An O(log log m) Prophet Inequality for Subadditive Combinatorial Auctions

Paul Dütting

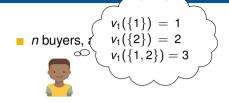
Google Research, Switzerland

Warwick DIMAP Seminar November 1, 2021

Joint work with
Thomas Kesselheim (University of Bonn) and Brendan Lucier (Microsoft Research)

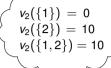
n buyers, arriving one by one

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare



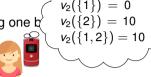
- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one b



- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one b



- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one by one

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one by one

$$v_3(\{2\}) = v_3\{1,2\}) =$$

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one by one

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one by one

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

n buyers, arriving one by one

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare
- $\mathbf{v}_i \sim \mathcal{D}_i$ independently; \mathcal{D}_i known in advance

Subadditive Valuations

Definition

A valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ is *subadditive* if

$$v_i(S \cup T) \le v_i(S) + v_i(T)$$
 for all $S, T \subseteq [m]$

Subadditive Valuations

Definition

A valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ is *subadditive* if

$$v_i(S \cup T) \le v_i(S) + v_i(T)$$
 for all $S, T \subseteq [m]$

Definition

A valuation function $v_i: 2^{[m]} o \mathbb{R}_{\geq 0}$ is XOS if

$$v_i(S) = \max_{\ell} \sum_{i \in S} v_{i,j}^{\ell} \quad \text{for all } S \subseteq [m]$$

Prior Work

If all valuation functions are XOS (for example submodular):

- 2-approximation of welfare via static, anonymous item prices (generalizes classic prophet inequality)
- O(1)-approximation of revenue via simple mechanism

[Feldman, Gravin, Lucier SODA 2015]

[Cai and Zhao STOC 2017]

Prior Work

If all valuation functions are XOS (for example submodular):

2-approximation of welfare
 via static, anonymous item prices
 (generalizes classic prophet inequality)

[Feldman, Gravin, Lucier SODA 2015]

 O(1)-approximation of revenue via simple mechanism [Cai and Zhao STOC 2017]

Our question: Valuations are only subadditive (i.e. $v_i(S \cup T) \le v_i(S) + v_i(T)$)

So far: Only $\Theta(\log m)$ -approximations

Our Results

If all valuation functions are subadditive (i.e. $v_i(S \cup T) \le v_i(S) + v_i(T)$):

- O(log log m)-approximation of welfare via static, anonymous item prices
- O(log log m)-approximation of revenue via simple mechanism

Our Results

If all valuation functions are subadditive (i.e. $v_i(S \cup T) \le v_i(S) + v_i(T)$):

- O(log log m)-approximation of welfare via static, anonymous item prices
- O(log log m)-approximation of revenue via simple mechanism
- Both run in polynomial time given access to demand oracles

Follow-Up Work

■ [Assadi, Kesselheim, Singla SODA'21] use our key lemma to design a truthful prior-free $O((\log \log m)^3)$)-approximation for XOS and subadditive combinatorial auctions

Outline

- The balanced prices approach
- Our new argument
- 3 Summary and open problems

The Balanced Prices Approach

The Classic Prophet Inequality

Theorem (Samuel-Cahn '84; Kleinberg & Weinberg STOC'12)

For the single-item problem,

$$\mathbf{E}[ALG(v)] \geq \frac{1}{2} \cdot \mathbf{E}[OPT(v)].$$

Set any price p.

Set any price p. Let q = probability that item is sold.

Set any price p. Let q = probability that item is sold.

How much money do we collect?

$$\mathbf{E}[\mathit{revenue}] = p \cdot q$$

$$v_5 \sim \mathcal{I}$$

Set any price p. Let q = probability that item is sold.

How much money do we collect?

$$\mathbf{E}[revenue] = p \cdot q$$

What's a buyer's utility (value minus payment)?

$$\begin{aligned} \mathbf{E}[u_i] &= \mathbf{E}[(v_i - p)^+ \cdot \mathbf{1}_{\text{nobody before } i \text{ buys}}] \\ &= \mathbf{E}[(v_i - p)^+] \cdot \mathbf{P}[\text{nobody before } i \text{ buys}] \\ &\geq \mathbf{E}[(v_i - p)^+] \cdot (1 - q) \end{aligned}$$

Putting the Pieces Together

So far:

$$\mathbf{E}[revenue] = p \cdot q$$
 and $\mathbf{E}[u_i] \ge \mathbf{E}[(v_i - p)^+] \cdot (1 - q)$

Putting the Pieces Together

So far:

$$\mathbf{E}[revenue] = p \cdot q$$
 and $\mathbf{E}[u_i] \ge \mathbf{E}[(v_i - p)^+] \cdot (1 - q)$

In combination:

$$egin{aligned} \mathbf{E}[\textit{welfare}] &= \mathbf{E}[\textit{revenue}] + \sum_i \mathbf{E}[u_i] \ &\geq p \cdot q + \sum_i \mathbf{E}[(v_i - p)^+] \cdot (1 - q) \ &\geq p \cdot q + \mathbf{E}[\max_i (v_i - p)] \cdot (1 - q) \end{aligned}$$

Putting the Pieces Together

So far:

$$\mathbf{E}[revenue] = p \cdot q$$
 and $\mathbf{E}[u_i] \ge \mathbf{E}[(v_i - p)^+] \cdot (1 - q)$

In combination:

$$egin{aligned} \mathbf{E}[\textit{welfare}] &= \mathbf{E}[\textit{revenue}] + \sum_i \mathbf{E}[u_i] \ &\geq p \cdot q + \sum_i \mathbf{E}[(v_i - p)^+] \cdot (1 - q) \ &\geq p \cdot q + \mathbf{E}[\max_i (v_i - p)] \cdot (1 - q) \end{aligned}$$

For
$$p = \frac{1}{2} \cdot \mathbf{E}[\max_i v_i]$$
 this yields

$$\mathbf{E}[\textit{welfare}] \geq \frac{1}{2} \cdot \mathbf{E}[\max_{i} v_{i}] \cdot q + \frac{1}{2} \cdot \mathbf{E}[\max_{i} v_{i}] \cdot (1 - q) = \frac{1}{2} \cdot \mathbf{E}[\max_{i} v_{i}]$$

Consider full information.

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Let $v_i = \max_k v_k$

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Let $v_i = \max_k v_k$

Case 1: Somebody i' < i buys item

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Let $v_i = \max_k v_k$

■ Case 1: Somebody i' < i buys item \Rightarrow revenue $\geq \frac{1}{2}v_i$

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Let $v_i = \max_k v_k$

- Case 1: Somebody i' < i buys item \Rightarrow revenue $\geq \frac{1}{2}v_i$
- **Case 1:** Nobody i' < i buys item

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Let $v_i = \max_k v_k$

- Case 1: Somebody i' < i buys item \Rightarrow revenue $\ge \frac{1}{2}v_i$
- Case 1: Nobody i' < i buys item $\Rightarrow u_i \ge v_i \frac{1}{2}v_i = \frac{1}{2}v_i$

Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is "balanced"

Let $v_i = \max_k v_k$

- Case 1: Somebody i' < i buys item \Rightarrow revenue $\ge \frac{1}{2}v_i$
- Case 1: Nobody i' < i buys item $\Rightarrow u_i \ge v_i \frac{1}{2}v_i = \frac{1}{2}v_i$

In either case: welfare = revenue + utilities $\geq \frac{1}{2}v_i$

n buyers, arriving one by one

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

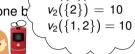
$$v_1(\{1\}) = 1$$
 $v_1(\{2\}) = 2$
 $v_1(\{1,2\}) = 3$

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

n buyers, arriving one b

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{i \in S} p_i$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

n buyers, arriving one b



- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

n buyers, arriving one by one

$$v_3(\{1\}) = 5$$

 $v_3(\{2\}) = 5$
 $v_3\{1,2\}) = 5$

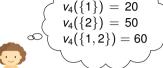
- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

n buyers, arriving one by one

$$\begin{cases} v_3(\{1\}) = 5 \\ v_3(\{2\}) = 5 \\ v_3\{1,2\}) = 5 \end{cases}$$

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

n buyers, arriving one by one



- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{i \in S} p_i$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

n buyers, arriving one by one

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$

Prophet Inequality for XOS Combinatorial Auctions

Theorem (Feldman, Gravin, Lucier SODA'15)

For any distributions $\mathcal{D}_1, \ldots, \mathcal{D}_n$ over XOS functions there exist static, anonymous item prices such that for the resulting allocation X_1, \ldots, X_n ,

$$\mathbf{E}\left[\sum_{i=1}^n v_i(X_i)\right] \geq \frac{1}{2} \cdot \mathbf{E}[OPT(v)].$$

Recall: XOS
$$\Leftrightarrow v_i(S) = \max_{\ell} \sum_{i \in S} v_{i,i}^{\ell}$$

Balanced Prices: Definition

Definition (Dütting, Feldman, Kesselheim, Lucier FOCS'17)

A valuation function v_i admits balanced prices if for every set of items $U \subseteq [m]$ there exist item prices p_j for $j \in U$ such that for all $T \subseteq U$:

- $lacksquare \sum_{j\in T} p_j \geq v_i(U) v_i(U\setminus T)$ (prices are not too low)

Balanced Prices: Definition

Definition (Dütting, Feldman, Kesselheim, Lucier FOCS'17)

A valuation function v_i admits balanced prices if for every set of items $U \subseteq [m]$ there exist item prices p_j for $j \in U$ such that for all $T \subseteq U$:

Observation: XOS functions admit balanced prices

Let
$$\ell^*$$
 be such that $v_i(U) = \sum_{j \in U} v_{i,j}^{\ell^*}$

Let
$$p_j = v_{i,j}^{\ell^*}$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ (\forall T\subseteq U)$$

$$\sum_{j\in\mathcal{T}}p_j\geq v_i(U)-v_i(U\setminus\mathcal{T})\ \, (\forall\mathcal{T}\subseteq U)$$

$$U = \{1, 2, 3\}$$

U

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ (\forall T\subseteq U)$$

$$\sum_{j\in\mathcal{T}}p_j\geq v_i(U)-v_i(U\setminus\mathcal{T})\ (\forall\mathcal{T}\subseteq U)$$

$$U = \{1, 2, 3\}$$

U

$$v_1(S) = |S|$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ (\forall T\subseteq U)$$

$$\sum_{j\in\mathcal{T}}p_j\geq v_i(U)-v_i(U\setminus\mathcal{T})\ (\forall\mathcal{T}\subseteq U)$$

$$U = \{1, 2, 3\}$$

$$v_1(S) = |S|$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ \, (\forall T\subseteq U) \qquad \checkmark \qquad \sum_{j\in T} p_j \geq v_i(U) - v_i(U\setminus T) \ \, (\forall T\subseteq U)$$

$$U = \{1, 2, 3\}$$
 $U = \{1, 2, 3\}$

$$v_1(S) = |S|$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ \ (\forall T\subseteq U) \qquad \checkmark \qquad \sum_{j\in T} p_j \geq v_i(U) - v_i(U\setminus T) \ \ (\forall T\subseteq U) \qquad \checkmark$$

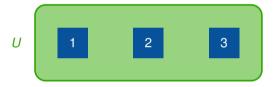
$$U = \{1, 2, 3\}$$
 $U = \{1, 2, 3\}$

$$v_1(S) = |S|$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ (\forall T\subseteq U)$$

$$\sum_{j\in\mathcal{T}}p_j\geq v_i(U)-v_i(U\setminus\mathcal{T})\ \, (\forall\mathcal{T}\subseteq U)$$

$$U = \{1, 2, 3\}$$



Example 1: Additive

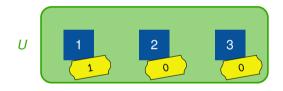
$$v_1(S) = |S|$$

$$v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ (\forall T\subseteq U)$$

$$\sum_{j\in\mathcal{T}}p_j\geq v_i(U)-v_i(U\setminus\mathcal{T})\ (\forall\mathcal{T}\subseteq U)$$

$$U = \{1, 2, 3\}$$



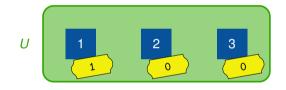
Example 1: Additive

$$v_1(S) = |S|$$

$$v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}$$

$$\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \ (\forall T \subseteq U) \qquad \checkmark \qquad \sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \ (\forall T \subseteq U)$$

$$U = \{1, 2, 3\}$$



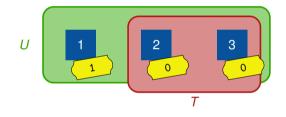
Example 1: Additive

$$v_1(S) = |S|$$

$$v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ \, (\forall T\subseteq U) \qquad \checkmark \qquad \sum_{j\in T} p_j \geq v_i(U) - v_i(U\setminus T) \ \, (\forall T\subseteq U)$$

$$U = \{1, 2, 3\}$$



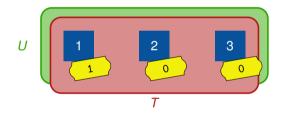
Example 1: Additive

$$v_1(S) = |S|$$

$$v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}$$

$$\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \ (\forall T \subseteq U) \qquad \checkmark \qquad \sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \ (\forall T \subseteq U)$$

$$U = \{1, 2, 3\}$$



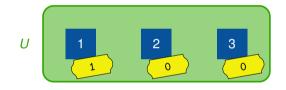
Example 1: Additive

$$V_1(S) = |S|$$

$$v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}$$

$$\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T) \ (\forall T\subseteq U) \qquad \checkmark \qquad \sum_{j\in T} p_j \geq v_i(U) - v_i(U\setminus T) \ (\forall T\subseteq U) \qquad \checkmark$$

$$U = \{1, 2, 3\}$$



Example 1: Additive

$$v_1(S) = |S|$$

$$v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}$$

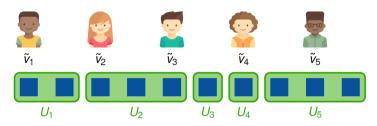
Balanced Prices: General Approximation Bound

Theorem (Dütting, Feldman, Kesselheim, Lucier FOCS'17)

If a class of valuations admits balanced prices, then for any distributions $\mathcal{D}_1, \dots, \mathcal{D}_n$ there exist static, anonymous item prices such that for the resulting allocation X_1, \dots, X_n ,

$$\mathbf{E}\left[\sum_{i=1}^n v_i(X_i)\right] \geq \frac{1}{2} \cdot \mathbf{E}[OPT(v)].$$

Setting the Prices



Fix $\tilde{v}_1, \ldots, \tilde{v}_n$

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(\tilde{v})\}$

For $j \in U_i$ set $p_j^{\tilde{v}}$ to balanced price for item j in \tilde{v}_i , U_i

Price for item j: $\bar{p}_j = \frac{1}{2} \cdot \mathbf{E}_{\tilde{v} \sim \mathcal{D}}[p_j^{\tilde{v}}]$

```
Let U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}
Set price \bar{p}_j = \frac{p_j}{2} for j \in U
Let T_i = \{j \in U_i \text{ sold to buyers } i' \neq i\}
```

Let
$$U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$$

Set price $\bar{p}_j = \frac{p_j}{2}$ for $j \in U$
Let $T_i = \{j \in U_i \text{ sold to buyers } i' \neq i\}$

Because prices are balanced:

(a)
$$\sum_{j \in U_i \setminus T_i} \bar{p}_j \leq \frac{1}{2} v_i (U_i \setminus T_i)$$

(b)
$$\sum_{j\in\mathcal{T}_i} \bar{p}_j \geq \frac{1}{2}(v_i(U_i) - v_i(U_i \setminus T_i))$$

Let
$$U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$$

Set price $\bar{p}_j = \frac{p_j}{2}$ for $j \in U$
Let $T_i = \{j \in U_i \text{ sold to buyers } i' \neq i\}$

Because prices are balanced:

(a)
$$\sum_{j \in U_i \setminus T_i} \bar{p}_j \leq \frac{1}{2} v_i (U_i \setminus T_i)$$

(b)
$$\sum_{j\in\mathcal{T}_i} \bar{p}_j \geq \frac{1}{2}(v_i(U_i) - v_i(U_i \setminus T_i))$$

Then, for the allocation X_1, \ldots, X_n , we have:

$$u_{i}(X_{i}, \bar{p}) + \sum_{j \in T_{i}} \bar{p}_{j} \geq \left(v_{i}(U_{i} \setminus T_{i}) - \sum_{j \in U_{i} \setminus T_{i}} \bar{p}_{j}\right) + \sum_{j \in T_{i}} \bar{p}_{j}$$

$$\geq \left(v_{i}(U_{i} \setminus T_{i}) - \frac{1}{2}v_{i}(U_{i} \setminus T_{i})\right) + \frac{1}{2}\left(v_{i}(U_{i}) - v_{i}(U_{i} \setminus T_{i})\right)$$

$$= \frac{1}{2}v_{i}(U_{i})$$

Let
$$U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$$

Set price $\bar{p}_j = \frac{p_j}{2}$ for $j \in U$
Let $T_i = \{j \in U_i \text{ sold to buyers } i' \neq i\}$

Because prices are balanced:

(a)
$$\sum_{j \in U_i \setminus T_i} \bar{p}_j \leq \frac{1}{2} v_i (U_i \setminus T_i)$$

(b)
$$\sum_{j\in\mathcal{T}_i} \bar{p}_j \geq \frac{1}{2}(v_i(U_i) - v_i(U_i \setminus T_i))$$

Then, for the allocation X_1, \ldots, X_n , we have:

$$\sum_{i=1}^{n} v_i(X_i) \ge \sum_{i=1}^{n} \left[u_i(X_i, \bar{p}) + \sum_{j \in T_i} \bar{p}_j \right] \ge \sum_{i=1}^{n} \left[\left(v_i(U_i \setminus T_i) - \sum_{j \in U_i \setminus T_i} \bar{p}_j \right) + \sum_{j \in T_i} \bar{p}_j \right]$$

$$\ge \sum_{i=1}^{n} \left[\left(v_i(U_i \setminus T_i) - \frac{1}{2} v_i(U_i \setminus T_i) \right) + \frac{1}{2} \left(v_i(U_i) - v_i(U_i \setminus T_i) \right) \right]$$

$$= \sum_{i=1}^{n} \frac{1}{2} v_i(U_i)$$

Beyond XOS

- Subadditive functions admit approximately balanced prices
- This way we can get a $\Theta(\log m)$ approximation
- But we cannot do better than this

Our New Argument

Lemma (Dütting, Kesselheim, Lucier FOCS'20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S\subseteq U} \lambda_S \bigg(v_i(S\setminus T) - \sum_{j\in S\setminus T} p_j \bigg) + \sum_{j\in T} p_j \geq \frac{v_i(U)}{\gamma},$$

Lemma (Dütting, Kesselheim, Lucier FOCS'20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S\subseteq U} \lambda_S \bigg(v_i(S\setminus T) - \sum_{j\in S\setminus T} p_j \bigg) + \sum_{j\in T} p_j \geq \frac{v_i(U)}{\gamma},$$

Lemma (Dütting, Kesselheim, Lucier FOCS'20)

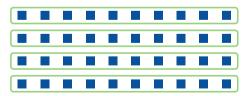
For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S\subseteq U} \lambda_S \bigg(v_i(S\setminus T) - \sum_{j\in S\setminus T} p_j \bigg) + \sum_{j\in T} p_j \geq \frac{v_i(U)}{\gamma},$$

Lemma (Dütting, Kesselheim, Lucier FOCS'20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

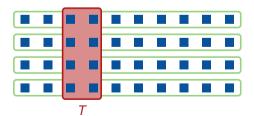
$$\sum_{S\subseteq U} \lambda_S \bigg(v_i(S\setminus T) - \sum_{j\in S\setminus T} p_j \bigg) + \sum_{j\in T} p_j \geq \frac{v_i(U)}{\gamma},$$



Lemma (Dütting, Kesselheim, Lucier FOCS'20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

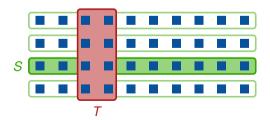
$$\sum_{S\subseteq U} \lambda_S \bigg(v_i(S\setminus T) - \sum_{j\in S\setminus T} p_j \bigg) + \sum_{j\in T} p_j \geq \frac{v_i(U)}{\gamma},$$



Lemma (Dütting, Kesselheim, Lucier FOCS'20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S\subseteq U} \lambda_S \bigg(v_i(S\setminus T) - \sum_{j\in S\setminus T} p_j \bigg) + \sum_{j\in T} p_j \geq \frac{v_i(U)}{\gamma},$$



Lemma

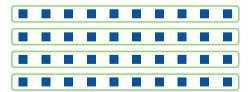
$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$

Lemma

$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$

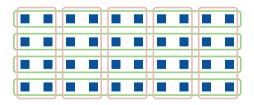
Lemma

$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$



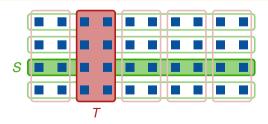
Lemma

$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$



Lemma

$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$



Claim: There is
$$\lambda$$
 such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

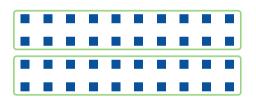
For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:i \in S} \lambda_S \leq q$

Claim: There is
$$\lambda$$
 such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

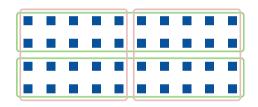
Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$



Claim: There is
$$\lambda$$
 such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

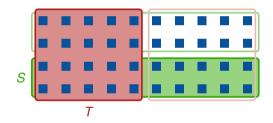
Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$



Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$



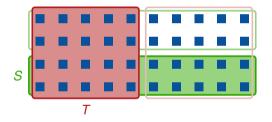
Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:i \in S} \lambda_S \leq q$

By subadditivity:

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.



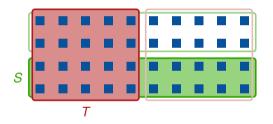
Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:i \in S} \lambda_S \leq q$

By subadditivity:

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.

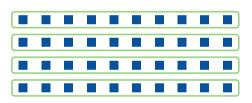


Claim: There is
$$\lambda$$
 such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For
$$q = \frac{1}{2}, \frac{1}{4}$$
:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.



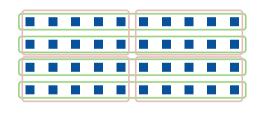
Claim: There is
$$\lambda$$
 such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For
$$q = \frac{1}{2}, \frac{1}{4}$$
:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.



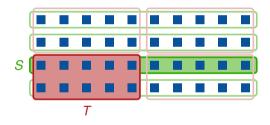
Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For
$$q = \frac{1}{2}, \frac{1}{4}$$
:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.



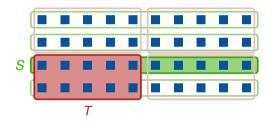
Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For
$$q = \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \dots, \frac{1}{m}$$
:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.



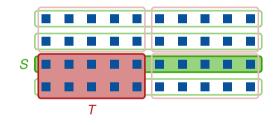
Claim: There is λ such that for all μ : $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For
$$q = \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \dots, \frac{1}{m}$$
:

Take λ that maximizes $\sum_{S} \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:

If $\mathbf{E}[v_i(S \setminus T)]$ is small then $\mathbf{E}[v_i(S \cap T)]$ is large.



Furthermore: $\Pr[j \in S \cap T] = q^2$.

 \Rightarrow One of $q = \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \dots, \frac{1}{m}$ will be good.

Additional Results in the Paper

Additional Results

- \blacksquare The $O(\log \log m)$ bound is tight for the equal marginals approach taken here
- An alternative proof of key lemma based on configuration LP, which yields an efficient algorithm
- A simple, DSIC mechanism that yields a O(log log m) approximation to the optimal revenue

Conclusion and Open Questions

Summary

- Major progress on one of the main frontiers in the posted pricing/ prophet inequalities literature
- Technique for dealing with subadditive valuations that goes beyond "approximate with XOS functions"
- Big open question: Can we get O(1)?

Thanks! Questions?