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Linear programs

@ Optimizing a linear function over a polytope

@ A general LP has the form: wl,... wk ,c € R" and #' € R

OPT = max{c'x:wl - x<0',... ,whk. -x <6<}
xERN

@ Efficiently solvable!
@ Halfspace in R" is a constraint that
divides the space, i.e., h; : R" — {0,1}

@ Let w € R" and x € {—1,1}", then a
halfspace hi(x) =1iff w-x <0,
or hi(x) = [w-x < 0]

@ Polytope is an intersection of halfspaces
@ Let w' € R", §' € R, a k-facet polytope is
P = {x Shi(X) A ho(x) Ao A hg(X)}

where h; = [w' - x < 6]

Applications: Optimization, combinatorics, geometry, computational complexity, ...




Semi-definite programs

What is an SDP?
@ Optimizing a linear function over a spectrahedron

@ A general SDP has the form: W1 ... Wk B¢ Sym,,

OPT = m:]:}\gX{CTX W4 X, W = B},
xeR"

where C < D means D — C is PSD (i.e., all eigenvalues are > 0)

-

How does it look?

@ Generalizes linear programs and still efficiently solvable!
@ Unfortunately, spectrahedra are not very well understood!

@ But SDPs have found applications in approximation theory, SoS heirarchy,
quantum computing




Pseudorandom generators

A PRG is a function that “expands” randomness

n bits
A

PRGs for a class of functions

An e-PRG for C C {F : {0,1}" — {0,1}} is a function G : {0,1}" — {0,1}" such that
for every F € C, E [F(G(x))]— E [F(u)]|<e.
x~U, u~Uy,

The seed length of G is r. Goal is to have r = polylog(-) in all relevant parameters

Holy grail. Can we design a PRG against the class of polynomial sized circuits
unconditionally? If so, would imply BPP = P

PRGs for geometric objects. Constructing PRGs using geometric properties has been
a rich area of study this work.



Some PRGs for geometric objects

Halfspaces

Diakonikolas et al.’09

@ Meka, Zuckerman'09

@ Karnin, Rabani, Shpilka'1l
o

o

Polytopes
@ Harsha, Klivans, Meka'13

Gopalan et al.’13

Kothari, Meka'15
Gopalan, Kane, Meka'l5

o
@ Servedio, Tan'17
@ O’Donnell, Servedio, Tan'19

Polynomial Threshold function
T(x) = sign(p(x1, ..., xn)) where p is a polynomial

Meka, Zuckerman’'09

@ Diakonikolas’'10

@ Kane'll, Kane'l2, Kane'l3
o

o

Kane, Meka'14
O’Donnell, Servedio, Tan'20

Spectrahedra: generalization of halfspaces, polytopes and PTFs in one framework

‘ In this work: Can we construct PRGs for spectrahedra? ‘




Recall. Spectrahedron is the set S = {x € {—1,1}": 3", x;A' < B}.
@ Positive: Al,... A", B are k x k PSD matrices
@ Bounded width: T < 3" ,(A)2 <M -1
© Regular: (A") < 7 -1 for every i

Main Theorem
There exists a PRG G : {0,1}" — {—1,1}" with seed length

r = (log n) - poly (logk - M -1/6),

that d-fools the class of positive bounded width regular spectrahedron S, i.e.,

E [G(x) € S] — uiEL{n[u € 5]’ <.

x~U,

Main technical contributions: Rest of this talk

’ An invariance principle for positive regular spectrahedra ‘




How to fool: Meka-Zuckerman Invariance principles

‘ Punchline: Invariance principles give pseudorandom generators. ‘

What is an invariance principle? Generalization of Berry-Esseen theorem

Standard central limit theorem states: suppose xi, ..., X, are random variables
satisfying E[x] = 0 and Var[x?] = 1, then
X1+ -+ Xn
——— — g(0,1),
NG g(0,1)

where g(0,1) is a Gaussian
But what about convergence? Berry-Esseen states that for every u € R

X1+ -+ Xn
Pr[T

for “C-nice” x1,...,xn. Proved using the Lindeberg method'22 (aka hybrid method)

<u]-Prig01) <u] < %

’ Invariance principles: understanding in the Gaussian space is similar to Boolean space ‘




How was M-Z used so far?

Halfspace (Meka-Zuckerman'09)

@ Halfspace is
{xe{-1,1}": 3, wix; < 6}
@ For smooth w € R”

> wix; — g(0,1)
i

Polytope (Harsha-Klivans-Meka'13)
@ Polytope is

{xe{-1,1}": wlx <6,...,whkx< Ok}
@ Let wl,...,wk € R” all be smooth, then
— wl — X1 &1
— v — | [x g
. — .
— wk — Xn 8k

@ Recently OST'19 removed regularity




Establishing the invariance principle

‘Recall: Polytope F(x) = [Wl-xgel/\---/\wk-xgek} or W~x§§‘

Main result of HKM’13 Invariance principle for T-regular polytopes (i.e., [|w']| < 7)

E Wx<8— E [We <] <rpolyiogk (1)
E

x~Up
How to prove this?

1. Smooth invariance. Establish (1) for smooth functions O : Rk 5 R, e,

E [0(Wx)] - E [0(Wg)]| < rlogk- |07
x~Up, g~Gn

@ Lindeberg method: Write out Taylor series for @ : RK — R, since U, and G"
have matching first and second moments, we get 3rd derivatives, hence ||O®)||;

@ Since O is smooth, all derivatives are “small” so [[O®)||; is also “small”



Establishing the invariance principle

Main result of HKM’13 Invariance principle for T-regular polytopes

E [Wx<f- E [Wgﬁgl‘STpolylogk (2)
x~Up g~gn

How to prove this?

1. Smooth invariance. Establish (2) for smooth mollifiers O : R" — R, i.e.,

E [0Wx)] ~ E [0(Wg)]| < rlogk - [0 3)

x~Up
2. Bentkus mollifier. Care about [Wx < 6] not O(Wx). Bentkus'90 established a

mollifier B : Rk — R that approximates the orthant function, i.e.,

B(z1,...,zx) = [m?xz,- < 9] and ||BY||; < log®/? k

3. Anti-concentration. From above B “approximately agrees” with O.

@ Around the "boundary” of the polytope is where B and O disagree
@ If probability of x € G" lying in boundary is “small”, maybe it is ok? YES
@ Gaussian surface areal Nazarov'03 showed GSA of k-facet polytopes is v/log k

Putting everything together. All dependence are logarithmic factors, so (3) — (2).



Let's quantize everything!

’ A halfspace F(x) = [Z; wix; < 9]. Spectrahedron is F(x) = [><1A1 4+ 4 x AT L B] ‘

1. Hybrid method?

@ Spectrahedron naturally deals with eigenvalues of matrices

@ Unknown if Lindeberg-type argument works for spectral mollifiers (i.e., smooth
functions acting on the eigenspectrum of matrices)

An invariance principle for the Bentkus mollifier of arbitrary regular spectrahedra

2. Anti-concentration? Even if GSA of spectrahedra are small, they are “funky”
geometric objects, not clear how to go from mollifier-closeness to CDF closeness

Prove a Littlewood-Offord theorem for positive regular spectrahedra



Invariance principle: two new definitions

@ Spectral function f : R"™" — R acts on the eigenvalues of matrices:
f(M) = goA(M) = g(A(M),..., An(M))
for some g : R” — R. Examples include determinants, trace, matrix norms

@ Derivatives of matrix-valued functions f : R7X" — RMXm,
Taylor series. Let h: R — R, then Taylor series of h is

"(a) WG e M)

h(X):h(a)+T(X_a)+T 3 (x—a)?’-{-...7

where

h'(a) = I|m g (h(a+s) — h(a))

Fréchet derivatives. Derivatives in Banach spaces. “Similar” to standard
calculus. For A, B € R"*" we have

DF(A)[B] = lim * - (F(A++5B) — F(A),
F(A)[B] = lim L - (D F(A+ sB)[B] D F(A)[B])

Fréchet derivatives are hard to compute. Poorly understood: basic properties as
continuity, Lipschitz continuity, differentiability proven in last 2 decades.



Invariance principle: Part |

Goal: Invariance principle for Bentkus mollifier B

PrIBoN(S xiA = B)l = Pr [(BoX)(3 gA — B)]| < polylog k

1. Hybrid method. Hash the sum over [n] into t blocks: let Qx = Z‘":/i XAl

| E[(BoN)(Q+ Peg)l = EI(BoN)(Q + Peg)l (4)

2. Taylor expansion. Write out Fréchet series for both these terms.

B (Qx + Prg) = Ba(Prg) + DB (Pep)[Qu] + = D Ba(Prg)[Qu, Q] + éD%A(P;,g)[QX, Qus Qi

1 1 ,
B (Qg + Prig) = Bx(Prg) + DB (Peg)[Qc] + 5 D*Ba(Prg)[Qs» Qgl + 5D’ Ba(Ry 4)[Qu: Qs sl

Same colour terms are equal in expectation

So bounding Eq (4) amounts to proving. Goal: upper bound

| E [D*BA(P1.g)[@x, Qu, Qu — D*Ba(Ry )[Qs, Qs Qs]] | < 7 polylog k

3. Sendov to the rescue. For us, Sendov provided a tensorial representation of
Fréchet series for spectral functions



Invariance principle: Part Il

Recall: Goal is to upper bound
| E [D?BA(PLg)[@x: @x, @ul = D*BA(R4)[Qs. Qs Qs |
Hope: use Sendov’s tensor-result. BUT, if you write it out, we get:

H=VQVT, Then|D3F (P)[Q,Q, Q]|is the summation of the following terms.
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i1,017 12502

3. Zil#h#ig(vi,iz,izf(x)) ) Hi1-,11Hi2-,12Hi3,i3

Vi ~VE Viy—Vi )
b Do ( T VuVy ) @) oy iy 112,

Tiy—Tiq (wiy—wi) )2

Vi~ Vi It
5. Zil#iz#m Tig—Ti f( ) i1,y LzHiSwZS

Vi,—V; Vi, —Vi
b Lipusio (e ~ e /) Bl i i

Vi, —Vi Vi,—V;
G Zil#”#“ ((1'12’1'11 @iy —Tia)  (@ia—Ti; )(””lvl’zu)) f(T) Hil'iRHig'ilHi‘i’h’




Invariance principle: Part Il

Recall: Goal is to upper bound
‘ E [DSB)\( g)[Qm Qx, Qx] - D3B/\( )[Qg, ng Qg]] ’

Technical contribution.
@ Bound each of the 7 terms by polylog k times norms of Qg, Qx, Py g R’

@ Completely open up the Bentkus mollifier (prior works used it as a bIackbox)

4. Final step. Understand E.[||Q«||4] and similar quantities.

@ We use matrix Rosenthal’s inequality (proved “recently”) gives good
concentration for Schatten norms of || 3=, x;A’||5

@ Also matrix Rosenthal is true when (x1,...,X,) is p-wise independent
Putting everything together.

Pr (5o )\)(Z x; Al — B)] — Pr (5o )\)(Z gA — B)]‘ < 7 - polylog k



Anticoncentration

’ Recall: positive spectrahedron & = {x : x1Al 4+ o 4 xp AT < B} where A B>0 ‘

So far.

| P [(BoN(CxiA = B)] = Pr [(BoN)(3 g — B)]| < polylogk  (5)

x~Up

~[ 5 xiai<8] ~[ 5, gAi=8]

But we care about CDF distance

x~Z/t,7 [Zx A= B} fgn [zl_:giAi = B” < polylog k (6)

Intuition for this approximation: What ~ means?

If A1,..., Ak € [~1/100,1/100], then (Bo X)(D_ x;A' — B) # [ > _ xiA" < B]

i

Else A1,..., A\ & [~1/100,1/100], then (Bo X)(D>_ x;A' — B) =~ [ > x;A" < B]

i

For uniform x, Amax (>, x;AT — B) € [— 100 ﬁ] with tiny probablllty‘




Anticoncentration

’ Recall: positive spectrahedron & = {x : x1Al 4+ - 4 xp, AT < B} where A B>0 ‘

So far.

P [BoNSxiA = B)] - Pr [(BoN (X g4~ B)]| < polylogk  (7)

~[ 5 xiai<8] ~[ 5, gai=8]

But we care about CDF distance

x~Up

Pr [Z:XiAi = B] - gNP&n [Zg,-Ai = B” < polylog k (8)

i

Our result: Littlewood-Offord for spectrahedra

Let Al,..., A" be positive matrices s.t. >, ||A’[|? > 1. For every A
A _
P [Amax(Zx,A B) €] /\,/\]] < O(A).
1

Prior: Littlewood-Offord'43, Erdds’45 proved it for halfspaces, OST'19 for polytopes

‘ Hence (7) implies (8) except tiny probability. Done! ‘




Conclusion and open questions

’ Recall: positive spectrahedron F(x) = [xlAl + o xp AT < B] where A/, B >0 ‘

A PRG that §-fools the class of positive width-M spectrahedra with seed
length poly(log n, log k, M, 1/§)

Open questions:
© Remove regularity?
@ Remove positivity?
© What is the Gaussian surface area of spectrahedron?

© Improve the 1/§ dependence?

@ A general invariance principle for spectral functions?

THANK YOU



