

P is a path.
H � P where H is a graph of treewidth at most 8 and

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
queue layouts of planar graphs with 49 queues

Product structure theorem
Every planar graph G is a subgraph of a strong product

P is a path.
H � P where H is a graph of treewidth at most 8 and

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors

Product structure theorem
Every planar graph G is a subgraph of a strong product

P is a path.
H � P where H is a graph of treewidth at most 8 and

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors

(Dębski, Felsner, PM, Schröder 2020)
p-center colorings of planar graphs with O(p3 log p) colors

Product structure theorem
Every planar graph G is a subgraph of a strong product

P is a path.
H � P where H is a graph of treewidth at most 8 and

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors

(Dębski, Felsner, PM, Schröder 2020)
p-center colorings of planar graphs with O(p3 log p) colors

(Dvořák, Sereni 2020)
planar graphs are fractionally td-fragile at rate O(a3 log a)

Product structure theorem
Every planar graph G is a subgraph of a strong product

P is a path.
H � P where H is a graph of treewidth at most 8 and

(Dujmović, Joret, Morin, PM, Ueckerdt, Wood 2019)
queue layouts of planar graphs with 49 queues

(Dujmović, Esperet, Joret, Walczak, Wood 2020)
nonrepetitive colorings of planar graphs with 768 colors

(Dębski, Felsner, PM, Schröder 2020)
p-center colorings of planar graphs with O(p3 log p) colors

(Dvořák, Sereni 2020)
planar graphs are fractionally td-fragile at rate O(a3 log a)

(Bonamy, Gavoille, Pilipczuk 2020)
planar graphs have a

(
4
3 + o(1)

)
log n-bit scheme

labelling scheme through the Product Structure Thm

H �G ⊆

tw(H) 6 8 path P
m vertices h vertices

(1 + o(1)) logm-bit (1 + o(1)) log h-bit schemes

(1 + o(1)) log(m · h)

n vertices

all we can say is m 6 n and h 6 n, so we get
(1 + o(1)) log(n · n)-bit

(2 + o(1)) log(n)-bit

plus 8 · 3 bits to check if
edge in H � P is present in G

(
4
3 + o(1)

)
log n-bit scheme

...

...

...

P


n1/3

H

{

{

. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

boundary

boundary

(
4
3 + o(1)

)
log n-bit scheme

...

...

...

PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

boundary
{

{
boundary


n1/3

(
4
3 + o(1)

)
log n-bit scheme

...

...

...

PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

boundary
{

{
boundary


n1/3

(
4
3 + o(1)

)
log n-bit scheme

...

...

...

PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

. each piece between the cuts
is a subgraph of H � P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n

-bit scheme

boundary
{ 

n1/3

where |P ′| = n1/3

(
4
3 + o(1)

)
log n-bit scheme

...

...

...

PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

. each piece between the cuts
is a subgraph of H � P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n

-bit scheme
. boundary vertices get shorter labels(

2
3 + o(1)

)
log n-bit length

boundary
{ 

n1/3

where |P ′| = n1/3

(
4
3 + o(1)

)
log n-bit scheme

...

...

...

PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

. each piece between the cuts
is a subgraph of H � P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n

-bit scheme
. boundary vertices get shorter labels(

2
3 + o(1)

)
log n-bit length

. the graph induced by boundary vertices
has bounded treewidth and size O(n2/3)(
2
3 + o(1)

)
log n-bit scheme

in total:
(
4
3 + o(1)

)
log n-bit scheme

boundary
{ 

n1/3

where |P ′| = n1/3

special case: induced subgraphs of P � P

h

m

G is an n-vertex subgraph of this

special case: induced subgraphs of P � P

h

m

G is an n-vertex subgraph of this

n1

n2

nh

...

∑
ni = n

Idea: let the rows with many vertices have shorter labels

weighted scheme for paths: preliminaries (1)
(Elias 1975)
There exists a prefix-free code γ : N→ {0, 1}∗ such that
for each i ∈ N, |γ(i)| 6 2blog(i+ 1)c+ 1 ∈ O(log i).

Prefix-free codes are useful as we are able to decode a concatenation.

A binary search tree T is a binary tree whose node set V (T) consists of
distinct real numbers and that has the property:

For each node x in T ,
z < x for each node z in x’s left subtree and
z > x for each node z in x’s right subtree.

σT (x) is lexicographically less than σT (y)

x < y

m

weighted scheme for paths: preliminaries (2)

S finite subset of R
w : S → R+ weight function

There exists a binary search tree T with V (T) = S such that
dT (y) 6 log(W)− log(w(y)), for each y ∈ S.

W =
∑

s∈S w(s)

Observation

To construct the tree:

weighted scheme for paths: preliminaries (2)

S finite subset of R
w : S → R+ weight function

There exists a binary search tree T with V (T) = S such that
dT (y) 6 log(W)− log(w(y)), for each y ∈ S.

W =
∑

s∈S w(s)

∑
z∈S
z<s

w(z) 6W/2 and
∑

z∈S
z>s

w(z) < W/2

. then recurse on {z | z ∈ S and z < s} and {z | z ∈ S and z < s}

. choose the root of T to be the unique node s ∈ S such that

to obtain the left and right subtrees of s, respectively.

Observation

x, y nodes in bst T such that x < y and there is no z in T with x < z < y,
so x and y are consecutive in the sort of V (T).
Then
. if y has no left child, σT (x) is obtained from σT (y) by

removing all trailing 0’s and the last 1;
. if y has a left child, σT (x) is obtained from σT (y) by

appending a 0 followed by dT (y)− dT (x)− 1 1’s.

Thus, there exists a universal function D : ({0, 1}∗)2 → {0, 1}∗ such that
for every bst T with x, y being consecutive in V (T), there exists
δT (y) ∈ {0, 1}∗ with |δT (y)| = O(log h(T)) such that

D(σT (y), δT (y)) = σT (x).

weighted scheme for paths: preliminaries (3)

weighted scheme for paths

There exists a universal function A : ({0, 1}∗)2 → {−1, 0, 1,⊥} such that,
for any h ∈ N, and any weight function w : {1, . . . , h} → R+

there is a prefix-free code α : {1, . . . , h} → {0, 1}∗ such that

. for each i ∈ {1, . . . , h}, |α(i)| = logW − logw(i) +O(log log h);

A(α(i), α(j)) =


0 if j = i;
1 if j = i+ 1;
−1 if j = i− 1;
⊥ otherwise.

. for any i, j ∈ {1, . . . , h}, where W =
∑h

i=1 w(i)

h

m

n1

n2

nh

...

∑
ni = n

h

m

n1

n2

nh

...

∑
ni = n

row label: log n− log ni + o(log n)

column label: log ni + o(log n)

for v = (i, j) in G

weighted scheme

define label(v)as a concatenation of

h

m

n1

n2

nh

...

∑
ni = n

row label: log n− log ni + o(log n)

column label: log ni + o(log n)

for v = (i, j) in G

weighted scheme

Gi

define label(v)as a concatenation of

h

m

given label(v), label(w)

h

m

given label(v), label(w)

. if row(v) = row(w) then column labels will do
YES
NONO

h

m

given label(v), label(w)

. if row(v) = row(w) then column labels will do
YES
NO
YES

h

m

given label(v), label(w)

. if row(v) = row(w) then column labels will do

. if | row(v)− row(w)| > 1 then output NO

YES
NO

h

m

Gi

given label(v), label(w)

. if row(v) = row(w) then column labels will do

. if | row(v)− row(w)| > 1 then output NO

YES
NO

. if | row(v)− row(w)| = 1 then ???

Gi+1

h

m

Gi

Gi+1

row label: log n− log ni + o(log n)

column label: log ni + o(log n)

transition label: o(log n)

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

fractional cascading

a-chunking sequence

X,Y ⊂ R a > 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS 6 x 6 maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

a-chunking sequence

Lemma For any finite sets S1, . . . , Sh ⊂ R and any integer a > 1,
there exist sets V1, . . . , Vh ⊂ R such that
. Vy ⊇ Sy, for each y ∈ {1, . . . , h};
. V1, . . . , Vh is a-chunking;

X,Y ⊂ R a > 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS 6 x 6 maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

.
∑
|Vy| 6

(
a+1
a

)2 ·∑ |Sy|.

a-chunking sequence

Lemma
there exist sets V1, . . . , Vh ⊂ R such that
. Vy ⊇ Sy, for each y ∈ {1, . . . , h};

X,Y ⊂ R a > 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS 6 x 6 maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

a = 1

For any finite sets S1, . . . , Sh ⊂ R and any integer a = 1,

. V1, . . . , Vh is 1-chunking;

.
∑
|Vy| 6 4 ·

∑
|Sy|.

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

. insertions

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

. insertions

. deletions

h

m

T1

T2

Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

. insertions

. deletions

. rebalancing

. insertions
h(T ′) 6 h(Ti) + 1

no impact on signatures of elements that are in both Ti and Ti+1

. insertions
h(T ′) 6 h(Ti) + 1

no impact on signatures of elements that are in both Ti and Ti+1

. deletions
with a standard bst algorithm

h(T ′′) 6 h(T ′)

signatures of elements in T ′′ are prefixes of their signatures in T ′

1
4 |T
′| 6 |T ′′| 6 |T ′| log |T ′| 6 log |T ′′|+ 2

. insertions
h(T ′) 6 h(Ti) + 1

no impact on signatures of elements that are in both Ti and Ti+1

. deletions
with a standard bst algorithm

h(T ′′) 6 h(T ′)

signatures of elements in T ′′ are prefixes of their signatures in T ′

1
4 |T
′| 6 |T ′′| 6 |T ′| log |T ′| 6 log |T ′′|+ 2

. rebalancing
balance(x, k)

. insertions
h(T ′) 6 h(Ti) + 1

no impact on signatures of elements that are in both Ti and Ti+1

. deletions
with a standard bst algorithm

h(T ′′) 6 h(T ′)

signatures of elements in T ′′ are prefixes of their signatures in T ′

1
4 |T
′| 6 |T ′′| 6 |T ′| log |T ′| 6 log |T ′′|+ 2

. rebalancing
balance(x, k)

effect on signature can
be encoded in
O(k log log n) bits

h(Ti) 6 log |Ti|+O(1
k log |Ti|)

so we have a trade-off:
transition code of length O(k log log n)

vs
signatures of length log |Ti|+O(1

k log |Ti|)

so we have a trade-off:
transition code of length O(k log log n)

vs
signatures of length log |Ti|+O(1

k log |Ti|)

optimized choice k =
√

logn
log logn

optimized choice k =
√

logn
log logn

resulting labels of length

log |Ti|+O(
√

log n log log n)

log n− log |Ti|+O(log log n)

optimized choice k =
√

logn
log logn

resulting labels of length

log |Ti|+O(
√

log n log log n)

log n− log |Ti|+O(log log n)
missing pieces?

universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}

universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}

Corollary
n-vertex planar graphs have a universal graph on n1+o(1) vertices

universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}

Corollary
n-vertex planar graphs have a universal graph on n1+o(1) vertices

Theorem [Esperet, Joret, Morin 2020+]
n-vertex planar graphs have a universal graph on n1+o(1) vertices

and n1+o(1) edges

open problems

. what is the asymptotics of the lower order term?
log n+O(

√
log n log log n)

+Ω(1)

open problems

. what is the asymptotics of the lower order term?
log n+O(

√
log n log log n)

+Ω(1)

. adjacency labelling for Kt-minor free graphs?
2 log n+ o(log n)

open problems

. what is the asymptotics of the lower order term?
log n+O(

√
log n log log n)

+Ω(1)

. adjacency labelling for Kt-minor free graphs?
2 log n+ o(log n)

Thank you.

