
ALINA ENE

Adaptive Gradient Descent methods
for Constrained Optimization

Joint work with:
Huy L. Nguyen (Northeastern University)
Adrian Vladu (CNRF & IRIF, Universite de Paris)

Problem Definition

min
x∈X

f(x)

f : ℝn → ℝ differentiable loss function

constraint set that is convex and “simple”X ⊆ ℝn

Computational model: function access via first-order oracle

Blackboxx ∈ X f(x), ∇f(x)

Goal: minimize number of queries x1, x2, …, xT to obtain

f(xout) − f(x*) ≤ ϵ

Blackbox Model min
x∈X

f(x)

Computational model: function access via first-order oracle

Blackboxx ∈ X f(x), ∇f(x)

Goal: minimize number of queries x1, x2, …, xT to obtain

f(xout) − f(x*) ≤ ϵ
convex

∥∇f(xout)∥ ≤ ϵ
non-convex (X = ℝn)

Blackbox Model min
x∈X

f(x)

Computational model: function access via first-order oracle

Blackboxx ∈ X f(x), ∇f(x)

Theory: tight upper and lower bounds on complexity

Goal: minimize number of queries x1, x2, …, xT to obtain

f(xout) − f(x*) ≤ ϵ
convex

∥∇f(xout)∥ ≤ ϵ
non-convex (X = ℝn)

Practice: (stochastic) gradients are readily available

Blackbox Model min
x∈X

f(x)

Computational model: function access via first-order oracle

Blackboxx ∈ X f(x), ∇f(x)

Goal: minimize number of queries x1, x2, …, xT to obtain

This Talk: Convergence guarantees for convex functions
(We will show experimental results for non-convex problems)

f(xout) − f(x*) ≤ ϵ
convex

∥∇f(xout)∥ ≤ ϵ
non-convex (X = ℝn)

Machine Learning Examples min
x∈X

f(x)

ImageNet Classification

AlphaGo

Cancer Classification

Power Demand Regression

Image credits: Zico Kolter

How to Optimize min
x∈ℝn

f(x)

ηt : step size / learning rate

Gradient Descent
xt+1 = xt − ηt ∇f(xt)

How to set the step size?

Theory answer: it depends …
Practice answer: manually tune

Step size cartoon credit: Stanford CS 231N
Gradient descent visualization credit: Sunil Jangir

non-smooth
∥∇f(x)∥ ≤ G

smooth
∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

How to Set the Gradient Descent Step Size?
Theory answer: it depends on the problem structure

constant

T =
G2∥x0 − x*∥2

ϵ2

T =
β∥x0 − x*∥2

ϵoptimal
T =

β∥x0 − x*∥2

ϵ
AGD: optimal

decayingηt =
∥x0 − x*∥

G t
ηt = 1/β

How to Set the Gradient Descent Step Size?

Theory answer: it depends on the problem structure

‣ Parameters are often unknown and hard to tune

Caveats:
‣ Step sizes depend on several parameters

(smoothness, gradient norm, distance to , …)x*

The dream:
‣ Automatically learn the step size
‣ Adapt to (local or global) smoothness and convexity
‣ Universal algorithms that achieve optimal convergence

in the smooth and non-smooth settings simultaneously

AutoML

Adaptive Gradient Descent min
x∈ℝn

f(x)

[Duchi, Hazan, Singer; McMahan and Streeter 2010]

Scalar Adagrad
xt+1 = xt − ηt ∇f(xt)

ηt =
1

∑t
s=1 ∥∇f(xs)∥2

Adagrad
xt+1 = xt − ηt ∇f(xt)

ηt,i =
1

∑t
s=1 (∇i f(xs))2

per-coordinate learning rates

Original motivation/use case:
‣ Sparse and heavy-tailed data (e.g., text data)
‣ Infrequent features are informative and we want to use

different learning rates for them

Preconditioning

f(x) = x⊤Ax
-5 0 5

-5

0

5

-5 0 5

-5

0

5

rescale

harder easier

Preconditioned Gradient Descent
xt+1 = xt − H−1

t ∇f(xt)

Ht = ∇2f(xt)Hessian

Adaptive Preconditioning

Full-matrix Adagrad: Gt =
t

∑
s=1

∇f(xs)∇f(xs)⊤ expensive

Preconditioned Gradient Descent
xt+1 = xt − H−1

t ∇f(xt)

Ht = ∇2f(xt)Hessian
Adagrad

xt+1 = xt − G−1
t ∇f(xt)

Matrix computed from gradients

Diagonal Adagrad: use only the entries on the diagonal

Dt,i =
t

∑
s=1

(∇i f(xs))2 = η−1
t,i

Adaptive Preconditioning

Adagrad
xt+1 = xt − G−1

t ∇f(xt)

Matrix computed from gradients

Full-matrix Adagrad: Gt =
t

∑
s=1

∇f(xs)∇f(xs)⊤ expensive

Diagonal Adagrad: use only the entries on the diagonal

Dt,i =
t

∑
s=1

(∇i f(xs))2 = η−1
t,i

Second-order-like method but with only first-order information

AutoMLThe Unreasonable Effectiveness of Adagrad

T =
βR2

ϵ
non-accelerated

smooth rate

[Levy 2017, Levy et al. 2018]
[E., Nguyen, Vladu 2020]

It automatically adapts to problem structure

non-smooth smooth
∥∇f(x)∥ ≤ G ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

T =
G2R2

ϵ2
optimal

[Duchi et al., McMahan & Streeter 2010]

R = max
t∈[T]

∥xt − x*∥

AutoMLThe Unreasonable Effectiveness of Adagrad

It automatically adapts to problem structure

non-smooth smooth
∥∇f(x)∥ ≤ G ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

Intuition

∥∇f(xt)∥2 decays at a 1
t

rate

ηt = (
t

∑
s=1

∥∇f(xs)∥2)
−1/2

= O(1)

∥∇f(xt)∥2 stays constant

ηt = (
t

∑
s=1

∥∇f(xs)∥2)
−1/2

= O (1

t)

The Adagrad Family

‣ Adagrad (Adaptive Gradient)
[Duchi et al., McMahan and Streeter, 2010]

‣ Adadelta [Zeiler, 2012]

‣ RMSProp [Hinton, 2014]

Adaptive methods for deep learning optimization

‣ Adam (Adaptive Moment Estimation)
[Kingma and Ba, 2015]

‣ AdaMax [Kingma and Ba, 2015]

‣ Nadam (Nesterov-accelerated Adaptive Moment Estimation)
[Dozat, 2016]

7067 citations

53803 citations

Further Developments

Adaptive method for constrained optimization
‣ Adagrad+ [E., Nguyen, Vladu 2020]

in the non-smooth, smooth, and stochastic settings

AutoML

The accelerated schemes are universal

They automatically achieve the optimal convergence

(Above works are only the latest in a long line of work)

Accelerated adaptive methods with per-coordinate rates

‣ AdaACSA, AdaAGD+

‣ JRGS [Joulani et al., 2020]
[E., Nguyen, Vladu 2020]

Plan for today

Adaptive method for constrained optimization
‣ Adagrad+ [E., Nguyen, Vladu 2020]

in the non-smooth, smooth, and stochastic settings

AutoML

The accelerated schemes are universal

They automatically achieve the optimal convergence

(Above works are only the latest in a long line of work)

Accelerated adaptive methods with per-coordinate rates

‣ AdaACSA, AdaAGD+

‣ JRGS [Joulani et al., 2020]
[E., Nguyen, Vladu 2020]

Gradient Descent for Constrained Optimization

min
x∈X

f(x)

small : put more weight on movementηt

large : put more weight on linear approximationηt

xt+1 = arg min
x∈X {f(xt) + ⟨∇f(xt), x − xt⟩

linear approx

+
1
ηt

⋅
1
2

∥x − xt∥2

movement
}

xt

Gradient descent algorithm:

Gradient Descent for Constrained Optimization

smooth: ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

f(x) ≤ f(xt) + ⟨∇f(xt), x − xt⟩ +
β
2

∥x − xt∥2

quadratic upper obound on f

min
x∈X

f(x)

xt

Gradient Descent for Constrained Optimization

min
x∈X

f(x)

smooth: ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

xt

xt+1 = arg min
x∈X {f(xt) + ⟨∇f(xt), x − xt⟩ +

β
2

∥x − xt∥2

quadratic upper obound on f
}

constant step sizes ηt =
1
β

Gradient Descent for Constrained Optimization

min
x∈X

f(x)

xt

non-smooth: ∥∇f(x)∥ ≤ G

xt+1 = arg min
x∈X {f(xt) + ⟨∇f(xt), x − xt⟩

linear approx

+
1
ηt

⋅
1
2

∥x − xt∥2

movement
}

decaying step sizes (=diameter of domain) ηt =
R

G t
R

Adagrad

xt

min
x∈ℝn

f(x)

xt+1 = arg min
x∈ℝn {f(xt) + ⟨∇f(xt), x − xt⟩

linear approx

+
1
2

∥x − xt∥2
Dt}

Dt,i =
t

∑
s=1

(∇i f(xs))2

per-coordinate step sizes

Mahalanobis norm: ∥x∥2
A = ⟨x, Ax⟩

Adagrad for Constrained Optimization

min
x∈X

f(x)

Intuition: as we approach , the gradient does not
decrease but the iterate movement does

x*
∥xt+1 − xt∥

unconstrained: ∇f(x*) = 0
 constrained: ∇f(x*) ≠ 0

xt+1 = arg min
x∈X {f(xt) + ⟨∇f(xt), x − xt⟩ +

1
2

∥x − xt∥2
Dt}

D2
t+1,i = D2

t,i (1+(xt+1,i − xt,i)2) with D1 = I

Adagrad+ algorithm:

Adagrad for Constrained Optimization

xt+1 = arg min
x∈X {f(xt) + ⟨∇f(xt), x − xt⟩ +

1
2

∥x − xt∥2
Dt}

D2
t+1,i = D2

t,i 1+ (xt+1,i − xt,i)2

R2
∞

 with D1 = I

min
x∈X

f(x)

Intuition: as we approach , the gradient does not
decrease but the iterate movement does

x*
∥xt+1 − xt∥

unconstrained: ∇f(x*) = 0
 constrained: ∇f(x*) ≠ 0

Adagrad+ algorithm:

R∞ = max
x,y∈X

∥x − y∥∞

AutoML

T = Õ (1
ϵ2) T = O (1

ϵ)optimal non-accelerated
smooth rate

It automatically adapts to problem structure

non-smooth smooth
∥∇f(x)∥ ≤ G ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

Adagrad+ for Constrained Optimization

(up to logs)
not optimal

Accelerated Methods

‣ In gradient descent, we use convexity
to obtain a lower bound on f

‣ A single lower bound is useful, but a
combination of lower bounds is even better

‣ At iteration , use a convex combination of
the lower bounds provided by

t
x1, x2, …, xt

Accelerated Methods

‣ Previously, the solutions were both the main solutions
as well as the points at which we construct lower bounds

xt

‣ It is useful to decouple the construction of the
solution from the construction of the lower bounds

‣ At iteration , use a convex combination of
the lower bounds provided by

t
x1, x2, …, xt

‣ We will use the iterates to construct lower bounds as
before, but we will use a different sequence of iterates
to construct our main solution

xt
yt

Accelerated Methods

AGD+ algorithm [Gasnikov, Nesterov 2016; Cohen et al. 2018]

Choose , weights , y0 ∈ X at ≥ 0 At =
t

∑
i=1

ai

For :t = 1,…, T

xt =
t−1

∑
i=1

ai

At
yi +

at

At
yt−1

yt = arg min
x∈𝕏 (

t

∑
i=1

ai ⟨∇f(xi), x⟩ +
β
2

x − y0
2)

Return
T

∑
t=1

at

AT
yt

Accelerated Methods

 optimalT = O (1
ϵ)

Choose , weights , y0 ∈ X at = Θ(t) At =
t

∑
i=1

ai = Θ(t2)

For :t = 1,…, T

xt =
t−1

∑
i=1

ai

At
yi +

at

At
yt−1

yt = arg min
x∈𝕏 (

t

∑
i=1

ai ⟨∇f(xi), x⟩ +
β
2

x − y0
2)

Return
T

∑
t=1

at

AT
yt

AGD+ algorithm [Gasnikov, Nesterov 2016; Cohen et al. 2018]

Adaptive AGD+

Set the step size based on the iterate movement ∥yt − yt−1∥

AdaAGD+ algorithm

xt =
t−1

∑
i=1

ai

At
yi +

at

At
yt−1

yt = arg min
x∈𝕏 (

t

∑
i=1

ai ⟨∇f(xi), x⟩ +
1
2

x − y0
2
Dt)

D2
t+1,i = D2

t,i 1 + (yt,i − yt−1,i)2

R2
∞

 with D1 = I

AutoML

T = Õ (1
ϵ2) T = O (1

ϵ)optimal
optimal

It automatically adapts to problem structure

non-smooth smooth
∥∇f(x)∥ ≤ G ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥

AdaAGD+

(up to logs)

Image Credits

‣ Images on ML examples slide: Zico Kolter

‣ Gradient descent visualization:

‣ Step size cartoon:

‣ Google Images

http://www.cs.cmu.edu/~15780/

https://suniljangirblog.wordpress.com/2018/12/03/
the-outline-of-gradient-descent/

https://cs231n.github.io/neural-networks-3/

