BOSTON

=4 perspective

UNIVERSITY

Hariri Institute for Computing

Adaptive Gradient Descent methods
for Constrained Optimization

ALINA ENE

Joint work with:

Huy L. Nguyen (Northeastern University)
Adrian Vladu (CNRF & IRIF, Universite de Paris)

24 ~ leveraging the , 4 g
~ -*"‘"‘ computational |~ v

/ i',?',;.;~

Problem Definition

f: R" - R differentiable loss function

X CR" constraint set that is convex and “simple”

min f(x)

xeX

Computational model: function access via first-order oracle

X€X | Blackbox | /), V/(x)

>

Goal: minimize number of queries X;,x,,...,x; to obtain

f(xout) _f(X*) S €

Blackbox Model

min f(x)

xeX

Computational model: function access via first-order oracle

xe X

>

Blackbox

f0), V)

Goal: minimize number of queries X;,x,,...,x; to obtain

f(xout) _f(X*) <€

convex

IV Gl < €

non-convex (X = R")

Blackbox Model min f(x)

xeX

Computational model: function access via first-order oracle

* €2 | Blackbox | /) V() |

>

Goal: minimize number of queries x,x,,...,x; to obtain

JOu) — f(x*) < e IV, Ol < e

convex non-convex (X =R")

Theory: tight upper and lower bounds on complexity
Practice: (stochastic) gradients are readily available

import torch \
x = torch.randn(3, requires grad=True)

PYTMRCH B

out.backward() # backpropagation

gradient = x.grad Tensor

Blackbox Model min f(x)

xeX

Computational model: function access via first-order oracle

* €2 | Blackbox | /) V() |

>

Goal: minimize number of queries x,x,,...,x; to obtain

JOu) — f(x*) < e IV, Ol < e

convex NOoN-convex (X = Rn)

This Talk: Convergence guarantees for convex functions

(We will show experimental results for non-convex problems)

Machine Learning Examples min f(x)
xeX

ImageNet Classification

. =

mite " container ship motor scooter leopard

] mite container ship motor scooter ledpard
[| black widow lifeboat go-kart jaguar
i cockroach amphibian moped cheetah
i tick fireboat bumper car snow leopard
I

starfish drilling platform golfcart Egyptian cat

o

s - - . L d |

grille mushroom cherry Madagascar cat
convertible agaric dalmatian squ'iﬁ'el monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

AlphaGo

[

}—

®

ALPHAGO ' e 006 S
) : : P * LEE SEDOL
200832, |Gy geeh |. 00:00:27

..ﬂ..

AIQQ?GO

eepMind

Cancer Classification

0.25
—— Logistic regression separating boundary
X Benign
0.20 - +
+ Mal t
alignan i Lt o+
Yy
0.15
0.10
0.05
0.00 ARRICTR?
0 500 1000 1500 2000 2500 3000

Power Demand Regression

X Observed days
—— Squared loss fit

Peak Demand (GW)

1.0
0 20 40 60 80 100
High Temperature (F)

Image credits: Zico Kolter

How to Optimize min f(x)

xeR"

—— Gradient descent

Min = 1.9500000000000002

Gradient Descent

A1 = X — 1y Vf(x,)

1, . step size / learning rate

HOW tO Set the Step Size? /’ very high learning rate

low learning rate

Theory answer: it depends ...

high learning rate

Practice answer: manually tune

Gradient descent visualization credit: Sunil Jangir good learning rate

Step size cartoon credit: Stanford CS 231N epoch

How to Set the Gradient Descent Step Size?

Theory answer: it depends on the problem structure

non-smooth smooth
VIO <G V) = VDI < Bllx =yl
— kK
7, = o = 7| decaying n, = 1/p constant
G/t
v - Bl — 1P
G?llxo — x*|I° . =
T = optimal 2
€ pllxg — x*] :
AGD: T= optimal

Ve

How to Set the Gradient Descent Step Size?

Theory answer: it depends on the problem structure

Caveats:

 Step sizes depend on several parameters
(smoothness, gradient norm, distance to x*, ...)

* Parameters are often unknown and hard to tune
AutoML

[

The dream: T
: : N e

~ Automatically learn the step size &'

~ Adapt to (local or global) smoothness and convexity

 Universal algorithms that achieve optimal convergence
in the smooth and non-smooth settings simultaneously

Adaptive Gradient Descent min f(x)

xeR"

[Duchi, Hazan, Singer; McMahan and Streeter 2010]

Scalar Adagrad Adagrad
Xyt = X — 1, VI(X,) X1 = X — 1, V(X,)
1 1
Ny = t Nii = t
V I VAL V I, (Vifw))?

per-coordinate learning rates

Original motivation/use case:
~ Sparse and heavy-tailed data (e.g., text data)

" Infrequent features are informative and we want to use
different learning rates for them

Preconditioning

Preconditioned Gradient Descent
A1l = X _Vf (x,)

Hessian H, = V3f(x)

rescale

easier

Adaptive Preconditioning

Preconditioned Gradient Descent
X1 =X _Vf (%)

Hessian H, = V?*f(x)
Adagrad

Ayl = A _Vf (x,)

Matrix computed from gradients

5
Full-matrix Adagrad: G, = \/Z V§x,) VAx,)'" expensive
s=1

Diagonal Adagrad: use only the entries on the diagonal

Dl‘,i — Z (Vif(xs))z — 77;,_1’1
s=1

Adaptive Preconditioning

Second-order-like method but with only first-order information

Adagrad
Ayl = X _Vf (x)

Matrix computed from gradients

5
Full-matrix Adagrad: G, = \/Z V§x,) VAx,)'" expensive
s=1

Diagonal Adagrad: use only the entries on the diagonal

Dl‘,i — Z (Vif(xs))z — 77;,_1’1
s=1

The Unreasonable Effectiveness of Adagrad..w.

-

)]

It automatically adapts to problem structure

O\
non-smooth smooth

V)l <G IV = VDI < Alix =i

R = max ||x, — x*||

te[T)
G’R? — PR?> non-accelerated
I'=— optima I'==— smooth rate
[Duchi et al., McMahan & Streeter 2010] [Levy 2017, Levy et al. 2018]

[E., Nguyen, Vladu 2020]

The Unreasonable Effectiveness of Adagrad 4w

@

It automatically adapts to problem structure

non-smooth smooth
Vil <G IVfx) = VIl < Bllx =y
Intuition
1
IVF(x,)||> stays constant |Vf(x)||* decays at a - rate

—1/2 —1/2
= (Z IIVf(xS)IIZ) =0 (\/2) (Z IV >||2> = 0(1)
s=1 s=1

The Adagrad Family

Adaptive methods for deep learning optimization

~ Adagrad (Adaptive Gradient)
[Duchi et al., McMahan and Streeter, 2010]

/067 citations

~ Adadelta [Zeiler, 2012]

" RMSProp [Hinton, 2014]

* Adam (Adaptive Moment Estimation) 53803 citations
[Kingma and Ba, 2015]

~ AdaMax [Kingma and Ba, 2015]

* Nadam (Nesterov-accelerated Adaptive Moment Estimation)
[Dozat, 2016]

Further Developments

Adaptive method for constrained optimization

* Adagrad+ [E., Nguyen, Vladu 2020}

Accelerated adaptive methods with per-coordinate rates
" JRGS Joulani et al., 2020]
* AdaACSA, AdaAGD+ [E., Nguyen, Vladu 2020]

(Above works are only the latest in a long line of work)

AutoML

The accelerated schemes are universal ﬁ'}:

They automatically achieve the optimal convergence
in the non-smooth, smooth, and stochastic settings

Plan for today

Adaptive method for constrained optimization

| Adagrad+| [E., Nguyen, Vladu 2020}

Accelerated adaptive methods with per-coordinate rates
’ Joulani et al., 2020]
- AdaAGD+| [E., Nguyen, Vladu 2020]

(Above works are only the latest in a long line of work)

AutoML

The accelerated schemes are universal @"

They automatically achieve the optimal convergence
in the non-smooth, smooth, and stochastic settings

Gradient Descent for Constrained Optimization

min f(x)

xeX

Gradient descent algorithm:

. 1 1
X4 = argmin {f(xf) + (V). x = x) +—- —lx - x| }

xeX N

linear approx movement

small 7, : put more weight on movement

large 7, : put more weight on linear approximation

Gradient Descent for Constrained Optimization

min f(x)

xeX

smooth: [|Vf(x) — VAWl < Bllx =yl

70 S) + (V7). x = 5 + 2 e =

quadratic upper obound on ¢

Gradient Descent for Constrained Optimization

min f(x)

xeX

smooth: [|Vf(x) — VAWl < Bllx =yl

xeX

X4 = argmin {f(xt) + (V) x = x;) + gllx - xtllz}

quadratic upper obound on ¢

1
constant step sizes 1, = —

Gradient Descent for Constrained Optimization

min f(x)
xeX
Ay
non-smooth: |V/X)| < G
. 1 2
Xppp = argmin < f0x) + (V) x —x) +—- —|lx—x]
xeX . _) N 2
linear approx movement
decaying step sizes 77, = (R=diameter of domain)

Gy

Adagrad

min f(x)

xeR"

Mahalanobis norm: HxHi = (x, Ax)

: 1
A+ = alg MiN {f(xt) T <Vf(xt)ax - xt) + EHX — xt“%)t}

xeR”

linear approx

D,; = \/Z (Vif(xs)>2

s=1

per-coordinate step sizes

Adagrad for Constrained Optimization

min f(x)

xeX

unconstrained: Vf(x*) =0
constrained: Vf(x*) # 0

Intuition: as we approach x*, the gradient does not

decrease but the iterate movement ||x,, ; — x,|| does

Adagrad+ algorithm:

xeX

D2

+1,1

{f (xz) i

- <Vf(xt)9x o xt> i

1
-Enx—xtn%)t}

=D? <1+ (Xpp; — xm.)2> with D, =1

Adagrad for Constrained Optimization

min f(x) unconstrained: Vf(x*) =0
< constrained: Vf(x*) # 0

Intuition: as we approach x*, the gradient does not
decrease but the iterate movement ||x,, ; — x,|| does

Adagrad+ algorithm:

| 1)
Xy = argmin 3 f0g) + (VAG).x = x) + = [l = xll

xeX 2

(xt+1 i xti)2 :
— with D, =1
RZ

= R_ = max ||x — y||
x,yeX

DZ

+1,1

=D, | 14

Adagrad+ for Constrained Optimization &.ow

‘@

It automatically adapts to problem structure

non-smooth smooth
IVl <G IV = VDI < plix = yli
=0 (i) optimal T— 0 (l non-accelerated
€2 (up to logs) € smooth rate

not optimal

Accelerated Methods

" In gradient descent, we use convexity
to obtain a lower bound on f

~ Asingle lower bound is useful, but a
combination of lower bounds is even better

- Atiteration t, use a convex combination of

the lower bounds provided by x;, x,, ..., x,

Accelerated Methods

- At iteration ¢, use a convex combination of

the lower bounds provided by x;, x,, ..., x,

" Previously, the solutions x, were both the main solutions
as well as the points at which we construct lower bounds

" It is useful to decouple the construction of the
solution from the construction of the lower bounds

~ We will use the iterates x, to construct lower bounds as

before, but we will use a different sequence of iterates y,
to construct our main solution

Accelerated Methods

AGD+ algorithm [Gasnikov, Nesterov 2016; Cohen et al. 2018]

[
Choose y, € X, weightsa, > 0, A, = Z a;
i=1
Fort=1,...,T:

—1

a; a;
Xp = Z L T il
5

i=1 "1
y, = arg min (Z a < Vf(xi),x> +§ H X =Y H 2)

X
A i=1

T

a
Return ZA—tyt
=1 "1

Accelerated Methods

AGD+ algorithm [Gasnikov, Nesterov 2016; Cohen et al. 2018]

[
Choose y, € X, weights a, = O(7), A, = Z a;, = O(t%)

i=1
Fort=1,...,T:

1
e a; a T=0 \/: optimal
X, = nyi + Xzyt_l A R

i=1 1

-~ p
y; = argm1n<i=21ai<Vf(xi),x> +E H X =Y H 2)

xeX

T

a
Return ZA—tyt
=1 "1

Adaptive AGD+

Set the step size based on the iterate movement ||y, — y,_||

AdaAGD+ algorithm
t—1
a; a,
X, = — Vit —Y
t i:ZlAtyl Atyt 1

| t 1
y, = argmm(Zai(Vf(xi),x) t5 | X = o | 12))

ex
A i=1

2
yi_y_i °
=D? |1+ (Vi = Yi-1) with D, =1
,! Rgo

D2

+1,1

Ad aAG D+ AutoML

g {
non-smooth smooth

VIOl <G IV = VDI < plix = yli

It automatically adapts to problem structure

- (1 ' 1
T=0 <—> optimal =0 \/: optimal
€2 (up to logs) €

Image Credits %
Fe

Images on ML examples slide: Zico Kolter

http://www.cs.cmu.edu/~15780/

Gradient descent visualization:

https://suniljangirblog.wordpress.com/2018/12/03/
the-outline-of-gradient-descent/

Step size cartoon:

https://cs231n.github.io/neural-networks-3/

Google Images

