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The Context: Proof Complexity

• Proof systems: 
• A way to analyse 

algorithms run-time:
• Each proof-line is a step in 

the algorithm
• A way to approach NP vs 

coNP (hence P vs NP) 
problem:

• Size lower bounds against 
proofs of UNSAT rule out 
that certain kind of 
witnesses can establish 
NP=coNP. 

• IPS: circuit representation 
of algebraic proofs (like 
circuit vs sparsity measure) 
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Polynomial 
Calculus

Nullstellensatz 

SoS

Positivstellensatz

“Dynamic” 
Positivstellensatz

Extended Frege

resolution 

constant depth Frege

Frege
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non-
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Motivation 1

•Are semi-algebraic proofs stronger
than algebraic ones?
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Algebraic Proofs
• Inference in a polynomial ideal over a field:
if 𝑝𝑝, 𝑞𝑞 ∈ 𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥
then 
ℎ � 𝑝𝑝 ∈ 𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥 , for any polynomial ℎ
and 
𝑝𝑝 + 𝑞𝑞 ∈ 𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥

Observe: preserves equalities with 0: 
if 𝑓𝑓1 �𝑎𝑎 = ⋯ = 𝑓𝑓𝑚𝑚 �𝑎𝑎 = 0 (for �𝑎𝑎 field assignment) 
then all inferred polynomials = 0 (under assignment).  
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Semi-Algebraic Proofs
Inference in the cone over reals ℝ:

1) If 𝑝𝑝, 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)
then 
𝑝𝑝 � 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) and   
𝑝𝑝 + 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) ,

2) and for any polynomial 𝑠𝑠

𝑠𝑠2 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) , and

3) if c ≥ 0 then c ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)

0: 
if 𝑓𝑓1 �𝑎𝑎 ≥ 0, … , 𝑓𝑓𝑚𝑚 �𝑎𝑎 ≥ 0 (for �𝑎𝑎 field assignment) 
then all inferred polynomials ≥ 0 (under assignment).  
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Semi-Algebraic Proofs
0: 
Inference in the cone over reals ℝ:

1) If 𝑝𝑝, 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)
then 
𝑝𝑝 � 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) and   
𝑝𝑝 + 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) ,

2) and for any polynomial 𝑠𝑠

𝑠𝑠2 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) , and

3) if c ≥ 0 then c ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)

Observe: preserves inequalities ≥ 0: 
if 𝑓𝑓1 �𝑎𝑎 ≥ 0, … , 𝑓𝑓𝑚𝑚 �𝑎𝑎 ≥ 0 (for �𝑎𝑎 field assignment) 
then all inferred polynomials ≥ 0 (under assignment).  
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Semi-Algebraic Proofs
𝑓𝑓 1   𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 ≥0,…, 𝑓𝑓 𝑚𝑚 𝑓𝑓𝑓𝑓 𝑓𝑓 𝑚𝑚 𝑚𝑚𝑚𝑚 𝑓𝑓 𝑚𝑚 𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 ≥0 (for  𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 field assignment) 
0: 

Inference in the cone over reals ℝ:
1) If 𝑝𝑝, 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)
then 
𝑝𝑝 � 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) and   
𝑝𝑝 + 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) ,

2) and for any polynomial 𝑠𝑠

𝑠𝑠2 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) , and

3) if c ≥ 0 then c ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)

if 𝑓𝑓 1 1 1 �𝑎𝑎 ≥ 0, … , 𝑓𝑓𝑚𝑚 �𝑎𝑎 ≥ 0 (for �𝑎𝑎 field assignment) 

if 𝑓𝑓1 �𝑎𝑎 ≥ 0, … , 𝑓𝑓𝑚𝑚 �𝑎𝑎 ≥ 0 (for �𝑎𝑎 field assignment) 
then all inferred polynomials ≥ 0 (under assignment).  
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Semi-Algebraic Proofs
0 (under assignment).  
𝑓𝑓 1   𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 ≥0,…, 𝑓𝑓 𝑚𝑚 𝑓𝑓𝑓𝑓 𝑓𝑓 𝑚𝑚 𝑚𝑚𝑚𝑚 𝑓𝑓 𝑚𝑚 𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 ≥0 (for  𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 field assignment) 
0: 

Inference in the cone over reals ℝ:
1) If 𝑝𝑝, 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)
then 
𝑝𝑝 � 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) and   
𝑝𝑝 + 𝑞𝑞 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) ,

2) and for any polynomial 𝑠𝑠

𝑠𝑠2 ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥) , and

3) if c ≥ 0 then c ∈ cone(𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥)

then all inferred polynomials ≥ 0 (under assignment).  

if 𝑓𝑓1 �𝑎𝑎 ≥ 0, … , 𝑓𝑓𝑚𝑚 �𝑎𝑎 ≥ 0 (for �𝑎𝑎 field assignment) 
then all inferred polynomials ≥ 0 (under assignment).  
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?

algebraic proofs:

2) ≥ 0):
- = 0 as a pair of inequalities: 𝑝𝑝 ≥ 0

and −𝑝𝑝 ≥ 0.
- one 𝑝𝑝, −𝑝𝑝 ⊇ 𝑝𝑝 :  to derive ℎ � 𝑝𝑝 in cone 𝑝𝑝, −𝑝𝑝 , for 

any polynomial h
- = "some sos" − "some sos“
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• algebraic proofs:

• In our setting we freely have semi-algebraic ≥ algebraic proofs:
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any polynomial h
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:

2) ≥ 0):
- = 0 as a pair of inequalities: 𝑝𝑝 ≥ 0

and −𝑝𝑝 ≥ 0.
- one 𝑝𝑝, −𝑝𝑝 ⊇ 𝑝𝑝 :  to derive ℎ � 𝑝𝑝 in cone 𝑝𝑝, −𝑝𝑝 , for 

any polynomial h
- = "some sos" − "some sos“
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):

2) ≥ 0):
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• 0):
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):

2) Otherwise (even without the boolean axioms 𝑥𝑥 𝑖𝑖 ≥
𝑖𝑖 𝑖𝑖 𝑖𝑖 ≥ 0):

3) ≥ 0):
- = 0 as a pair of inequalities: 𝑝𝑝 ≥ 0

and −𝑝𝑝 ≥ 0.
- one 𝑝𝑝, −𝑝𝑝 ⊇ 𝑝𝑝 :  to derive ℎ � 𝑝𝑝 in cone 𝑝𝑝, −𝑝𝑝 , for 

any polynomial h
33
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• 0 as a pair of inequalities: 𝑝𝑝𝑝𝑝≥0 and −𝑝𝑝𝑝𝑝≥0.
• 0):

• algebraic proofs:
1) Semi-algebraic proofs refute both unsatisfiable sets of 

equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):

- Can treat equalities: 𝑝𝑝 = 0 as a pair of inequalities: 𝑝𝑝 ≥ 0
and −𝑝𝑝 ≥ 0.

2) ≥ 0):
- = 0 as a pair of inequalities: 𝑝𝑝 ≥ 0

and −𝑝𝑝 ≥ 0.
one 𝑝𝑝 𝑝𝑝 ⊇ 𝑝𝑝 :  to derive ℎ � 𝑝𝑝 in cone 𝑝𝑝 𝑝𝑝  for 

34
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• one 𝑝𝑝,−𝑝𝑝 𝑝𝑝𝑝𝑝,−𝑝𝑝𝑝𝑝 𝑝𝑝,−𝑝𝑝 ⊇ 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝 :  to derive ℎ∙𝑝𝑝𝑝𝑝 in cone 𝑝𝑝,−𝑝𝑝 𝑝𝑝𝑝𝑝,−𝑝𝑝𝑝𝑝

𝑝𝑝,−𝑝𝑝 , for any polynomial h
• 0 as a pair of inequalities: 𝑝𝑝𝑝𝑝≥0 and −𝑝𝑝𝑝𝑝≥0.
• 0):
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):

- Then cone 𝑝𝑝, −𝑝𝑝 ⊇ 𝑝𝑝 :  to derive ℎ � 𝑝𝑝 in cone 𝑝𝑝, −𝑝𝑝 , for 
any polynomial h

2) ≥ 0):
0   i  f i li i  ≥ 0
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• ="some sos"−"some sos“
• one 𝑝𝑝,−𝑝𝑝 𝑝𝑝𝑝𝑝,−𝑝𝑝𝑝𝑝 𝑝𝑝,−𝑝𝑝 ⊇ 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝 :  to derive ℎ∙𝑝𝑝𝑝𝑝 in cone 𝑝𝑝,−𝑝𝑝 𝑝𝑝𝑝𝑝,−𝑝𝑝𝑝𝑝

𝑝𝑝,−𝑝𝑝 , for any polynomial h
• 0 as a pair of inequalities: 𝑝𝑝𝑝𝑝≥0 and −𝑝𝑝𝑝𝑝≥0.
• 0):
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):

- Nice trick: every poly ℎ = "some sos" − "some sos“
2) ≥ 0):

     

36
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What’s Stronger: Algebraic or 
Semi-Algebraic Proofs?
• ="some sos"−"some sos“
• one 𝑝𝑝,−𝑝𝑝 𝑝𝑝𝑝𝑝,−𝑝𝑝𝑝𝑝 𝑝𝑝,−𝑝𝑝 ⊇ 𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝 :  to derive ℎ∙𝑝𝑝𝑝𝑝 in cone 𝑝𝑝,−𝑝𝑝 𝑝𝑝𝑝𝑝,−𝑝𝑝𝑝𝑝

𝑝𝑝,−𝑝𝑝 , for any polynomial h
• 0 as a pair of inequalities: 𝑝𝑝𝑝𝑝≥0 and −𝑝𝑝𝑝𝑝≥0.
• 0):
• algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of 
equalities and inequalities:
For equalities we will be working in the ideal (e.g., in 
PC):

- Example: x = ¼(1+x)2 - ¼(1-x)2

2) ≥ 0):
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Motivation 2

• (Conditional) lower bounds on 
strong proof systems.

•Unknown for e.g. Frege and 
beyond.
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Our Results
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Our Results
1. Algebraic proofs weaker than semi-algebraic 
ones (under complexity assumptions)
• Formulate the Cone Proof System (CPS)

• A proof system that characterises very strong semi-algebraic 
reasoning

• Cone Proof System = Positivstellensatz over algebraic circuits
• Semi-algebraic analogue of IPS (GP14)

• CPS is strictly stronger than IPS (under complexity 
assumptions)

• Even the strongest algebraic proof system (IPS) cannot 
simulate the “weakest” semi-algebraic proof system (under 
complexity assumptions)
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• BVP hard for IPS
• BVP is very easy for CPS (or any semi-algebraic proof 

system from SoS and beyond)
• Hardness under complexity assumption:

• Hardness assumptions: computing factorials with 
constant-free algebraic circuits is hard:
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Our Results
2. Conditional l 𝑘𝑘𝑚𝑚𝑚𝑚! 𝑚𝑚=1 ∞ for any nonzero integers km in at 
most (log 𝑚𝑚 ) 𝑐𝑐 operations.

og 𝑚𝑚 ) 𝑐𝑐 og 𝑚𝑚 og 𝑚𝑚 𝑚𝑚 (log 𝑚𝑚 ) 𝑐𝑐

• BVP hard for IPS
• BVP is very easy for CPS (or any semi-algebraic proof system from 

SoS and beyond)
• Hardness under complexity assumption:

• Hardness assumptions: computing factorials with constant-
free algebraic circuits is hard:

• cannot compute 𝑘𝑘𝑘𝑘𝑘𝑘! 𝑚𝑚 = 1 ∞ for any nonzero integers km in 
at most (log 𝑚𝑚)𝑐𝑐 operations.
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Our Results
2. Conditional lower bounds against strong 
proof systems (cnt.)
• Recall IPS refutation is “a single circuit that 

computes the algebraic refutation”.
• Our lower bound extends (Forbes, Shpilka, T., 

Wigderson 2016) functional lower bounds 
approach to IPS
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Our Results
2. Conditional lower bounds against strong 
proof systems (cnt.)
• Recall IPS refutation is “a single circuit that 

computes the algebraic refutation”.
• Our lower bound extends (Forbes, Shpilka, T., 

Wigderson 2016) functional lower bounds 
approach to IPS

• Can’t get better without actually showing VP≠VNP
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3. Characterising the advantage of semi-
algebraic proofs over algebraic ones
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Our Results
3. Characterising the advantage of semi-
algebraic proofs over algebraic ones
• BVP characterises semi-algebraic proofs:

IPS + BVP = CPS
• Assume an algebraic proof system P is strong 

enough to do efficient bit-arithmetic. Then, P 
simulates semi-algebraic proofs (of the 
“corresponding complexity”) iff it refutes BVP 
efficiently.

•
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Our Results
3. Characterising the advantage of semi-
algebraic proofs over algebraic ones
• BVP characterises semi-algebraic proofs:

IPS + BVP = CPS
• Assume an algebraic proof system P is strong 

enough to do efficient bit-arithmetic. Then, P 
simulates semi-algebraic proofs (of the 
“corresponding complexity”) iff it refutes BVP 
efficiently.
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Moral
•One can do interesting things with 
coefficients of relatively large 
magnitudes (though their size is still 
polynomial!)
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Moral
Algebraic proofs can do efficiently basic 
bit-arithmetic (we show this).

• But assuming Shub-Smale Hypothesis, 
algebraic proofs cannot prove basic 
properties about the bits of 
polynomials, given a polynomial 
equation; e.g., that

+ ⋯ + 𝑥𝑥𝑛𝑛 = 0 ⊢ Bit𝑖𝑖 𝑥𝑥1 + ⋯ + 𝑥𝑥𝑛𝑛 = 0
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Moral
𝑥𝑥 1 +…+ 𝑥𝑥 𝑛𝑛 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑥𝑥 𝑛𝑛 =0 ⊢ Bit 𝑖𝑖 Bit Bit 𝑖𝑖

𝑖𝑖𝑖𝑖 Bit 𝑖𝑖 𝑥𝑥 1 +…+ 𝑥𝑥 𝑛𝑛 𝑥𝑥 1 𝑥𝑥𝑥𝑥 𝑥𝑥 1 1 𝑥𝑥 1 +…+ 𝑥𝑥
𝑛𝑛 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑛𝑛 𝑛𝑛𝑛𝑛 𝑥𝑥 𝑛𝑛 𝑥𝑥 1 +…+ 𝑥𝑥 𝑛𝑛 =0
Algebraic proofs can do efficiently basic bit-
arithmetic (we show this).

• But assuming Shub-Smale Hypothesis, 
algebraic proofs cannot prove basic 
properties about the bits of polynomials, 
given a polynomial equation; e.g., that

𝑥𝑥 1 1 1 + ⋯ + 𝑥𝑥𝑛𝑛 = 0 ⊢ Bit𝑖𝑖 𝑥𝑥1 + ⋯ + 𝑥𝑥𝑛𝑛
= 0
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The Technical Part
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Algebraic circuits
Fix a field 𝔽𝔽
An algebraic circuit over 𝔽𝔽
computes a formal polynomial 
over 𝔽𝔽

Size = # of nodes     
(x1+x2)∙(x2+3)= x1x2+x2

2+3x1+3x2

˟
+

3x1 x2

+

output
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Shub-Smale Hypothesis
• A constant-free circuit is an algebraic circuit that 

uses 1,0,-1 as the only constants available on 
leaves. 

• For integer 𝑚𝑚, 𝜏𝜏 𝑚𝑚 is the smallest constant-free 
circuit that computes 𝑚𝑚. 

• Shub-Smale Hypothesis: no constant-free circuit of 
size at most (log 𝑚𝑚)𝑐𝑐, for a constant c, computes 

𝑘𝑘𝑚𝑚𝑚𝑚! 𝑚𝑚=1
∞ , for any nonzero integers 𝑘𝑘𝑚𝑚.
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Ideal Proof System (IPS)
• A refutation of 𝑓𝑓1 𝑥̅𝑥 = ⋯ = 𝑓𝑓𝑚𝑚 𝑥̅𝑥 = 0 for 

polynomials 𝑓𝑓𝑖𝑖 𝑥̅𝑥 in 𝔽𝔽 𝑥̅𝑥 is a constant-free algebraic 
circuit 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦, ̅𝑧𝑧 such that:

1. 𝐶𝐶 𝑥̅𝑥, �0, �0 = 0; 
2. 𝐶𝐶 𝑥̅𝑥, 𝑓𝑓1 𝑥̅𝑥 , … , 𝑓𝑓𝑚𝑚 𝑥̅𝑥 , 𝑥𝑥1

2 − 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
2 − 𝑥𝑥𝑛𝑛 = 1

(equality as formal polynomials).
• The size of the IPS proof is the size of the circuit C. 
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IPS Conditional Lower Bounds
Thm: Assuming Shub-Smale Hypothesis there are no 
poly(n)-size (constant-free) IPS refutations over ℚ of 
the BVPn: 𝑥𝑥1 + 2𝑥𝑥2 + 4𝑥𝑥3 + ⋯ + 2𝑛𝑛−1𝑥𝑥𝑛𝑛 = −1.  
Proof Sketch. 
Step 1: FSTW16: IPS = NS over circuits. Hence, consider 
by way of contradiction:

𝑔𝑔 ⋅ (𝑥𝑥1 + 2𝑥𝑥2 + 4𝑥𝑥3 + ⋯ + 2𝑛𝑛−1𝑥𝑥𝑛𝑛 + 1) + �
𝑖𝑖=1

𝑛𝑛
ℎ𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖

2 − 𝑥𝑥𝑖𝑖 = 1

with 𝑔𝑔 of poly(n) algebraic circuit.
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IPS Conditional Lower Bounds
Thm: Assuming Shub-Smale Hypothesis there are no 
poly(n)-size (constant-free) IPS refutations over ℚ of 
the BVPn: 𝑥𝑥1 + 2𝑥𝑥2 + 4𝑥𝑥3 + ⋯ + 2𝑛𝑛−1𝑥𝑥𝑛𝑛 = −1.  
Proof Sketch (cnt.). 
Step 2: Show that it is enough to prove lower bounds 
for IPS refutations over ℤ of

𝑔𝑔 ⋅ (𝑥𝑥1 + 2𝑥𝑥2 + 4𝑥𝑥3 + ⋯ + 2𝑛𝑛−1𝑥𝑥𝑛𝑛 + 1) + �
𝑖𝑖=1

𝑛𝑛
ℎ𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖

2 − 𝑥𝑥𝑖𝑖 = 𝑀𝑀

for all nonzero integers M with τ(M) is poly(n). 
Idea: Multiply the IPSℚ enough times to get all 
constants integers (τ(M) remains poly(n)). 
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IPS Conditional Lower Bounds
Proof Sketch (cnt.). 
Step 3: Consider the refutation over ℤ

𝑔𝑔 ⋅ (𝑥𝑥1 + 2𝑥𝑥2 + 4𝑥𝑥3 + ⋯ + 2𝑛𝑛−1𝑥𝑥𝑛𝑛 + 1) + �
𝑖𝑖=1

𝑛𝑛
ℎ𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖

2 − 𝑥𝑥𝑖𝑖 = 𝑀𝑀

for M with τ(M)=poly(n).
• Restriction: For every number b in [0,2n-1] with bit-

vector �𝑏𝑏 = 𝑏𝑏1 … 𝑏𝑏𝑛𝑛
𝑔𝑔 ↾ �𝑏𝑏 ⋅ (𝑏𝑏1 + 2𝑏𝑏2 + 4𝑏𝑏3 + ⋯ + 2𝑛𝑛−1𝑏𝑏𝑛𝑛 + 1) + 0 = 𝑀𝑀 ↾ �𝑏𝑏

𝐴𝐴 ⋅ (𝑏𝑏1 + 2𝑏𝑏2 + 4𝑏𝑏3 + ⋯ + 2𝑛𝑛−1𝑏𝑏𝑛𝑛 + 1) = 𝑀𝑀
where A is some integer dependent on b. 
Corollary: 𝑀𝑀 is an integer of τ(M)=poly(n) and is 
divisible by every number in [1,2n] 
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IPS Conditional Lower Bounds
Proof Sketch (cnt.). 
Step 3: Consider the refutation over ℤ

𝑔𝑔 ⋅ (𝑥𝑥1 + 2𝑥𝑥2 + 4𝑥𝑥3 + ⋯ + 2𝑛𝑛−1𝑥𝑥𝑛𝑛 + 1) + �
𝑖𝑖=1

𝑛𝑛
ℎ𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖

2 − 𝑥𝑥𝑖𝑖 = 𝑀𝑀

for M with τ(M)=poly(n).
• Restriction: For every number b in [0,2n-1] with bit-

vector �𝑏𝑏 = 𝑏𝑏1 … 𝑏𝑏𝑛𝑛
𝑔𝑔 ↾ �𝑏𝑏 ⋅ (𝑏𝑏1 + 2𝑏𝑏2 + 4𝑏𝑏3 + ⋯ + 2𝑛𝑛−1𝑏𝑏𝑛𝑛 + 1) + 0 = 𝑀𝑀 ↾ �𝑏𝑏

𝐴𝐴 ⋅ (𝑏𝑏1 + 2𝑏𝑏2 + 4𝑏𝑏3 + ⋯ + 2𝑛𝑛−1𝑏𝑏𝑛𝑛 + 1) = 𝑀𝑀
where A is some integer dependent on b. 
Corollary: 𝑀𝑀 is an integer of τ(M)=poly(n) and is 
divisible by every number in [1,2n] 
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IPS Conditional Lower Bounds
Proof Sketch (cnt.). 
Step 4: 
Lemma: If 𝑀𝑀 is an integer of τ(M)=poly(n) and is divisible by 
every number in [1,2n] then Shub-Smale Hypothesis is 
false!
Proof sketch. We show there exists a poly(n)-size constant-
free circuit that computes 2𝑛𝑛! (hence, τ(m!)=logcm , for m a 
power of 2; almost what we need).
• By repeated squaring: 𝜏𝜏(𝑀𝑀2𝑛𝑛) = poly(𝑛𝑛)
• Fact: Consider the prime factorization of 2𝑛𝑛!

• 2𝑛𝑛! = 𝑝𝑝1
𝑟𝑟1 ⋯ 𝑝𝑝𝑘𝑘

𝑟𝑟𝑘𝑘

• pi is at most 2𝑛𝑛 (hence, it’s a factor of M), and
• ri is at most 2𝑛𝑛.

• Hence, every 𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖 is a factor of 𝑀𝑀2𝑛𝑛. QED 
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𝜏𝜏-conjecture based lower bounds 

•Under the 𝝉𝝉-conjecture we can 
establish IPS lower bounds over the 
field of rational functions in the 
indeterminate single variable y.
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The Cone Proof System
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Cone Proof System (CPS)
A �𝑦𝑦-conic circuit is a circuit 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦 in which 

• �𝑦𝑦-variables are assumed to be nonnegative;
• 𝑥̅𝑥 variables or negative constants (that may be 

negative) must be part of a squared sub-circuit.

Fact: 
A �𝑦𝑦-conic circuit 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦 computes 
only non-negative values when �𝑦𝑦
are non-negative; i.e., 
polynomials in cone( �𝑦𝑦)
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Cone Proof System (CPS)
A CPS refutation of 𝑓𝑓1 𝑥̅𝑥 = ⋯ = 𝑓𝑓𝑚𝑚 𝑥̅𝑥 = 0 and ℎ1 𝑥̅𝑥 ≥
0, … , ℎ𝑘𝑘 𝑥̅𝑥 ≥ 0, for polynomials in ℝ 𝑥̅𝑥 is a constant-free 
algebraic circuit 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦 such that:
1. 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦 is a �𝑦𝑦-conic circuit;
2. 𝐶𝐶 𝑥̅𝑥, �𝐻𝐻 = −1
where
�𝐻𝐻 = 𝑓𝑓𝑖𝑖 𝑥̅𝑥 , −𝑓𝑓𝑖𝑖 𝑥̅𝑥 , ℎ𝑖𝑖 𝑥̅𝑥 , 𝑥𝑥𝑗𝑗

2 − 𝑥𝑥𝑗𝑗 , −(𝑥𝑥𝑗𝑗
2 − 𝑥𝑥𝑗𝑗), 𝑥𝑥𝑗𝑗 , 1 − 𝑥𝑥𝑗𝑗 𝑖𝑖,𝑗𝑗

• The size of the IPS proof is the size of the circuit C.
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Cone Proof System (CPS)
A CPS refutation of 𝑓𝑓1 𝑥̅𝑥 = ⋯ = 𝑓𝑓𝑚𝑚 𝑥̅𝑥 = 0 and ℎ1 𝑥̅𝑥 ≥
0, … , ℎ𝑘𝑘 𝑥̅𝑥 ≥ 0, for polynomials in ℝ 𝑥̅𝑥 is a constant-free 
algebraic circuit 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦 such that:
1. 𝐶𝐶 𝑥̅𝑥, �𝑦𝑦 is a �𝑦𝑦-conic circuit;
2. 𝐶𝐶 𝑥̅𝑥, �𝐻𝐻 = −1
where
�𝐻𝐻 = 𝑓𝑓𝑖𝑖 𝑥̅𝑥 , −𝑓𝑓𝑖𝑖 𝑥̅𝑥 , ℎ𝑖𝑖 𝑥̅𝑥 , 𝑥𝑥𝑗𝑗

2 − 𝑥𝑥𝑗𝑗 , −(𝑥𝑥𝑗𝑗
2 − 𝑥𝑥𝑗𝑗), 𝑥𝑥𝑗𝑗 , 1 − 𝑥𝑥𝑗𝑗 𝑖𝑖,𝑗𝑗

• The size of the IPS proof is the size of the circuit C.

Thm: CPS simulates all known (to us) proof systems 
(e.g., IPS, SoS, Positivstellensatz, EF).  
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CPS Upper Bounds 
Proposition: CPS admits linear size refutations of the 
binary value principle BVPn.
Proof. Idea: because we have the boolean axioms for 
the 𝑥̅𝑥 variables 
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the 𝑥̅𝑥 variables 
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CPS = IPS+Binary Value Principle
• IPS* and CPS*:

IPS and CPS over ℚ, where: possible values 
that are computed along the IPS or CPS 
proofs (as circuits) are not super-
exponential (for 0-1 input variables).

Theorem: IPS* = CPS* iff IPS* 
admits poly(n)-size refutations 
of the Binary Value Principle.
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Thm: CPS* = IPS*+BVPn (over ℤ, for simplicity)
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Thm: CPS* = IPS*+BVPn (over ℤ, for simplicity)

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof 
(from boolean axioms) of
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Thm: CPS* = IPS*+BVPn (over ℤ, for simplicity)

Proof sketch: Let 𝐶𝐶 𝑥̅𝑥, �𝐹𝐹 = −1 be a CPS* refutation of �𝐹𝐹. 

• 𝑥̅𝑥, �𝐹𝐹 = −1 is freely provable in IPS*: 
𝐶𝐶 𝑥̅𝑥, �𝐹𝐹 + 1 = 0 (this is still not a refutation of �𝐹𝐹!)

• IPS can do efficient bit-arithmetic as follows:

• Define VAL(w) := w1 + 2w2 + . . .+ 2n−2wn−1 − 2n−1wn to be the value of 
an integer number given by the n boolean bits w in two’s 
complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean 
axioms) of

where BITi(f) is the polynomial that computes the ith bit of     
the number computed by f as a function of the variables x
to f that range over {0, 1} values.
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where BITi(f) is the polynomial that computes the ith bit of     

the number computed by f as a function of the variables x

to f that range over {0, 1} values.

to f that range over {0, 1} values.
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Proof (cnt.)
• We have IPS* proof from boolean axioms of

𝐶𝐶 𝑥̅𝑥, �𝐹𝐹 = VAL(BIT1(C) ∙ ∙ ∙ BITn(C)) = −1. 
• Since C is a conic circuit and thus preserves non-

negative signs we can prove:
the sign-bit BITn(C) = 0.

• We are left with the need to refute 
VAL(BIT1(C) ∙ ∙ ∙ BITn-1(C)) = −1

which is precisely BVPn.

QED
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IPSℤ ≥p IPSℚ

Prop: Size-s constant-free IPSQ from F of 
H, for F a set of assumptions (F, H written 
as constant-free algebraic circuits over Z) 
then there exists a size ≤ 4s constant-free 
boolean IPSℤ proof of M ∙ H, for some M 
in ℤ\{0}, such that τ(M) ≤ 4s.

Proof. Multiply the IPSℚ enough times to 
get all constants integers. 
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