
Adjacency labelling for planar graphs

Vida Dujmović

Carleton University

Pat Morin

University of Ottawa

DIMAP Seminar

University of Warwick, March 1, 2021

Université libre de Bruxelles

Gwenaël Joret

Jagiellonian University

Piotr Micek

Université Grenoble Alpes

Louis Esperet

Université de Bordeaux

Cyril Gavoille

Centre for Discrete Mathematics and its Applications



Adjacency labelling for planar graphs

DIMAP Seminar

University of Warwick, March 1, 2021
Centre for Discrete Mathematics and its Applications



adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

G



adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

000

010 011

001

100

110 111

101
G



adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

000

010 011

001

100

110 111

101
G

A(000, 100) = 1



adjacency tester A : ({0, 1}∗)2 → {0, 1}
labelling function ` : V (G)→ {0, 1}∗

(G, `) works with A if

A(`(v), `(w)) =

{
0 if vw 6∈ E(G)

1 if vw ∈ E(G)

000

010 011

001

100

110 111

101
G

A(000, 100) = 1

A(010, 111) = 0



. (G, `) works with A

A family of graphs G has an

f(n)-bit adjacency labelling scheme
if∃ a function A : ({0, 1}∗)2 → {0, 1}

∀
such that

n-vertex graph G ∈ G ∃ ` : V (G)→ {0, 1}∗ such that

. |`(v)| 6 f(n) for each v in G



. (G, `) works with A

A family of graphs G has an

f(n)-bit adjacency labelling scheme
if∃ a function A : ({0, 1}∗)2 → {0, 1}

∀
such that

n-vertex graph G ∈ G ∃ ` : V (G)→ {0, 1}∗ such that

. |`(v)| 6 f(n) for each v in G

Theorem. The family of planar graphs has a

(1 + o(1)) log n-bit adjacency labelling scheme.
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Examples

. when G contains a single n-vertex graph
labels ≡ unique ids of length
function A ≡ adjacency matrix

dlog ne

. when G is a family of linear forests
labels ≡ unique ids assigned along the paths

plus an extra bit

100 · 0 111 · 1 if a vertex is adjacent
to a vertex to the left

indicating . . .

log n+O(1) scheme
. when G is a family of planar graphs

take a vertex ordering witnessing that G is 5-degenerate

6 5 assign unique ids
labels ≡ concatenation of
vertex id and ids of left neighbors

6dlog ne scheme

than dlog ne
you cannot do better
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Planar graphs

(
4
3 + o(1)

)
log n-bit scheme

(Bonamy, Gavoille, Pilipczuk 2020)
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product structure theorem
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labelling scheme through the Product Structure Thm

H �G ⊆

tw(H) 6 8 path P
m vertices h vertices

(1 + o(1)) logm-bit (1 + o(1)) log h-bit schemes

(1 + o(1)) log(m · h)

n vertices

all we can say is m 6 n and h 6 n, so we get
(1 + o(1)) log(n · n)-bit

(2 + o(1)) log(n)-bit

plus 8 · 3 bits to check if
edge in H � P is present in G



(
4
3 + o(1)

)
log n-bit scheme
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...

...
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. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

boundary
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PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

. each piece between the cuts
is a subgraph of H � P ′
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4
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so that there are O(n2/3) vertices
in boundary layers

. each piece between the cuts
is a subgraph of H � P ′

(1 + o(1)) log(n · n1/3) ≡
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4
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)
log n
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)
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PH. "remove" every other n1/3 edge of the path P
so that there are O(n2/3) vertices
in boundary layers

. each piece between the cuts
is a subgraph of H � P ′

(1 + o(1)) log(n · n1/3) ≡
(
4
3 + o(1)

)
log n

-bit scheme
. boundary vertices get shorter labels(

2
3 + o(1)

)
log n-bit length

. the graph induced by boundary vertices
has bounded treewidth and size O(n2/3)(
2
3 + o(1)

)
log n-bit scheme

in total:
(
4
3 + o(1)

)
log n-bit scheme

boundary
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n1/3

where |P ′| = n1/3
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special case: induced subgraphs of P � P

h

m

G is an n-vertex subgraph of this

n1

n2

nh

...

∑
ni = n

Idea: let the rows with many vertices have shorter labels



weighted scheme for paths: preliminaries (1)
(Elias 1975)
There exists a prefix-free code γ : N→ {0, 1}∗ such that
for each i ∈ N, |γ(i)| 6 2blog(i+ 1)c+ 1 ∈ O(log i).

Prefix-free codes are useful as we are able to decode a concatenation.

A binary search tree T is a binary tree whose node set V (T ) consists of
distinct real numbers and that has the property:

For each node x in T ,
z < x for each node z in x’s left subtree and
z > x for each node z in x’s right subtree.

σT (x) is lexicographically less than σT (y)

x < y

m



weighted scheme for paths: preliminaries (2)

S finite subset of R
w : S → R+ weight function

There exists a binary search tree T with V (T ) = S such that
dT (y) 6 log(W )− log(w(y)), for each y ∈ S.

W =
∑

s∈S w(s)

Observation



To construct the tree:

weighted scheme for paths: preliminaries (2)

S finite subset of R
w : S → R+ weight function

There exists a binary search tree T with V (T ) = S such that
dT (y) 6 log(W )− log(w(y)), for each y ∈ S.

W =
∑

s∈S w(s)

∑
z∈S
z<s

w(z) 6W/2 and
∑

z∈S
z>s

w(z) < W/2

. then recurse on {z | z ∈ S and z < s} and {z | z ∈ S and z < s}

. choose the root of T to be the unique node s ∈ S such that

to obtain the left and right subtrees of s, respectively.

Observation



x, y nodes in bst T such that x < y and there is no z in T with x < z < y,
so x and y are consecutive in the sort of V (T ).
Then
. if y has no left child, σT (x) is obtained from σT (y) by

removing all trailing 0’s and the last 1;
. if y has a left child, σT (x) is obtained from σT (y) by

appending a 0 followed by dT (y)− dT (x)− 1 1’s.

Thus, there exists a universal function D : ({0, 1}∗)2 → {0, 1}∗ such that
for every bst T with x, y being consecutive in V (T ), there exists
δT (y) ∈ {0, 1}∗ with |δT (y)| = O(log h(T )) such that

D(σT (y), δT (y)) = σT (x).

weighted scheme for paths: preliminaries (3)



weighted scheme for paths

There exists a universal function A : ({0, 1}∗)2 → {−1, 0, 1,⊥} such that,
for any h ∈ N, and any weight function w : {1, . . . , h} → R+

there is a prefix-free code α : {1, . . . , h} → {0, 1}∗ such that

. for each i ∈ {1, . . . , h}, |α(i)| = logW − logw(i) +O(log log h);

A(α(i), α(j)) =


0 if j = i;
1 if j = i+ 1;
−1 if j = i− 1;
⊥ otherwise.

. for any i, j ∈ {1, . . . , h}, where W =
∑h

i=1 w(i)
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define label(v)as a concatenation of
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Gi

define label(v)as a concatenation of
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given label(v), label(w)
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given label(v), label(w)

. if row(v) = row(w) then column labels will do

. if | row(v)− row(w)| > 1 then output NO

YES
NO



h

m

Gi

given label(v), label(w)

. if row(v) = row(w) then column labels will do

. if | row(v)− row(w)| > 1 then output NO

YES
NO

. if | row(v)− row(w)| = 1 then ???

Gi+1



h

m

Gi

Gi+1

row label: log n− log ni + o(log n)

column label: log ni + o(log n)

transition label: o(log n)
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Th

(T1, T2, . . . , Th) – a trace of a single dynamic binary search tree

...

fractional cascading



a-chunking sequence

X,Y ⊂ R a > 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS 6 x 6 maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy



a-chunking sequence

Lemma For any finite sets S1, . . . , Sh ⊂ R and any integer a > 1,
there exist sets V1, . . . , Vh ⊂ R such that
. Vy ⊇ Sy, for each y ∈ {1, . . . , h};
. V1, . . . , Vh is a-chunking;

X,Y ⊂ R a > 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS 6 x 6 maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

.
∑
|Vy| 6

(
a+1
a

)2 ·∑ |Sy|.



a-chunking sequence

Lemma
there exist sets V1, . . . , Vh ⊂ R such that
. Vy ⊇ Sy, for each y ∈ {1, . . . , h};

X,Y ⊂ R a > 1

X a-chunks Y if, for any a+ 1-element subset S ⊆ Y , there exists x ∈ X,
such that

minS 6 x 6 maxS

V1, . . . , Vh is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

a = 1

For any finite sets S1, . . . , Sh ⊂ R and any integer a = 1,

. V1, . . . , Vh is 1-chunking;

.
∑
|Vy| 6 4 ·

∑
|Sy|.
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. insertions
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. rebalancing
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. insertions
h(T ′) 6 h(Ti) + 1

no impact on signatures of elements that are in both Ti and Ti+1

. deletions
with a standard bst algorithm

h(T ′′) 6 h(T ′)

signatures of elements in T ′′ are prefixes of their signatures in T ′

1
4 |T
′| 6 |T ′′| 6 |T ′| log |T ′| 6 log |T ′′|+ 2

. rebalancing
balance(x, k)

effect on signature can
be encoded in
O(k log log n) bits

















h(Ti) 6 log |Ti|+O( 1
k log |Ti|)
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optimized choice k =
√

logn
log logn

resulting labels of length

log |Ti|+O(
√

log n log log n)

log n− log |Ti|+O(log log n)
missing pieces?



universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.



universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}



universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}

Corollary
n-vertex planar graphs have a universal graph on n1+o(1) vertices



universal graphs

Observation [Kannan, Naor, Rudich 1988]
A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph Un such that
. |V (Un)| = 2f(n);
. G is an induced subgraph of Un, for each G in C.

Proof.
V (Un) = {0, 1}f(n)

E(Un) = {uv | A(u, v) = 1}

Corollary
n-vertex planar graphs have a universal graph on n1+o(1) vertices

Theorem [Esperet, Joret, Morin 2020+]
n-vertex planar graphs have a universal graph on n1+o(1) vertices

and n1+o(1) edges
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open problems

. what is the asymptotics of the lower order term?
log n+O(

√
log n log log n)

+Ω(1)

. adjacency labelling for Kt-minor free graphs?
2 log n+ o(log n)

Thank you.


