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Linear programs

Optimizing a linear function over a polytope

A general LP has the form: w1, . . . ,wk , c ∈ Rn and θi ∈ R

OPT = max
x∈Rn
{cT x : w1 · x ≤ θ1, . . . ,wk · x ≤ θk}

Efficiently solvable!

Halfspace in Rn is a constraint that
divides the space, i.e., h1 : Rn → {0, 1}
Let w ∈ Rn and x ∈ {−1, 1}n, then a
halfspace h1(x) = 1 iff w · x ≤ θ,

or h1(x) =
[
w · x ≤ θ

]
Polytope is an intersection of halfspaces

Let w i ∈ Rn, θi ∈ R, a k-facet polytope is

P =
{
x : h1(x) ∧ h2(x) ∧ · · · ∧ hk (x)}

where hi = [w i · x ≤ θi ]

Applications: Optimization, combinatorics, geometry, computational complexity, . . .
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Semi-definite programs

What is an SDP?

Optimizing a linear function over a spectrahedron

A general SDP has the form: W 1, . . . ,W k ,B ∈ Symn

OPT = max
x∈Rn
{cT x : x1W

1 + · · ·+ xnW
n � B},

where C � D means D − C is PSD (i.e., all eigenvalues are ≥ 0)

How does it look?

Generalizes linear programs and still efficiently solvable!

Unfortunately, spectrahedra are not very well understood!

But SDPs have found applications in approximation theory, SoS heirarchy,
quantum computing
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Pseudorandom generators

A PRG is a function that “expands” randomness

PRGs for a class of functions

An ε-PRG for C ⊆ {F : {0, 1}n → {0, 1}} is a function G : {0, 1}r → {0, 1}n such that

for every F ∈ C,
∣∣∣∣ E
x∼Ur

[F (G(x))]− E
u∼Un

[F (u)]

∣∣∣∣ ≤ ε.
The seed length of G is r . Goal is to have r = polylog(·) in all relevant parameters

Holy grail. Can we design a PRG against the class of polynomial sized circuits
unconditionally? If so, would imply BPP = P

PRGs for geometric objects. Constructing PRGs using geometric properties has been
a rich area of study this work.
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Some PRGs for geometric objects

Halfspaces

Diakonikolas et al.’09

Meka, Zuckerman’09

Karnin, Rabani, Shpilka’11

Kothari, Meka’15

Gopalan, Kane, Meka’15

Polytopes

Harsha, Klivans, Meka’13

Gopalan et al.’13

Servedio, Tan’17

O’Donnell, Servedio, Tan’19

Polynomial Threshold function
T (x) = sign(p(x1, . . . , xn)) where p is a polynomial

Meka, Zuckerman’09

Diakonikolas’10

Kane’11, Kane’12, Kane’13

Kane, Meka’14

O’Donnell, Servedio, Tan’20

Spectrahedra: generalization of halfspaces, polytopes and PTFs in one framework

In this work: Can we construct PRGs for spectrahedra?
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Results

Recall. Spectrahedron is the set S =
{
x ∈ {−1, 1}n :

∑
i xiA

i � B
}

.

1 Positive: A1, . . . ,An,B are k × k PSD matrices

2 Bounded width: I �
∑

i (A
i )2 � M · I

3 Regular: (Ai ) � τ · I for every i

Main Theorem

There exists a PRG G : {0, 1}r → {−1, 1}n with seed length

r = (log n) · poly
(

log k ·M · 1/δ
)
,

that δ-fools the class of positive bounded width regular spectrahedron S , i.e.,∣∣∣∣ E
x∼Ur

[G(x) ∈ S]− E
u∼Un

[u ∈ S]

∣∣∣∣ ≤ δ.
Main technical contributions: Rest of this talk

An invariance principle for positive regular spectrahedra
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How to fool: Meka-Zuckerman Invariance principles

Punchline: Invariance principles give pseudorandom generators.

What is an invariance principle? Generalization of Berry-Esseen theorem

Standard central limit theorem states: suppose x1, . . . , xn are random variables
satisfying E[x ] = 0 and Var[x2] = 1, then

x1 + · · ·+ xn√
n

−→ g(0, 1),

where g(0, 1) is a Gaussian

But what about convergence? Berry-Esseen states that for every u ∈ R

Pr
[x1 + · · ·+ xn√

n
≤ u

]
− Pr

[
g(0, 1) ≤ u

]
≤

C
√
n
,

for “C -nice” x1, . . . , xn. Proved using the Lindeberg method’22 (aka hybrid method)

Invariance principles: understanding in the Gaussian space is similar to Boolean space
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How was M-Z used so far?

Halfspace (Meka-Zuckerman’09)

Halfspace is{
x ∈ {−1, 1}n :

∑
i wixi ≤ θ

}
For smooth w ∈ Rn∑

i

wix i → g(0, 1)

Polytope (Harsha-Klivans-Meka’13)

Polytope is{
x ∈ {−1, 1}n : w1·x ≤ θ1, . . . ,w

k ·x ≤ θk
}

Let w1, . . . ,wk ∈ Rn all be smooth, then
w1

w2

...
wk



x1

x2

...
xn

→

g1
g2
...

gk


Recently OST’19 removed regularity
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Establishing the invariance principle

Recall: Polytope F (x) =
[
w1 · x ≤ θ1 ∧ · · · ∧ wk · x ≤ θk

]
or W · x ≤ ~θ

Main result of HKM’13 Invariance principle for τ -regular polytopes (i.e., ‖w i‖ ≤ τ)∣∣∣ E
x∼Un

[W x ≤ ~θ]− E
g∼Gn

[Wg ≤ ~θ]
∣∣∣ ≤ τ polylog k (1)

How to prove this?

1. Smooth invariance. Establish (1) for smooth functions O : Rk → R, i.e.,∣∣∣ E
x∼Un

[O(W x)]− E
g∼Gn

[O(Wg)]
∣∣∣ ≤ τ log k · ‖O(3)‖1

Lindeberg method: Write out Taylor series for O : Rk → R, since Un and Gn
have matching first and second moments, we get 3rd derivatives, hence ‖O(3)‖1

Since O is smooth, all derivatives are “small” so ‖O(3)‖1 is also “small”
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Establishing the invariance principle

Main result of HKM’13 Invariance principle for τ -regular polytopes∣∣∣ E
x∼Un

[W x ≤ ~θ]− E
g∼Gn

[Wg ≤ ~θ]
∣∣∣ ≤ τ polylog k (2)

How to prove this?

1. Smooth invariance. Establish (2) for smooth mollifiers O : Rn → R, i.e.,∣∣∣ E
x∼Un

[O(W x)]− E
g∼Gn

[O(Wg)]
∣∣∣ ≤ τ log k · ‖O(3)‖1 (3)

2. Bentkus mollifier. Care about [W x ≤ θ] not O(W x). Bentkus’90 established a
mollifier B : Rk → R that approximates the orthant function, i.e.,

B(z1, . . . , zk ) ≈
[

max
i

zi ≤ θ
]

and ‖B`‖1 ≤ log`/2 k

3. Anti-concentration. From above B “approximately agrees” with O.

Around the “boundary” of the polytope is where B and O disagree

If probability of x ∈ Gn lying in boundary is “small”, maybe it is ok? YES

Gaussian surface area! Nazarov’03 showed GSA of k-facet polytopes is
√

log k

Putting everything together. All dependence are logarithmic factors, so (3) =⇒ (2).
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Let’s quantize everything!

A halfspace F (x) =
[∑

i wixi ≤ θ
]
. Spectrahedron is F (x) =

[
x1A1 + · · ·+ xnAn � B

]

1. Hybrid method?

1 Spectrahedron naturally deals with eigenvalues of matrices

2 Unknown if Lindeberg-type argument works for spectral mollifiers (i.e., smooth
functions acting on the eigenspectrum of matrices)

An invariance principle for the Bentkus mollifier of arbitrary regular spectrahedra

2. Anti-concentration? Even if GSA of spectrahedra are small, they are “funky”
geometric objects, not clear how to go from mollifier-closeness to CDF closeness

Prove a Littlewood-Offord theorem for positive regular spectrahedra
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Invariance principle: two new definitions

1 Spectral function f : Rn×n → R acts on the eigenvalues of matrices:

f (M) = g ◦ λ(M) = g
(
λ1(M), . . . , λn(M)

)
for some g : Rn → R. Examples include determinants, trace, matrix norms

2 Derivatives of matrix-valued functions f : Rn×n → Rm×m.
Taylor series. Let h : R→ R, then Taylor series of h is

h(x) = h(a) +
h′(a)

1!
(x − a) +

h′′(a)

2!
(x − a)2 +

h′′′(a)

3!
(x − a)3 + · · · ,

where

h′(a) = lim
s→0

1

s
·
(
h(a + s)− h(a)

)
Fréchet derivatives. Derivatives in Banach spaces. “Similar” to standard
calculus. For A,B ∈ Rn×n, we have

Df (A)[B] = lim
s→0

1

s
·
(
f (A + sB)− f (A)

)
,

Dt f (A)[B] = lim
s→0

1

s
·
(
Dt−1f (A + sB)[B]− Dt−1f (A)[B]

)
Fréchet derivatives are hard to compute. Poorly understood: basic properties as
continuity, Lipschitz continuity, differentiability proven in last 2 decades.
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Invariance principle: Part I

Goal: Invariance principle for Bentkus mollifier B∣∣∣ Pr
x∼Un

[(B ◦ λ)(
∑
i

x iA
i − B)]− Pr

g∼Gn
[(B ◦ λ)(

∑
i

g iA
i − B)]

∣∣∣ ≤ τ polylog k

1. Hybrid method. Hash the sum over [n] into t blocks: let Qx =
∑n/t

i=1 x iA
i ,∣∣∣ E

x,g
[(B ◦ λ)

(
Qx + Px,g

)
]− E

x,g
[(B ◦ λ)(Qg + Px,g )]

∣∣∣ (4)

2. Taylor expansion. Write out Fréchet series for both these terms.

Bλ
(
Qx + Px,g

)
= Bλ(Px,g ) + DBλ(Px,g )[Qx ] +

1

2
D2Bλ(Px,g )[Qx ,Qx ] +

1

6
D3Bλ(P′

x,g )[Qx ,Qx ,Qx ]

Bλ
(
Qg + Px,g

)
= Bλ(Px,g ) + DBλ(Px,g )[Qg ] +

1

2
D2Bλ(Px,g )[Qg ,Qg ] +

1

6
D3Bλ(R′

x,g )[Qg ,Qg ,Qg ]

Same colour terms are equal in expectation

So bounding Eq (4) amounts to proving. Goal: upper bound∣∣∣ E
x,g

[
D3Bλ(P′x,g )[Qx ,Qx ,Qx ]− D3Bλ(R′x,g )[Qg ,Qg ,Qg ]

]∣∣∣ ≤ τ polylog k

3. Sendov to the rescue. For us, Sendov provided a tensorial representation of
Fréchet series for spectral functions
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Invariance principle: Part II

Recall: Goal is to upper bound∣∣∣ E
x,g

[
D3Bλ(P′x,g )[Qx ,Qx ,Qx ]− D3Bλ(R′x,g )[Qg ,Qg ,Qg ]

]∣∣∣
Hope: use Sendov’s tensor-result. BUT, if you write it out, we get:
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Invariance principle: Part II

Recall: Goal is to upper bound∣∣∣ E
x,g

[
D3Bλ(P′x,g )[Qx ,Qx ,Qx ]− D3Bλ(R′x,g )[Qg ,Qg ,Qg ]

]∣∣∣
Technical contribution.

Bound each of the 7 terms by polylog k times norms of Qg ,Qx ,P′x,g ,R
′
x,g .

Completely open up the Bentkus mollifier (prior works used it as a blackbox)

4. Final step. Understand Ex [‖Qx‖4
4] and similar quantities.

We use matrix Rosenthal’s inequality (proved “recently”) gives good
concentration for Schatten norms of ‖

∑
i x iA

i‖pp
Also matrix Rosenthal is true when (x1, . . . , xn) is p-wise independent

Putting everything together.∣∣∣ Pr
x∼Un

[(B ◦ λ)(
∑
i

x iA
i − B)]− Pr

g∼Gn
[(B ◦ λ)(

∑
i

g iA
i − B)]

∣∣∣ ≤ τ · polylog k
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Anticoncentration

Recall: positive spectrahedron S = {x : x1A1 + · · ·+ xnAn � B} where Ai ,B � 0

So far.∣∣∣ Pr
x∼Un

[
(B ◦ λ)(

∑
i

x iA
i − B)

︸ ︷︷ ︸
≈
[∑

i x iAi�B
]

]
− Pr

g∼Gn
[

(B ◦ λ)(
∑
i

g iA
i − B)

︸ ︷︷ ︸
≈
[∑

i g iA
i�B
]

]∣∣∣ ≤ polylog k (5)

But we care about CDF distance∣∣∣ Pr
x∼Un

[∑
i

x iA
i � B

]
− Pr

g∼Gn

[∑
i

g iA
i � B

]∣∣∣ ≤ polylog k (6)

Intuition for this approximation: What ≈ means?

If λ1, . . . , λk ∈ [−1/100, 1/100], then (B ◦ λ)(
∑
i

x iA
i − B) 6≈

[∑
i

x iA
i � B

]
Else λ1, . . . , λk /∈ [−1/100, 1/100], then (B ◦ λ)(

∑
i

x iA
i − B) ≈

[∑
i

x iA
i � B

]
For uniform x , λmax

(∑
i x iA

i − B
)
∈ [− 1

100
, 1

100
] with tiny probability
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Anticoncentration

Recall: positive spectrahedron S = {x : x1A1 + · · ·+ xnAn � B} where Ai ,B � 0

So far.∣∣∣ Pr
x∼Un

[
(B ◦ λ)(

∑
i

x iA
i − B)

︸ ︷︷ ︸
≈
[∑

i x iAi�B
]

]
− Pr

g∼Gn
[

(B ◦ λ)(
∑
i

g iA
i − B)

︸ ︷︷ ︸
≈
[∑

i g iA
i�B
]

]∣∣∣ ≤ polylog k (7)

But we care about CDF distance

∣∣∣ Pr
x∼Un

[∑
i

x iA
i � B

]
− Pr

g∼Gn

[∑
i

g iA
i � B

]∣∣∣ ≤ polylog k (8)

Our result: Littlewood-Offord for spectrahedra

Let A1, . . . ,An be positive matrices s.t.
∑

i ‖Ai‖2 ≥ 1. For every Λ

Pr
x∼Un

[
λmax

(∑
i

x iA
i − B

)
∈ [−Λ,Λ]

]
≤ O(Λ).

Prior: Littlewood-Offord’43, Erdős’45 proved it for halfspaces, OST’19 for polytopes

Hence (7) implies (8) except tiny probability. Done!
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Conclusion and open questions

Recall: positive spectrahedron F (x) =
[
x1A1 + · · ·+ xnAn � B

]
where Ai ,B � 0

A PRG that δ-fools the class of positive width-M spectrahedra with seed
length poly(log n, log k,M, 1/δ)

Open questions:

1 Remove regularity?

2 Remove positivity?

3 What is the Gaussian surface area of spectrahedron?

4 Improve the 1/δ dependence?

5 A general invariance principle for spectral functions?

THANK YOU


