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Shortest Paths

Single-Source Shortest Paths (SSSP)

o Input: Undirected graph G = (V, E), source s € V
@ Output: dist(s, v) for every v € V
» Can also output shortest path tree
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Shortest Paths

Single-Source Shortest Paths (SSSP)

o Input: Undirected graph G = (V, E), source s € V
@ Output: dist(s,v) for every v € V
» Can also output shortest path tree

Classic Algorithm: Can solve SSSP in ~ O(m) time.
e e.g. BFS, Dijkstra, Thorup 97

m is the number of edges in the graph, n the number of vertices.
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Dynamic Shortest Paths

Dynamic Algorithms: Maintain information in a graph that is changing
over time.
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Dynamic Shortest Paths

Dynamic Algorithms: Maintain information in a graph that is changing
over time.

Fully Dynamic SSSP

data structure that handles adversarial update and query operations
@ Update: insert or delete a single edge, or change an edge weight.
@ Query(v): return dist(s, v) or corresponding path 7(s, v).

@ Goal: Minimize update time while keeping small query time.
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Dynamic Shortest Paths

Dynamic Algorithms: Maintain information in a graph that is changing
over time.

Fully Dynamic SSSP

data structure that handles adversarial update and query operations
@ Update: insert or delete a single edge, or change an edge weight.
@ Query(v): return dist(s, v) or corresponding path 7(s, v).

@ Goal: Minimize update time while keeping small query time.

Trivial Upper Bound: O(m) update time, O(1) query time.
@ Compute SSSP from scratch after every update.

Conditional Lower Bound: O(m) is best possible update time, even with
(1 + €) approximation.
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Decremental Shortest Paths

Decremental SSSP: Each update only deletes an edge in G or increases
an edge weight.

@ So distances monotonically increasing.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 6/63



Decremental Shortest Paths

Decremental SSSP: Each update only deletes an edge in G or increases
an edge weight.
@ So distances monotonically increasing.

Motivations for Decremental SSSP:
o Natural relaxation of fully dynamic SSSP
@ Can hope for non-trivial results (unlike fully dynamic SSSP)

@ Used as a subroutine in many dynamic algorithms (both decremental
and fully dynamic)
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Decremental Shortest Paths

Decremental SSSP: Each update only deletes an edge in G or increases
an edge weight.

@ So distances monotonically increasing.

Motivations for Decremental SSSP:
o Natural relaxation of fully dynamic SSSP
@ Can hope for non-trivial results (unlike fully dynamic SSSP)

@ Used as a subroutine in many dynamic algorithms (both decremental
and fully dynamic)

@ Powerful data structure for static algorithms. This Talk!

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 6/63



Existing Result for Decremental SSSP

Simplifying Assumption: G is unweighted
@ So each update deletes an edge.

@ Start with graph G, end with empty graph.
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Existing Result for Decremental SSSP

Simplifying Assumption: G is unweighted
@ So each update deletes an edge.

@ Start with graph G, end with empty graph.

Existing work on Decremental SSSP

o Trivial: O(m?) total update time over all deletions.

» O(m) amortized update time (reconstruction from scratch).

e Classic: O(mn) total update time (O(n) amortized).
Even and Shiloach, 1981

Condition Lower Bound: O(mn) total update time is optimal
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Existing Result for Decremental SSSP

Simplifying Assumption: G is unweighted
@ So each update deletes an edge.

@ Start with graph G, end with empty graph.

Existing work on Decremental SSSP

o Trivial: O(m?) total update time over all deletions.

» O(m) amortized update time (reconstruction from scratch).

e Classic: O(mn) total update time (O(n) amortized).
Even and Shiloach, 1981

Condition Lower Bound: O(mn) total update time is optimal

All recent work seeks to break through O(mn) barrier by allowing (1 + €)
approximation.
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Adaptive vs. non-adaptive adversaries.
Decremental SSSP:

o Update: delete an edge
@ Query(v): return shortest distance/path from s to v.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 8/63



Adaptive vs. non-adaptive adversaries.
Decremental SSSP:

o Update: delete an edge
@ Query(v): return shortest distance/path from s to v.

Stronger Model: Adaptive Adversary
Adversary can choose next update based on response to earlier queries

e Example: adversary does query(v) and then deletes every edge on the
returned s — v path.

@ Deterministic algorithms always work against adaptive adversary.
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Adaptive vs. non-adaptive adversaries.
Decremental SSSP:

o Update: delete an edge

@ Query(v): return shortest distance/path from s to v.

Stronger Model: Adaptive Adversary
Adversary can choose next update based on response to earlier queries

e Example: adversary does query(v) and then deletes every edge on the
returned s — v path.

@ Deterministic algorithms always work against adaptive adversary.

Weaker Model: Non-Adaptive Adversary (aka oblivious adversary)
Entire sequence of updates and queries is fixed in advance.
@ Many randomized algorithms only work against non-adaptive.

@ Adaptive adversary can figure out algorithm’s random choices.

@ non-adaptive algorithm has zero information about random choices.

v
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Adaptivity and Randomness

The Two Adversarial Models

o Adaptive Adversary (stronger): can typically figure out algorithm'’s
random choices.

@ Non-Adaptive Adversary (weaker): has zero information about
random choices.
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o Adaptive Adversary (stronger): can typically figure out algorithm'’s
random choices.

@ Non-Adaptive Adversary (weaker): has zero information about
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@ We say that an algorithm is adaptive if it works against adaptive
adversary

@ Deterministic algorithms automatically adaptive.

@ Some randomized algorithms also adaptive.
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Adaptivity and Randomness

The Two Adversarial Models

o Adaptive Adversary (stronger): can typically figure out algorithm'’s
random choices.

@ Non-Adaptive Adversary (weaker): has zero information about
random choices.

o We say that an algorithm is adaptive if it works against adaptive
adversary

@ Deterministic algorithms automatically adaptive.

@ Some randomized algorithms also adaptive.

Non-adaptive algorithms are generally much easier to design because they
can use randomness to “hide” information from the adversary.
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Limitations of Non-adaptive Adversaries

First Limiation
In many natural applications, the adversary is adaptive.

@ Examples: traffic control, wear and tear.
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Limitations of Non-adaptive Adversaries

First Limiation

In many natural applications, the adversary is adaptive.

@ Examples: traffic control, wear and tear.

Second Limitation — Crucial For This Talk
Non-adaptive algorithms cannot be used as black-box data structures.

@ Example: user might want to query a path and then delete every edge
on that path.
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Limitations of Non-adaptive Adversaries

First Limiation

In many natural applications, the adversary is adaptive.

@ Examples: traffic control, wear and tear.

Second Limitation — Crucial For This Talk
Non-adaptive algorithms cannot be used as black-box data structures.

@ Example: user might want to query a path and then delete every edge
on that path.

Bridging the gap between adaptive and non-adaptive algorithms is a
central focus of dynamic algorithms over the past decade.
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Back to Decremental SSSP
Decremental SSSP:
@ Each update deletes an edge
@ Query(v): return (1 + €)-approximation to dist(s, v) or
shortest-path(s, v)
e O(mn) total update time optimal for exact version.
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O(-) hides polylog factors; O(-) hides n°(") factors.
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Back to Decremental SSSP
Decremental SSSP:
@ Each update deletes an edge

@ Query(v): return (1 + €)-approximation to dist(s, v) or
shortest-path(s, v)

e O(mn) total update time optimal for exact version.

Non-Adaptive algorithm: Can solve in O(m) total update time
@ [Forster, Henzinger, Nanongkai, 2014]
@ Optimal up to sub-polynomial factors.
@ Concludes long line of research

Deterministic (and hence adaptive) algorithms
o O(n?) total update time [BC16,B17,CK19,CS20]
o O(mn®*) [BC17]
o O(my/n) [GW20]

O(-) hides polylog factors; O(-) hides n°(") factors.
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Our Result

Previous Work (undirected graph)

o Non-Adaptive: O(m) total update time.
o Deterministic (and so adaptive): O(min(n?, my/n) total update
time.
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Our Result

Previous Work (undirected graph)

o Non-Adaptive: O(m) total update time.
o Deterministic (and so adaptive): O(min(n?, my/n) total update
time.

Our Result (undirected graph)

Adaptive decremental SSSP in total update time O(m)
o Closes the adaptive / non-adaptive gap.
@ Optimal update time up to sub-polynomial factors.

o Generalizes to weighted graphs.

@ Concludes long line of research.
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Outline

© Result II: Approximate Undirected Flow: Costs and Vertex Capacities
@ Introduction
@ Our Results
e Multiplicative-Weight Update (MWU) Framework
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Outline

@ Introduction

© Result II: Approximate Undirected Flow: Costs and Vertex Capacities
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Maximum Flow: Figure

SINK:
Node with net inflow;
Consumption point

CAPACITY:
Maximum flow
on an edge

SOURCE:
Node with net outflow:
Production point
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Edge-Capacitated Maximum Flow

Input:
e Undirected graph G = (V, E)
o Fixed source s, sink t.
» Can also handle arbitrary demand vector

o Capacity function uv: E — R>q

Output: maximum flow f from s to t such that f(e) < u(e) Ve € E.
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Applications of Maximum Flow

Network Nodes

e telephone exchanges,
communication

Arcs

cables, fiber optics,

Flow

voice, video,

circuits

mechanical

hydraulic

financial

transportation

chemical

computers, satellites | microwave relays packets
gates, registers, wires current
processors
joints rods, beams, springs | heat, energy
reservoirs, pumping L . .
stations, lakes pipelines fluid, oil
stocks, companies transactions money
airports, rail yards, highways, railbeds, frelg_]ht,

. . X vehicles,
street intersections airway routes

passengers

sites bonds energy

Bernstein, Gutenberg, Saranurak

January 17, 2021

17/63



Common Flow Variants

Edge-Capacitated Max Flow (standard)
o Every edge has capacity u(e) >0

e Flow f must satisfy f(e) < u(e)
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Common Flow Variants

Edge-Capacitated Max Flow (standard)
o Every edge has capacity u(e) >
o Flow f must satisfy f(e) < u(e)

Vertex-Capacitated Max Flow
o Every vertex has capacity u(v) >0

@ Flow through any vertex must satisfy in-flow(v) < u(v).
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Common Flow Variants

Edge-Capacitated Max Flow (standard)

o Every edge has capacity u(e) >
@ Flow f must satisfy f(e) < (e)

Vertex-Capacitated Max Flow
o Every vertex has capacity u(v) >0
@ Flow through any vertex must satisfy in-flow(v) < u(v).

Minimum Cost Flow
@ Every edge also has cost c(e)
Also given budget B as input
Cost of flow fis > g f(e) - c(e)
Goal is to compute maximum s — t flow with cost at most B.
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Existing Work on Maximum Flow

Exact Max-Flow: State-of-the-art
o O(m+ n'9)
[van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang,2020]
o O(m*/3) for unit capacities [Axiotis, Madri, Vlaud, 2020]
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@ Based on interior-point methods.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 19 /63



Existing Work on Maximum Flow

Exact Max-Flow: State-of-the-art
o O(m+ n'9)
[van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang,2020]
o O(m*/3) for unit capacities [Axiotis, Madri, Vlaud, 2020]
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@ Based on interior-point methods.

Approximate Max-Flow: State-of-the-art
(1 + e)-approximation, limited to undirected graphs
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[van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang,2020]
o O(m*/3) for unit capacities [Axiotis, Madri, Vlaud, 2020]
@ both extend to min-cost flow and vertex capacities.

@ Based on interior-point methods.

Approximate Max-Flow: State-of-the-art
(1 + e)-approximation, limited to undirected graphs
o Edge-Capacitated Max Flow: O(m) [Sherman13, KLOS14,Peng16]

» Does not extend to costs or vertex capacities

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 19 /63



Existing Work on Maximum Flow

Exact Max-Flow: State-of-the-art
o O(m+ n'9)
[van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang,2020]
o O(m*/3) for unit capacities [Axiotis, Madri, Vlaud, 2020]
@ both extend to min-cost flow and vertex capacities.

@ Based on interior-point methods.

Approximate Max-Flow: State-of-the-art
(1 + e)-approximation, limited to undirected graphs
o Edge-Capacitated Max Flow: O(m) [Sherman13, KLOS14,Peng16]

» Does not extend to costs or vertex capacities

@ Special Case — Transshipment (costs but no capacities): O(m)
[Sherman17,Li20,ASZ20]
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Previous Work Summary

Exact Max Flow in Directed Graphs: O(m + n'®)

@ Works for edge capacities, vertex capacities, costs.
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Previous Work Summary
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@ Works for edge capacities, vertex capacities, costs.

(1 4 €)-Approximate Max Flow in Undirected Graphs

o Edge-Capacitated Max Flow: O(m)
o Vertex-Capacitated Max Flow: O(m + n'®)
o Min-Cost flow: O(m + n'®)
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Previous Work Summary

Exact Max Flow in Directed Graphs: O(m + n'®)

@ Works for edge capacities, vertex capacities, costs.

(1 4 €)-Approximate Max Flow in Undirected Graphs
o Edge-Capacitated Max Flow: O(m)

o Vertex-Capacitated Max Flow: O(m + n'9)
o Min-Cost flow: O(m+ n'?®)

Open Problem: Can we solve approximate min-cost flow in time é(m)?
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Previous Work Summary

Exact Max Flow in Directed Graphs: O(m + n'®)

@ Works for edge capacities, vertex capacities, costs.

(1 4 €)-Approximate Max Flow in Undirected Graphs

o Edge-Capacitated Max Flow: O(m)
o Vertex-Capacitated Max Flow: O(m + n'9)
o Min-Cost flow: O(m+ n'?®)

Open Problem: Can we solve approximate min-cost flow in time é(m)?

our result: yes!
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Outline

© Result II: Approximate Undirected Flow: Costs and Vertex Capacities
@ Our Results
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Our Result

Previous (1 + ¢)-Approximate Max Flow in Undirected Graphs
o Edge-Capacitated Max Flow: O(m)
o Vertex-Capacitated Max Flow: O(m + n'®)
@ Min-Cost flow: O(m + n'?)

Our Result
(1 + €)-approximation min-cost flow in O(m) time.

e Can handle costs/capacities on both vertices/edges.

@ Completes the picture for approximate flow in undirected graphs.
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Outline

© Result II: Approximate Undirected Flow: Costs and Vertex Capacities

e Multiplicative-Weight Update (MWU) Framework
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Faster Flow Algorithms via Dynamic Shortest Paths

MWU framework for maximum flow
@ Given: source s, sink t.

@ Algorithm introduces a weight function
w:E— RZO

@ Start with initial w(e) (simple)
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Faster Flow Algorithms via Dynamic Shortest Paths

MWU framework for maximum flow
@ Given: source s, sink t.
@ Algorithm introduces a weight function
w:E— RZO
@ Start with initial w(e) (simple)
@ Repeat Many Times:

» Compute a (1 + ¢)-approximate
shortest path (s, t) w.r.t w.

» Send flow on (s, t).

> Increase w(e) Ve € n(s, t).
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Faster Flow Algorithms via Dynamic Shortest Paths

MWU framework for maximum flow
@ Given: source s, sink t.
@ Algorithm introduces a weight function
w:E— RZO
© Start with initial w(e) (simple)
@ Repeat Many Times:

» Compute a (1 + ¢)-approximate
shortest path 7 (s, t) w.r.t w.

» Send flow on (s, t).

> Increase w(e) Ve € n(s, t).

Lemma: Above algorithm returns
(1 + €)-approximation to max flow

o Easily generalizes to min-cost flow and
vertex capacities.

@ [Garg and Koenneman, 1998]
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MWU and Dynamic SSSP

MWU framework for maximum flow
@ Given: source s, sink t.

@ Initialize weight function w : E — R>g

=] F = = Qe
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MWU and Dynamic SSSP

MWU framework for maximum flow
@ Given: source s, sink t.
@ Initialize weight function w : E — R>g

© Repeat Many Times:

» Compute a (1 + €)-approximate shortest path 7(s, t) w.r.t to w.
» Send flow on 7 (s, t)
> Increase w(e)Ve € 7 (s, t).
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MWU and Dynamic SSSP

MWU framework for maximum flow
@ Given: source s, sink t.
@ Initialize weight function w : E — R>q

© Repeat Many Times:

» Compute a (1 + €)-approximate shortest path 7(s, t) w.r.t to w.
» Send flow on 7 (s, t)
> Increase w(e)Ve € 7(s, t).

Using Dynamic SSSP to speed up MWU [Madry 2010]

@ Must compute a new shortest path in every iteration of step 3.
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MWU and Dynamic SSSP

MWU framework for maximum flow
@ Given: source s, sink t.
@ Initialize weight function w : E — R>q

© Repeat Many Times:

» Compute a (1 + €)-approximate shortest path 7(s, t) w.r.t to w.
» Send flow on 7 (s, t)
> Increase w(e)Ve € 7(s, t).

Using Dynamic SSSP to speed up MWU [Madry 2010]
@ Must compute a new shortest path in every iteration of step 3.
e Weights w(e) only increase between iterations.
o Find the paths using decremental SSSP.
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MWU and Dynamic SSSP

MWU framework for maximum flow
@ Given: source s, sink t.
@ Initialize weight function w : E — R>q

© Repeat Many Times:
» Compute a (1 + €)-approximate shortest path 7(s, t) w.r.t to w.
» Send flow on (s, t)
> Increase w(e)Ve € 7(s, t).

Using Dynamic SSSP to speed up MWU [Madry 2010]
@ Must compute a new shortest path in every iteration of step 3.
e Weights w(e) only increase between iterations.
o Find the paths using decremental SSSP.

@ Total running time of MWU depends on total update time of
decremental SSSP )
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Two Challenges of MWU

MWU framework: Repeatedly compute shortest path 7(s, t) and update
every edge on the path.

Goal: Execute MWU framework in O(m) time.
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every edge on the path.

Goal: Execute MWU framework in O(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time O(m)

@ Our first result
@ Our MWU algorithm uses our decremental SSSP algorithm as black
box.
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Two Challenges of MWU

MWU framework: Repeatedly compute shortest path 7(s, t) and update
every edge on the path.
Goal: Execute MWU framework in O(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time O(m)

@ Our first result

@ Our MWU algorithm uses our decremental SSSP algorithm as black
box.

Second Challenge: Total length of all the paths 7 (s, t) may be too long.

@ Known as flow decomposition barrier
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Flow Decomposition Barrier
Question: say we are given a

s — t flow f and we decompose f
into many s — t paths:

f =75 p(s,t). What is the
maximum value of > |p(s, t)|?
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maximum value of > |p(s, t)|?

@ unit-capacity edges:

2. lp(s; t)] = ©(m)
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s — t flow f and we decompose f
into many s — t paths:
f =75 p(s,t). What is the
maximum value of > |p(s, t)|?

@ unit-capacity edges:

2. lp(s; t)] = ©(m)
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Flow Decomposition Barrier
Question: say we are given a
s — t flow f and we decompose f
into many s — t paths:
f=> p(s,t). What is the
maximum value of > |p(s, t)|?
@ unit-capacity edges:
>_|p(s, t)] = ©(m)
@ general edge capacities:
> |p(s, t)| = ©(mn)
@ general vertex capacities:

> lp(s, t)] = ©(n?)
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Flow Decomposition Barrier
Question: say we are given a
s — t flow f and we decompose f
into many s — t paths:
f=> p(s,t). What is the
maximum value of > |p(s, t)|?
@ unit-capacity edges:
>_|p(s, t)] = ©(m)
@ general edge capacities:
> |p(s, t)| = ©(mn)
@ general vertex capacities:
> |p(s. )| = ©(n)
@ Known as flow
decomposition barrier
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Flow Decomposition Barrier
Question: say we are given a
s — t flow f and we decompose f
into many s — t paths:
f =75 p(s,t). What is the
maximum value of > |p(s, t)|?
@ unit-capacity edges:
>_|p(s, t)] = ©(m)
@ general edge capacities:
> |p(s, t)| = ©(mn)
@ general vertex capacities:
> |p(s. )| = ©(n)
@ Known as flow
decomposition barrier

~n parallel paths
(of capacity 1)

Path of length ~n
(and capacity n)
A

No previous MWU-based flow algorithm went beyond flow decomposition
barrier.
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Two Challenges of MWU

Goal: Execute MWU framework in O(m) time.
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Two Challenges of MWU
Goal: Execute MWU framework in O(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time O(m).

@ long-standing open problem in dynamic shortest paths

@ Focus of this talk.
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Two Challenges of MWU
Goal: Execute MWU framework in O(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time O(m).

@ long-standing open problem in dynamic shortest paths
@ Focus of this talk.

Second Challenge: Total length of all the paths 7 (s, t) may be too long.
@ Known as flow decomposition barrier
@ We make significant changes to MWU-framework.

@ Introduces randomization
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Two Challenges of MWU
Goal: Execute MWU framework in O(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time O(m).

@ long-standing open problem in dynamic shortest paths

@ Focus of this talk.

Second Challenge: Total length of all the paths 7 (s, t) may be too long.
@ Known as flow decomposition barrier
@ We make significant changes to MWU-framework.

@ Introduces randomization

Our min-cost flow result introduces the first solution to both above
challenges
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Two Challenges of MWU
Goal: Execute MWU framework in O(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time O(m).

@ long-standing open problem in dynamic shortest paths
@ Focus of this talk.

Second Challenge: Total length of all the paths 7 (s, t) may be too long.
@ Known as flow decomposition barrier
@ We make significant changes to MWU-framework.

@ Introduces randomization

Our min-cost flow result introduces the first solution to both above
challenges

Note: our solutions to the two challenges entirely unrelated
e This Talk: first challenge only (dynamic SSSP)
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Outline

e Introducing the Robust Core Problem
@ Previous Approaches to Robust Core
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Decremental SSSP review

Reviewing the model
@ Initial undirected graph G, fixed source s
This Talk: assume G unweighted

°
e Each update deletes an edge (v, v) in G

@ Goal: maintain (1 + €)-approximate shortest paths from s
°

Goal: deterministic (and hence adaptive) algorithm.
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Decremental SSSP review

Reviewing the model
@ Initial undirected graph G, fixed source s

This Talk: assume G unweighted

Goal: maintain (1 + €)-approximate shortest paths from s

°
e Each update deletes an edge (v, v) in G
°
o

Goal: deterministic (and hence adaptive) algorithm.

Our Result: Adaptive (1 + ¢)-approximation in total update time é(m)
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High-Level Approach: Maintain Low Diameter Balls
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High-Level Approach: Maintain Low Diameter Balls

e Static Problem (easy-ish): cover V with low-diameter balls

e Dynamic Problem (hard): maintain covering of low-diameter balls.

o Key Dynamic Building Block: Start with low-diameter ball K.
As edges in G are deleted, detect vertices in K™t that are no longer
close to the rest of the ball.
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Definition
Recall: O(-) and Q(-) hide polynomial factors.

Recall: We assume that G is unweighted
@ So each adversarial update deletes an edge in G
Definition: Weak Diameter Given graph G and set K C V/(G), define

diamg(K) £ min dist(x, y)
x,yeK
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Defining Robust Core (Simplified Version)

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(%).

Define |V(G) = n|, |[E(G) = m|.
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Defining Robust Core (Simplified Version)

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(%).
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)
Maintain a set K C V/(G) with the following properties:
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Defining Robust Core (Simplified Version)

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(%).
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)

Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°(®)
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Defining Robust Core (Simplified Version)

Input: Graph G subject to edge deletions; initially diam(G) = d = n°().
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)

Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°()
e Scattering Property: For every v € V(G) \ K we have
Iball(v, 2d)| < .99n
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Defining Robust Core (Simplified Version)

Input: Graph G subject to edge deletions; initially diam(G) = d = n°().
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)
Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°()
e Scattering Property: For every v € V(G) \ K we have

Iball(v, 2d)| < .99n
e Termination: if at some point |K| < n/2, can set K « (.
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Robust Core and Decremental SSSP

First Task: Find a solution to RobustCore
@ Focus of this talk
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Robust Core and Decremental SSSP

First Task: Find a solution to RobustCore
@ Focus of this talk

Second Task: Show that RobustCore — decremental SSSP
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Robust Core and Decremental SSSP

First Task: Find a solution to RobustCore
@ Focus of this talk

Second Task: Show that RobustCore — decremental SSSP
@ Requires several new techniques

@ Borrows many ideas from existing work on dynamic SSSP (hopsets,
clustering, monotone even and Shiloach, etc.)
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Outline

e Introducing the Robust Core Problem
@ Previous Approaches to Robust Core
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Simplified Robust Core

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(1).
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)
Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°()
o Scattering Property: For every v € V(G) \ K we have

|ball(v,2d)| < .99n

e Termination: if at some point |K| < |n/2|, can set K + ().
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Simplified Robust Core

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(1).
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)
Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°()
o Scattering Property: For every v € V(G) \ K we have

|ball(v,2d)| < .99n

e Termination: if at some point |K| < |n/2|, can set K + ().

v

Robust Core distills basic subroutine used by almost all previous algorithms
for Decremental SSSP.
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Simplified Robust Core

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(1).
Define |V(G) = n|, |[E(G) = m|.

Simplified RobustCore(G)
Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°()
o Scattering Property: For every v € V(G) \ K we have

|ball(v,2d)| < .99n

e Termination: if at some point |K| < |n/2|, can set K + ().

v

Robust Core distills basic subroutine used by almost all previous algorithms
for Decremental SSSP.

Our Result: Solve RobustCore(G) in total time O(m).
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Non-Adaptive Algorithms: Random Source

Recall: [initial diameter of G] = d = n°)
Scattering: If v € V(G) \ K then |ball(v,2d)| < .99n
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Non-Adaptive Algorithms: Random Source
Recall: [initial diameter of G] = d = n°(!)

Scattering: If v € V(G) \ K then |ball(v,2d)| < .99n
RobustCore(G) via Random Source

@ Pick random source s € V

e Maintain ball(s,5d): can do in total
time O(md) = O(m) (ES-tree).
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Recall: [initial diameter of G] = d = n°)
Scattering: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G) via Random Source
@ Pick random source s € V
® Maintain ball(s, 5d): can do in total
time O(md) = O(m) (ES-tree).
@ Whenever v leaves ball(s, 5d),
remove v from K.
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Non-Adaptive Algorithms: Random Source

Recall: [initial diameter of G] = d = n°(!)
Scattering: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G) via Random Source
@ Pick random source s € V
® Maintain ball(s, 5d): can do in total
time O(md) = O(m) (ES-tree).
@ Whenever v leaves ball(s, 5d),
remove v from K.

e If at any point |ball(s, 2d)| < n/2,
restart with new source.
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Non-Adaptive Algorithms: Random Source

Recall: [initial diameter of G] = d = n°(!)
Scattering: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G) via Random Source
@ Pick random source s € V
® Maintain ball(s, 5d): can do in total
time O(md) = O(m) (ES-tree).
@ Whenever v leaves ball(s, 5d),
remove v from K.

e If at any point |ball(s, 2d)| < n/2,
restart with new source.

Analysis:
e If |ball(s,2d)| < n/2 then s is scattered.
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Non-Adaptive Algorithms: Random Source

Recall: [initial diameter of G] = d = n°(%)
Scattering: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G) via Random Source
@ Pick random source s € V
® Maintain ball(s, 5d): can do in total
time O(md) = O(m) (ES-tree).
@ Whenever v leaves ball(s, 5d),
remove v from K.

e If at any point |ball(s, 2d)| < n/2,
restart with new source.

Analysis:
e If |ball(s,2d)| < n/2 then s is scattered.
@ s picked at random, so in expectation half of vertices scattered.

@ So w.h.p only O(log(n)) random sources before termination.
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Random Source Useless Against Adaptive Adversaries
Random Source: Let s be a random source in G
Non-Adaptive Adversary:

@ Adversary has no access to randomness of algorithm.

@ To scatter s, must scatter (in expectation) half of V(G)

@ So only log(n) random sources.
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Random Source Useless Against Adaptive Adversaries
Random Source: Let s be a random source in G

Non-Adaptive Adversary:
@ Adversary has no access to randomness of algorithm.

e To scatter s, must scatter (in expectation) half of V(G)
@ So only log(n) random sources.

Adaptive Adversary

@ Adversary can guess randomness of algorithm via queries
@ Can Show: easy for adversary to detect s.
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Random Source Useless Against Adaptive Adversaries
Random Source: Let s be a random source in G

Non-Adaptive Adversary:
@ Adversary has no access to randomness of algorithm.

e To scatter s, must scatter (in expectation) half of V(G)
@ So only log(n) random sources.

Adaptive Adversary
@ Adversary can guess randomness of algorithm via queries
@ Can Show: easy for adversary to detect s.

@ Adversary can delete all edges of s while leaving rest of G intact.
@ Will need Q(n) sources.

The random-source technique accounts for much of the gap between
adaptive and non-adaptive algorithms for dynamic shortest paths and
related problems.
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Previous Adaptive Approach: Many Sources

Non-adaptive Adversary: maintain shortest path tree from random
seG
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Previous Adaptive Approach: Many Sources

Non-adaptive Adversary: maintain shortest path tree from random
seG

Adaptive Adversary: maintain shortest path tree from all v € V(G).

@ Can somewhat limit sizes of trees with density arguments.
@ State-of-the art with many-source approach:

> Q(mn3/4) Bernstein and Chechik, 2016
» O(mn'/?) Gutenberg and Wulff-Nilsen, 2016

e Hard barrier to this approach: O(mn'/?).
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Outline

@ Our Algorithm for Robust Core
@ Introducing Expanders
@ Our Approach: Capacitated Expanders
@ Congestion Balancing: Proving Key Lemma
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Outline

@ Our Algorithm for Robust Core

@ Introducing Expanders
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Defining Vertex Expanders

Definition: For any set L C V/(G), let
N(L) be the neighbors of L not in L.

e SoLNN(L)y=10

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 42 /63



Defining Vertex Expanders

Definition: For any set L C V/(G), let
N(L) be the neighbors of L not in L.

e SoLNN(L)y=10

Vertex Expander

G = (V,E) is a vertex expander if for
any set L C V with |L| <|V|/2:

IN(L)| = O(|L|/ log(n))-
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Defining Vertex Expanders

Definition: For any set L C V/(G), let
N(L) be the neighbors of L not in L.

e SoLNN(L)y=10

Vertex Expander

G = (V,E) is a vertex expander if for
any set L C V with |L| <|V|/2:

IN(L)| = O(|L|/log(n)).

This Talk: Only vertex expanders,
expansion factor always 1/ log(n).
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Defining Vertex Expanders

Definition: For any set L C V/(G), let
N(L) be the neighbors of L not in L.

e SoLNN(L)y=10

Vertex Expander

G = (V,E) is a vertex expander if for
any set L C V with |L| <|V|/2:

IN(L)| = O(|L|/log(n)).

This Talk: Only vertex expanders,
expansion factor always 1/ log(n).

Key Property: expanders have diameter polylog
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Existing Technique: Expander Pruning

Key fact: expanders are robust to edge deletions.
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Existing Technique: Expander Pruning

Expander Pruning (slightly informal) [Saranurak, Wang]

Let G be an expander subject to edge deletions. Algorithm PRUNE(G)

can process up to O(n/log(n)) edge deletions while maintaining a set
X C V(G) such that

e G[X] is an expander.

o |X|> V(G)/2
v
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|dealized Scenario: G is initially an expander
Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G)
o Initially: K < V(G)
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|dealized Scenario: G is initially an expander
Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n
RobustCore(G)

o Initially: K < V(G)
@ Maintain X < PRUNE(G)
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|dealized Scenario: G is initially an expander
Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G)
o Initially: K < V(G)
@ Maintain X < PRUNE(G)

o Maintain ball(X, 2d).
Can do in O(m) time (ES-tree).
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Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G)
o Initially: K < V(G)
@ Maintain X < PRUNE(G)
o Maintain ball(X, 2d).
Can do in O(m) time (ES-tree).
@ Whenever v leaves ball( X, 2d),
remove v from K
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|dealized Scenario: G is initially an expander
Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G)
o Initially: K < V(G)
@ Maintain X < PRUNE(G)
o Maintain ball(X, 2d).
Can do in O(m) time (ES-tree).
@ Whenever v leaves ball( X, 2d),
remove v from K

@ Terminate once |X| < n/2
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|dealized Scenario: G is initially an expander

Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G)
o Initially: K < V(G)
@ Maintain X + PRUNE(G)
@ Maintain ball(X, 2d).

Can do in O(m) time (ES-tree).

@ Whenever v leaves ball( X, 2d),
remove v from K
@ Terminate once |X| < n/2

» Can only happen after
n/ log(n) deletions.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi
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|dealized Scenario: G is initially an expander
Scattering Property: If v € V(G) \ K then |ball(v,2d)| < .99n

RobustCore(G)
o Initially: K < V(G)
@ Maintain X + PRUNE(G)
o Maintain ball(X, 2d).
Can do in O(m) time (ES-tree).
@ Whenever v leaves ball( X, 2d),
remove v from K

@ Terminate once |X| < n/2

» Can only happen after
n/ log(n) deletions.

Intuition: shortest path tree rooted
at expander instead of random
source.
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What if G is not an expander?
(Input to RobustCore only guarantees that G has small diameter.)
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What if G is not an expander?
(Input to RobustCore only guarantees that G has small diameter.)

Note: unclear how to efficiently use expander decomposition

Our Result: expander tools without expander decomposition.
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Outline

@ Our Algorithm for Robust Core

@ Our Approach: Capacitated Expanders
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What if G not an expander?

Criticality: vertex v is critical if deleting edge (u, v) can scatter many

vertices in G
© G is expander: no vertices are critical
@ G is arbitrary graph: can have many very critical vertices

© G has small diameter: total criticality is small.
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Capacitated Expander

Regular Expander
G = (V,E) is an expander if for any set L C V with |L]| < |V/|/2:

IN(L)| = O(|L|/ log(n))-
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Capacitated Expander

Regular Expander
G = (V,E) is an expander if for any set L C V with |L]| < |V/|/2:

IN(L)| = O(|L|/ log(n))-

Capacitated Expander

G is a capacitated expander with respect to « if for any set L C V with
L] < |V]/2:

S enqwy £(v) = IL|/ 1og(n).
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Capacity Function Examples

Capacitated Expander

G is a capacitated expander with respect to « if for any set L C V with
L] < |V[/2 we have: }°, oy K(v) = [L]/ log(n).
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Capacity Function Examples

Capacitated Expander

G is a capacitated expander with respect to « if for any set L C V with
L] < [VI[/2 we have: >, () k(v) = |L|/ log(n).
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Goal: Low Total Capacity

Capacitated Expander

G is a capacitated expander with respect to « if for any set L C V with
L] < [V]/2 we have: 3,y w(v) > |L]/ log(n).
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G is a capacitated expander with respect to « if for any set L C V with
L] < [VI/2 we have: 3, ey #(v) > |LI/ log(n).
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L] < [V|/2 we have: 3~ cpp) k(v) = L]/ log(n).

e Note: G automatically capacitated expander if k(v) = n Vv € V

High-Level Goal

Given a graph G, compute a capacity function x such that G is a
capacitated vertex expander and } . () £(v) is small.
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High-Level Goal

Given a graph G, compute a capacity function x such that G is a
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Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 50/63



Goal: Low Total Capacity

Capacitated Expander
G is a capacitated expander with respect to « if for any set L C V with
L] < [V|/2 we have: 3~ cpp) k(v) = L]/ log(n).

e Note: G automatically capacitated expander if k(v) = n Vv € V

High-Level Goal

Given a graph G, compute a capacity function x such that G is a
capacitated vertex expander and } . () £(v) is small.

Question: Why do we want ) ., x(v) to be small.

r(v)

v
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Capacitated Expander Pruning

Simplification: We assume that all vertices in G have constant degree.
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Capacitated Expander Pruning

Simplification: We assume that all vertices in G have constant degree.
Definition: For edge e = (u, v), let x(u,v) = k(u) + K(v).
o Note: >°,cy () h(v) = O(Xccg(c) kle)
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Capacitated Expander Pruning

Simplification: We assume that all vertices in G have constant degree.
Definition: For edge e = (u, v), let x(u,v) = k(u) + K(v).
o Note: >°,cy () h(v) = O(Xccg(c) kle)

PRUNE(G, k)

Let G be a capacitated expander wr.t. to x and say G subject to edge
deletions. Algorithm PRUNE(G, k) can process edge deletions while
maintaining a set X C V/(G) such that

e G[X] is a capacitated expander.

° |X| > V(G)/2 as long as 3" pa r(€) < O(n/ log(n)), where E% is
the set of edges deleted by the adversary.

v
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Key Lemma

Small Diameter Implies Small Capacity Sum
Say that diam(G) = d. Then, there exists a function « such that:

@ G is a capacitated expander w.r.t s.

A

® > ey (V) = O(nd)
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Key Lemma

Small Diameter Implies Small Capacity Sum
Say that diam(G) = d. Then, there exists a function « such that:

@ G is a capacitated expander w.r.t s.

A

® > ey (V) = O(nd)

Issue: Cannot compute above function x in almost-linear time.
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Key Lemma

Small Diameter Implies Small Capacity Sum
Say that diam(G) = d. Then, there exists a function « such that:

@ G is a capacitated expander w.r.t s.

A

® > ey (V) = O(nd)

Issue: Cannot compute above function x in almost-linear time.

@ We actually compute slightly relaxed version of x that only
guarantees expansion for balanced cuts: |L| > en
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Algorithm RobustCore(G)

Goal: given G with diam(G) = d = n°(), maintain small-diam K C V.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi



Algorithm RobustCore(G)
Goal: given G with diam(G) = d = n°(), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander

A A

and 3_,cv(g) K(v) = O(nd) = O(n).
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©@ Compute capacity function « such that G is a capacitated expander

A A

and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)
Q If a vertex v leaves ball(X, 2d), remove v from k
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Algorithm RobustCore(G)
Goal: given G with diam(G) = d = n°(), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander

A A

and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)
Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase
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Algorithm RobustCore(G)
Goal: given G with diam(G) = d = n°(), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander

and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)
Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase
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Goal: given G with diam(G) = d = n°(), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander

and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)
Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase

Analysis
o Each phase requires time O(nd) = O(n).
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Algorithm RobustCore(G)
Goal: given G with diam(G) = d = n°(!), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander

A A

and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)

Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase

Analysis
o Each phase requires time O(nd) = O(n).

@ Each phase terminates only after adversary deletes n/ log(n) capacity.
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@ X < PRUNE(G, k)
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Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase

Analysis
o Each phase requires time O(nd) = O(n).
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Algorithm RobustCore(G)
Goal: given G with diam(G) = d = n°(!), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander
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and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)

Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase

Analysis
o Each phase requires time O(nd) = O(n).
@ Each phase terminates only after adversary deletes n/ log(n) capacity.
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Algorithm RobustCore(G)
Goal: given G with diam(G) = d = n°(!), maintain small-diam K C V.
©@ Compute capacity function « such that G is a capacitated expander

A A

and 3~y (g) K(v) = O(nd) = O(n).
@ X < PRUNE(G, k)
© Maintain ball(X, 2d)

Q If a vertex v leaves ball(X, 2d), remove v from k
@ If at ant point | X| < n/2: restart from scratch with current K
» We call this a new phase

Analysis
o Each phase requires time O(nd) = O(n).
@ Each phase terminates only after adversary deletes n/ log(n) capacity.
o Total capacity ) .\ k(v) = O(n)
@ So # phases = O(Wg(n)) = pe(),

Technical Note: above analysis requires that x(v) is monotonically
increasing between phases.
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Takeaway

Key Lemma
Say that diam(G) = d. Then, there exists a function « such that:

@ G is a capacitated expander w.r.t x.

A

® > ey (V) = O(nd)
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Takeaway

Key Lemma
Say that diam(G) = d. Then, there exists a function « such that:

@ G is a capacitated expander w.r.t x.

A

® > ey (V) = O(nd)

Takeaway: Can turn any low-diameter graph into an expander and apply
expander tools.
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Outline

@ Our Algorithm for Robust Core

@ Congestion Balancing: Proving Key Lemma
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Computing the Function  via Congestion Balancing.

Capacitated Expander

G is a capacitated expander with respect to «
if for any set L C V with |L| < |V/|/2 we have:

2 ven(ry (V) = |L|/ log(n).

Key Lemma

Say that diam(G) = d. Then there exists k
such that G is a capacitated expander w.r.t

~

and ) oy k(v) = O(nd).

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 56 /63



Computing the Function  via Congestion Balancing.

Capacitated Expander

G is a capacitated expander with respect to «
if for any set L C V with |L| < |V/|/2 we have:

2 ven(ry (V) = |L|/ log(n).

Key Lemma

Say that diam(G) = d. Then there exists k
such that G is a capacitated expander w.r.t

~

and ) oy k(v) = O(nd).

Constructing Desired Function «
1. Initially set k(v) =1 Vv € V(G).
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Capacitated Expander

G is a capacitated expander with respect to «
if for any set L C V with |L| < |V/|/2 we have:

2 ven(ry (V) = |L|/ log(n).

Key Lemma

Say that diam(G) = d. Then there exists k
such that G is a capacitated expander w.r.t

~

and ) oy k(v) = O(nd).

Constructing Desired Function «
1. Initially set k(v) =1 Vv € V(G).
2. While there exists L such that
>venqw) £(v) < |L|/log(n)
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Computing the Function  via Congestion Balancing.

Capacitated Expander

G is a capacitated expander with respect to «
if for any set L C V with |L| < |V/|/2 we have:

> ven(w) K(v) = |L|/ log(n).

Key Lemma

Say that diam(G) = d. Then there exists k
such that G is a capacitated expander w.r.t

~

and ) oy k(v) = O(nd).

Constructing Desired Function «
1. Initially set k(v) =1 Vv € V(G).
2. While there exists L such that
>venqw) £(v) < |L|/log(n)

@ Do Vv € N(L): k(v) < 2rk(v)
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Computing the Function  via Congestion Balancing.

Capacitated Expander

G is a capacitated expander with respect to «
if for any set L C V with |L| < |V/|/2 we have:

2 ven(ry (V) = |L|/ log(n).

Key Lemma

Say that diam(G) = d. Then there exists k
such that G is a capacitated expander w.r.t

~

and ) oy k(v) = O(nd).

Constructing Desired Function «
1. Initially set k(v) =1 Vv € V(G).
2. While there exists L such that
>venqw) £(v) < |L|/log(n)

@ Do Vv € N(L): k(v) < 2rk(v)

Generalizes Congestion

Balancing Technique from

[BGS20]
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Analysis of Congestion Balancing

Defining the Potential Function

=] & = E DA
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Analysis of Congestion Balancing

Defining the Potential Function

o Define the cost of a vertex v to be c(v) £ log(x(v))
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Analysis of Congestion Balancing

Defining the Potential Function

@ Define the cost of a vertex v to be c(v) £ log(k(v))

o Let (G, k) be the cost of the min-cost embedding (unbounded
capacities) of a constant-degree expander into G.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Mi January 17, 2021 57/63



Analysis of Congestion Balancing

Defining the Potential Function

@ Define the cost of a vertex v to be c(v) £ log(k(v))

o Let (G, k) be the cost of the min-cost embedding (unbounded
capacities) of a constant-degree expander into G.

Key Facts

e MN(G, k) increases monotonically from 0 to O(nd)
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Analysis of Congestion Balancing

Defining the Potential Function

@ Define the cost of a vertex v to be c(v) £ log(k(v))

o Let (G, k) be the cost of the min-cost embedding (unbounded
capacities) of a constant-degree expander into G.

Key Facts

e MN(G, ) increases monotonically from 0 to O(nd)
® Whenever > _\ k(v) increases by A, (G, r) increases by Q(A)
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Analysis of Congestion Balancing

Defining the Potential Function

@ Define the cost of a vertex v to be c(v) £ log(k(v))

o Let (G, k) be the cost of the min-cost embedding (unbounded
capacities) of a constant-degree expander into G.

Key Facts

e MN(G, ) increases monotonically from 0 to O(nd)
® Whenever > _\ k(v) increases by A, (G, r) increases by Q(A)
@ Thus, at theend, > .\ k(v) = O(nd)
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Outline

© Conclusion

Bernstein, Gutenberg, Sara Near-Optimal Algorithms for Approximate Mi



Summary: Simplified RobustCore

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(1),
Define |V(G) = n|, |[E(G) = m|.
High-Level Goal: maintain small-diameter set K inside G.
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Summary: Simplified RobustCore

Input: Graph G subject to edge deletions; initially diam(G) = d = n°(1).
Define |V(G) = n|, |[E(G) = m|.
High-Level Goal: maintain small-diameter set K inside G.
Simplified RobustCore(G)
Maintain a set K C V/(G) with the following properties:
o Diameter Property: diamg(K) = O(d) = n°()
o Scattering Property: For every v € V(G) \ K we have
|ball(v,2d)| < .99n
e Termination: if at some point |K| < n/2, can set K + 0.

Result: Can maintain RobustCore(G) in total time O(m) over all
deletions.
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Summary: Capacitated Expansion

Capacitated Expander

G is a capacitated expander with respect to x is for every L C V with
L > |V|/2 we have:

> (s) = |L|/log(n)

veS
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Summary: Capacitated Expansion

Capacitated Expander

G is a capacitated expander with respect to x is for every L C V with
L > |V|/2 we have:

> (s) = |L|/log(n)

veS

Key Lemma

Say that diam(G) = d. Then there exists x such that G is a capacitated
expander w.rt v and 3 .y s(v) = O(nd).
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Summary: Dynamic Shortest Path Result

Previous Work (undirected graph)

o Non-Adaptive: O(m) total update time.
o Deterministic (and so adaptive): O(min(n?, my/n) total update
time.
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Summary: Dynamic Shortest Path Result

Previous Work (undirected graph)

o Non-Adaptive: O(m) total update time.
o Deterministic (and so adaptive): O(min(n?, my/n) total update
time.

Our Result (undirected graph)

Adaptive decremental SSSP in total update time O(m)
o Closes the adaptive / non-adaptive gap.
@ Optimal update time up to sub-polynomial factors.
o Generalizes to weighted graphs
°

Concludes long line of research.
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Summary: Flow Results

Previous (1 + €)-Approximate Max Flow in Undirected Graphs
o Edge-Capacitated Max Flow: O(m)
o Vertex-Capacitated Max Flow: O(m + n'®)
o Min-Cost flow: O(m + n'?®)
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Previous (1 + €)-Approximate Max Flow in Undirected Graphs
o Edge-Capacitated Max Flow: O(m)
o Vertex-Capacitated Max Flow: O(m + n'®)
o Min-Cost flow: O(m + n')

Our Result
(1 + €)-approximation min-cost flow in O(m) time.

@ can handle costs/capacities on both vertices/edges.

@ Completes the picture for approximate flow in undirected graphs.
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Summary: Flow Results

Previous (1 + €)-Approximate Max Flow in Undirected Graphs
o Edge-Capacitated Max Flow: O(m)

o Vertex-Capacitated Max Flow: O(m + n'®)
o Min-Cost flow: O(m + n')

Our Result
(1 + €)-approximation min-cost flow in O(m) time.

@ can handle costs/capacities on both vertices/edges.

@ Completes the picture for approximate flow in undirected graphs.

Techniques:
@ New version of MWU framework for max flow

@ Uses decremental SSSP algorithm as black box.
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Open Problems

1) Decremental SSSP for directed graphs
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Open Problems

1) Decremental SSSP for directed graphs

2) Close adaptive/non-adaptive gaps for other dynamic algorithms.
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Open Problems

1) Decremental SSSP for directed graphs
2) Close adaptive/non-adaptive gaps for other dynamic algorithms.

3) Combine dynamic algorithms with MWU to develop faster static
algorithms.
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Open Problems

1) Decremental SSSP for directed graphs
2) Close adaptive/non-adaptive gaps for other dynamic algorithms.

3) Combine dynamic algorithms with MWU to develop faster static
algorithms.

Thanks!
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