CAN A NATURAL NUMBER BE NEGATIVE?

Iddo Tzameret

Joint work with
Yaroslav Alekseev, Dima Grigoriev and Edward Hirsch

CAN A NATURAL NUMBER BE NEGATIVE?

Iddo Tzameret

Joint work with
Yaroslav Alekseev, Dima Grigoriev and Edward Hirsch

yes

The Conceptual Framework

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

Algebraic and Semi-Algebraic proofs

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

Algebraic and Semi-Algebraic proofs

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

Algebraic and Semi-Algebraic proofs

Algebraic Circuit Complexity

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

Algebraic and Semi-Algebraic proofs

Algebraic Circuit Complexity

$$x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n = -1$$
 for $x_i \in \{0,1\}$, all i .

Algebraic and Semi-Algebraic proofs

Algebraic Circuit Complexity

The Context: Proof Complexity

- Proof systems:
 - A way to analyse algorithms run-time:
 - Each proof-line is a step in the algorithm
 - A way to approach NP vs coNP (hence P vs NP) problem:
 - Size lower bounds against proofs of UNSAT rule out that certain kind of witnesses can establish NP=coNP.
 - IPS: circuit representation of algebraic proofs (like circuit vs sparsity measure)

Motivation 1

 Are semi-algebraic proofs stronger than algebraic ones?

Algebraic Proofs

• Inference in a **polynomial ideal** over a field:

if
$$p,q \in \langle f_1(\bar{x}),...,f_m(\bar{x}) \rangle$$

then $h \cdot p \in \langle f_1(\bar{x}),...,f_m(\bar{x}) \rangle$, for any polynomial h and $p+q \in \langle f_1(\bar{x}),...,f_m(\bar{x}) \rangle$

Observe: preserves equalities with 0:

if $f_1(\bar{a}) = \cdots = f_m(\bar{a}) = 0$ (for \bar{a} field assignment) then all inferred polynomials = 0 (under assignment).

Inference in the **cone** over reals \mathbb{R} :

1) If
$$p, q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
 then

$$p \cdot q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
 and $p + q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x})),$

$$s^2 \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
, and

3) if
$$c \ge 0$$
 then $c \in cone(f_1(\bar{x}), ..., f_m(\bar{x}))$

if $f_1(\bar{a}) \ge 0, ..., f_m(\bar{a}) \ge 0$ (for \bar{a} field assignment) then all inferred polynomials ≥ 0 (under assignment).

0:

Inference in the **cone** over reals \mathbb{R} :

1) If $p, q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$ then

$$p \cdot q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
 and $p + q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x})),$

$$s^2 \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
, and

3) if $c \ge 0$ then $c \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$

Observe: preserves **inequalities** ≥ 0 :

if
$$f_1(\bar{a}) \ge 0, ..., f_m(\bar{a}) \ge 0$$
 (for \bar{a} field assignment)
then all inferred polynomials ≥ 0 (under assignment).

 $f \ 1 \ a \ a \ a \ a \ a \ \ge 0,..., f \ m \ ff \ f \ m \ mm \ f \ m \ a \ a \ a \ a \ a \ \ge 0$ (for $a \ a \ a \ a$ field assignment)

0:

Inference in the **cone** over reals \mathbb{R} :

- 1) If $p, q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$ then $p \cdot q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x})) \text{ and }$
- $p \cdot q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$ and $p + q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x})),$
- 2) and for any polynomial s

$$s^2 \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
, and

3) if $c \ge 0$ then $c \in cone(f_1(\bar{x}), ..., f_m(\bar{x}))$

if
$$f$$
 1 1 1 $(\bar{a}) \ge 0, ..., f_m(\bar{a}) \ge 0$ (for \bar{a} field assignment)
if $f_1(\bar{a}) \ge 0, ..., f_m(\bar{a}) \ge 0$ (for \bar{a} field assignment)
then all inferred polynomials ≥ 0 (under assignment).

0 (under assignment).

 $f \ 1 \ a \ a \ a \ a \ a \ \geq 0,..., f \ m \ ff \ f \ m \ mm \ f \ m \ a \ a \ a \ a \ \geq 0$ (for $a \ a \ a \ a$ field assignment) 0:

Inference in the **cone** over reals \mathbb{R} :

1) If
$$p, q \in \text{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
 then

$$p \cdot q \in \text{cone}(f_1(\bar{x}), \dots, f_m(\bar{x}))$$
 and $p + q \in \text{cone}(f_1(\bar{x}), \dots, f_m(\bar{x})),$

2) and for any polynomial s

$$s^2 \in \operatorname{cone}(f_1(\bar{x}), ..., f_m(\bar{x}))$$
, and

3) if $c \ge 0$ then $c \in cone(f_1(\bar{x}), ..., f_m(\bar{x}))$

then all inferred polynomials ≥ 0 (under assignment).

if $f_1(\bar{a}) \ge 0$, ..., $f_m(\bar{a}) \ge 0$ (for \bar{a} field assignment)

then all inferred polynomials ≥ 0 (under assignment).

algebraic proofs:

```
2)  \geq 0): 
 = 0 \text{ as a pair of inequalities: } p \geq 0 
 \text{and } -p \geq 0. 
 - \text{one}(p,-p) \supseteq \langle p \rangle: \text{ to derive } h \cdot p \text{ in cone}(p,-p), \text{ for any polynomial } h 
 = \text{"some sos"} - \text{"some sos"}
```

- algebraic proofs:
- In our setting we freely have semi-algebraic ≥ algebraic proofs:

```
2)  \geq 0): 
 = 0 \text{ as a pair of inequalities: } p \geq 0 
 \text{and } -p \geq 0. 
 - \text{one}(p, -p) \supseteq \langle p \rangle: \text{ to derive } h \cdot p \text{ in cone}(p, -p), \text{ for any polynomial } h 
 = \text{"some sos"} - \text{"some sos"}
```

- algebraic proofs:
 - 1) Semi-algebraic proofs refute both unsatisfiable sets of equalities and inequalities:

```
2)  \geq 0): 
 = 0 \text{ as a pair of inequalities: } p \geq 0 
 \text{and } -p \geq 0. 
 - \text{one}(p,-p) \supseteq \langle p \rangle: \text{ to derive } h \cdot p \text{ in cone}(p,-p), \text{ for any polynomial } h 
 = \text{"some sos"} - \text{"some sos"}
```

- algebraic proofs:
 - 1) Semi-algebraic proofs refute both unsatisfiable sets of equalities and inequalities:

For equalities we will be working in the ideal (e.g., in PC):

```
2)  \geq 0): 
 = 0 \text{ as a pair of inequalities: } p \geq 0 
 \text{and } -p \geq 0. 
 - \text{one}(p,-p) \supseteq \langle p \rangle: \text{ to derive } h \cdot p \text{ in cone}(p,-p), \text{ for any polynomial } h 
 = \text{"some sos"} - \text{"some sos"}
```

- algebraic proofs:
 - 1) Semi-algebraic proofs refute both unsatisfiable sets of equalities and inequalities:

For equalities we will be working in the ideal (e.g., in PC):

```
2)  \geq 0): 
 = 0 \text{ as a pair of inequalities: } p \geq 0 
 \text{and } -p \geq 0. 
 - \text{one}(p, -p) \supseteq \langle p \rangle: \text{ to derive } h \cdot p \text{ in cone}(p, -p), \text{ for any polynomial } h 
 - = \text{"some sos"} - \text{"some sos"}
```

- algebraic proofs:
 - 1) Semi-algebraic proofs refute both unsatisfiable sets of equalities and inequalities:

For equalities we will be working in the ideal (e.g., in PC):

polynomials in the ideal of equalities polynomials in the cone of inequalities

2) $\geq 0):$ $= 0 \text{ as a pair of inequalities: } p \geq 0$ $\text{and } -p \geq 0.$ $- \text{one}(p,-p) \supseteq \langle p \rangle: \text{ to derive } h \cdot p \text{ in cone}(p,-p), \text{ for any polynomial } h$

- 0):
- algebraic proofs:
 - 1) Semi-algebraic proofs refute both unsatisfiable sets of equalities and inequalities:

For equalities we will be working in the ideal (e.g., in PC)

polynomials in the ideal of equalities

polynomials in the cone of inequalities

- 2) Otherwise (even without the boolean axioms $x i \ge i i i \ge 0$):
- ≥ 0):
 - =0 as a pair of inequalities: $p\geq 0$ and $-p\geq 0$.
 - one $(p, -p) \supseteq \langle p \rangle$: to derive $h \cdot p$ in cone(p, -p), for

- θ as a pair of inequalities: $pp \ge \theta$ and $-pp \ge 0$.
- O):
- algebraic proofs:
 - 1) Semi-algebraic proofs refute both unsatisfiable sets of equalities and inequalities:

```
For polynomials in the ideal ροlynomials in the cone of inequalities of inequalities., in
```

- Can treat equalities: p=0 as a pair of inequalities: $p\geq 0$ and $-p\geq 0$.

- ≥ 0):
 - $=0 \text{ as a pair of inequalities: } p\geq 0$ and $-p\geq 0$.

- one p,—p pp,—pp p,—p p p p p p p p p to derive h-pp in cone p,—p pp,—p for any polynomial p
- 0 as a pair of inequalities: $pp \ge 0$ and $-pp \ge 0$.
- 0):
- algebraic proofs:
 - Ser polynomials in the ideal of equalities of inequalities of

- Then cone $(p, -p) \supseteq \langle p \rangle$: to derive $h \cdot p$ in cone(p, -p), for any polynomial h
- 2)

- ="some sos"-"some *sos*"
- $one p, -p pp, -pp p, -p \supseteq p pp p$: to derive $h \cdot pp$ in cone p, -p pp, -pp pp, -pp, for any polynomial h
- 0 as a pair of inequalities: $pp \ge 0$ and $-pp \ge 0$.
- O):
- algebraic polynomials in the ideal
 1) Ser of equalities
 equalities and inequalities:

 polynomials in the cone of inequalities ets of ets of equalities.

For equalities we will be working in the ideal (e.g., in PC):

- Nice trick: every poly h = "some sos" - "some sos"

2)

What's Stronger: Algebraic or Semi-Algebraic Proofs?

- ="some sos"-"some *sos*"
- $one p, -p pp, -pp p, -p \supseteq p pp p$: to derive $h \cdot pp$ in cone p, -p pp, -pp pp, -pp, for any polynomial h
- 0 as a pair of inequalities: $pp \ge 0$ and $-pp \ge 0$.
- O):
- algebraic polynomials in the ideal
 1) Ser of equalities
 equalities and inequalities:

 polynomials in the cone of inequalities ets of ets of equalities.

For equalities we will be working in the ideal (e.g., in PC):

- Example: $x = \frac{1}{4}(1+x)^2 - \frac{1}{4}(1-x)$

2)

 ≥ 0):

Motivation 2

- (Conditional) lower bounds on strong proof systems.
- Unknown for e.g. Frege and beyond.

1. Algebraic proofs weaker than semi-algebraic ones (under complexity assumptions)

- Formulate the Cone Proof System (CPS)
 - A proof system that characterises very strong semi-algebraic reasoning
 - Cone Proof System = Positivstellensatz over algebraic circuits
 - Semi-algebraic analogue of IPS (GP14)
- CPS is strictly stronger than IPS (under complexity assumptions)
 - Even the strongest algebraic proof system (IPS) cannot simulate the "weakest" semi-algebraic proof system (under complexity assumptions)

Expressivity

Semi-Algebraic Proofs Systems for sets of polynomial equations and inequalities over a field with 0-1 variables	Algebraic Proof Systems for sets polynomial equations over a field with 0-1 variables	Systems for propositional logic	
			Very Strong Systems
		 	Strong Systems
			Weak to Medium Strength Systems

Proof Complexity Strength

Expressivity

Semi-Algebraic Proofs Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs
Systems for sets of
polynomial
equations over a
field with 0-1
variables

Systems for propositional logic

Proof Complexity Strength

Expressivity

Semi-Algebraic Proofs Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs Systems for sets of polynomial equations over a field with 0-1

Systems for **propositional logic**

Proof Complexity Strength

Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs

Systems for sets of polynomial equations over a field with 0-1 variables

Systems for propositional logic

Very

Strong

Strong

Systems

Weak to

Medium Strength

Systems

Our Results

- Formulate the **Cone Proof System (CPS)** A proof system that characterises very strong semi-
- CPS is strictly stronger than IPS (under complexity assumptions)

algebraic reasoning

Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs

Systems for sets of polynomial equations over a field with 0-1 variables

Systems for **propositional logic**

Very

Strong Systems

Strong

Systems

Weak to Medium Strength

Systems

Our Results

Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs

Systems for sets of polynomial equations over a field with 0-1 variables

Systems for **propositional logic**

Very

Strong Systems

Strong

Systems

Weak to Medium Strength

Systems

Our Results

Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs

Systems for sets of polynomial equations over a field with 0-1 variables

Systems for **propositional logic**

Very

Strong Systems

Strong

Systems

Weak to Medium Strength

Systems

Our Results

Systems for sets of polynomial equations and inequalities over a field with 0-1 variables

Algebraic Proofs

Systems for sets of polynomial equations over a field with 0-1 variables

Systems for **propositional logic**

Very

Strong Systems

Strong

Systems

Weak to Medium Strength

Systems

Our Results

2. Conditional I

• BVP hard for IPS

- BVP hard for IPS
- BVP is very easy for CPS (or any semi-algebraic proof system from SoS and beyond)

- BVP hard for IPS
- BVP is very easy for CPS (or any semi-algebraic proof system from SoS and beyond)
 - Hardness under complexity assumption:

- BVP hard for IPS
- BVP is very easy for CPS (or any semi-algebraic proof system from SoS and beyond)
 - Hardness under complexity assumption:
- Hardness assumptions: computing factorials with constant-free algebraic circuits is hard:

2. Conditional $k_m m!$ $m=1 \infty$ for any nonzero integers k_m in at most (log m) c operations.

 $\log m$) $c \log m \log m m (\log m) c$

- BVP hard for IPS
- BVP is very easy for CPS (or any semi-algebraic proof system from SoS and beyond)
 - Hardness under complexity assumption:
- Hardness assumptions: computing factorials with constantfree algebraic circuits is hard:
 - cannot compute kmm! $m=1 \infty$ for any nonzero integers k_m in at most $(\log m)^c$ operations.

2. Conditional lower bounds against strong proof systems (cnt.)

2. Conditional lower bounds against strong proof systems (cnt.)

 Recall IPS refutation is "a single circuit that computes the algebraic refutation".

2. Conditional lower bounds against strong proof systems (cnt.)

- Recall IPS refutation is "a single circuit that computes the algebraic refutation".
- Our lower bound extends (Forbes, Shpilka, T., Wigderson 2016) functional lower bounds approach to IPS

2. Conditional lower bounds against strong proof systems (cnt.)

- Recall IPS refutation is "a single circuit that computes the algebraic refutation".
- Our lower bound extends (Forbes, Shpilka, T., Wigderson 2016) functional lower bounds approach to IPS
 - Can't get better without actually showing VP≠VNP

3. Characterising the advantage of semialgebraic proofs over algebraic ones

- 3. Characterising the advantage of semialgebraic proofs over algebraic ones
- BVP characterises semi-algebraic proofs:

- 3. Characterising the advantage of semialgebraic proofs over algebraic ones
- BVP characterises semi-algebraic proofs:

$$IPS + BVP = CPS$$

3. Characterising the advantage of semialgebraic proofs over algebraic ones

BVP characterises semi-algebraic proofs:

$$IPS + BVP = CPS$$

 Assume an algebraic proof system P is strong enough to do efficient bit-arithmetic. Then, P simulates semi-algebraic proofs (of the "corresponding complexity") iff it refutes BVP efficiently.

3. Characterising the advantage of semialgebraic proofs over algebraic ones

BVP characterises semi-algebraic proofs:

$$IPS + BVP = CPS$$

 Assume an algebraic proof system P is strong enough to do efficient bit-arithmetic. Then, P simulates semi-algebraic proofs (of the "corresponding complexity") iff it refutes BVP efficiently.

3. Characterising the advantage of semialgebraic proofs over algebraic ones

BVP characterises semi-algebraic proofs:

$$IPS + BVP = CPS$$

 Assume an algebraic proof system P is strong enough to do efficient bit-arithmetic. Then, P simulates semi-algebraic proofs (of the "corresponding complexity") iff it refutes BVP efficiently.

Moral

 One can do interesting things with coefficients of relatively large magnitudes (though their size is still polynomial!)

Moral

Algebraic proofs can do efficiently basic bit-arithmetic (we show this).

 But assuming Shub-Smale Hypothesis, algebraic proofs cannot prove basic properties about the bits of polynomials, given a polynomial equation; e.g., that

$$+\cdots + x_n = 0 + \operatorname{Bit}_i(x_1 + \cdots + x_n) = 0$$

Moral

Algebraic proofs can do efficiently basic bitarithmetic (we show this).

 But assuming Shub-Smale Hypothesis, algebraic proofs cannot prove basic properties about the bits of polynomials, given a polynomial equation; e.g., that

$$x \ 1 \ 1 \ 1 \ + \dots + x_n = 0 \ \vdash \text{Bit}_i(x_1 + \dots + x_n) = 0$$

The Technical Part

Algebraic circuits

Fix a field **F**An **algebraic circuit** over **F**computes a formal polynomial over **F**

$$(x_1+x_2)\cdot(x_2+3)=x_1x_2+x_2^2+3x_1+3x_2$$

output

Shub-Smale Hypothesis

- A constant-free circuit is an algebraic circuit that uses 1,0,-1 as the only constants available on leaves.
- For integer m, $\tau(m)$ is the smallest constant-free circuit that computes m.
- Shub-Smale Hypothesis: no constant-free circuit of size at most $(\log m)^c$, for a constant c, computes $(k_m m!)_{m=1}^{\infty}$, for any nonzero integers k_m .

Ideal Proof System (IPS)

- A refutation of $f_1(\bar{x}) = \cdots = f_m(\bar{x}) = 0$ for polynomials $f_i(\bar{x})$ in $\mathbb{F}[\bar{x}]$ is a constant-free algebraic circuit $C(\bar{x}, \bar{y}, \bar{z})$ such that:
- 1. $C(\bar{x}, \bar{0}, \bar{0}) = 0$;
- 2. $C(\bar{x}, f_1(\bar{x}), ..., f_m(\bar{x}), x_1^2 x_1, ..., x_n^2 x_n) = 1$ (equality as formal polynomials).
- The **size** of the IPS proof is the size of the circuit *C*.

IPS Conditional Lower Bounds

Thm: Assuming Shub-Smale Hypothesis there are no poly(n)-size (constant-free) IPS refutations over $\mathbb Q$ of the BVP_n: $x_1 + 2x_2 + 4x_3 + \cdots + 2^{n-1}x_n = -1$. *Proof Sketch*.

Step 1: FSTW16: IPS = NS over circuits. Hence, consider by way of contradiction:

$$g \cdot (x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n + 1) + \sum_{i=1}^n h_i \cdot (x_i^2 - x_i) = 1$$

with g of poly(n) algebraic circuit.

Thm: Assuming Shub-Smale Hypothesis there are no poly(n)-size (constant-free) IPS refutations over \mathbb{Q} of the BVP_n: $x_1 + 2x_2 + 4x_3 + \cdots + 2^{n-1}x_n = -1$. *Proof Sketch (cnt.)*.

Step 2: Show that it is enough to prove lower bounds for IPS refutations over \mathbb{Z} of

$$g \cdot (x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n + 1) + \sum_{i=1}^n h_i \cdot (x_i^2 - x_i) = M$$

for all nonzero integers M with $\tau(M)$ is poly(n).

Idea: Multiply the IPS_Q enough times to get all constants integers $(\tau(M))$ remains poly(n).

Proof Sketch (cnt.).

Step 3: Consider the refutation over \mathbb{Z}

$$g \cdot (x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n + 1) + \sum_{i=1}^n h_i \cdot (x_i^2 - x_i) = M$$

for M with $\tau(M)$ =poly(n).

• **Restriction**: For *every* number b in $[0,2^n-1]$ with bitvector $\overline{b} = (b_1 \dots b_n)$

$$g \upharpoonright \overline{b} \cdot (b_1 + 2b_2 + 4b_3 + \dots + 2^{n-1}b_n + 1) + 0 = M \upharpoonright \overline{b}$$

$$A \cdot (b_1 + 2b_2 + 4b_3 + \dots + 2^{n-1}b_n + 1) = M$$

where A is some integer dependent on b.

Corollary: M is an integer of $\tau(M)$ =poly(n) and is divisible by every number in $[1,2^n]$

Proof Sketch (cnt.).

Step 3: Consider the refutation over \mathbb{Z}

$$g \cdot (x_1 + 2x_2 + 4x_3 + \dots + 2^{n-1}x_n + 1) + \sum_{i=1}^n h_i \cdot (x_i^2 - x_i) = M$$

for M with $\tau(M) = \text{poly}(n)$.

• **Restriction**: For *every* number b in $[0,2^n-1]$ with bitvector $\overline{b} = (b_1 \dots b_n)$

$$g \upharpoonright \overline{b} \cdot (b_1 + 2b_2 + 4b_3 + \dots + 2^{n-1}b_n + 1) + 0 = M \upharpoonright \overline{b}$$

 $A \cdot (b_1 + 2b_2 + 4b_3 + \dots + 2^{n-1}b_n + 1) = M$

where A is some integer dependent on b.

Corollary: M is an integer of $\tau(M)$ =poly(n) and is divisible by every number in $[1,2^n]$

Proof Sketch (cnt.).

Step 4:

Lemma: If M is an integer of $\tau(M)$ =poly(n) and is divisible by every number in $[1,2^n]$ then Shub-Smale Hypothesis is false!

Proof sketch. We show there exists a poly(n)-size constant-free circuit that computes $2^n!$ (hence, $\tau(m!)=\log^c m$, for m a power of 2; almost what we need).

- By repeated squaring: $\tau(M^{2^n}) = \text{poly}(n)$
- Fact: Consider the prime factorization of $2^n!$
 - $2^n! = p_1^{r_1} \cdots p_k^{r_k}$
 - p_i is at most 2^n (hence, it's a factor of M), and
 - r_i is at most 2^n .
- Hence, every $p_i^{r_i}$ is a factor of M^{2^n} . QED

au-conjecture based lower bounds

• Under the τ -conjecture we can establish IPS lower bounds over the field of rational functions in the indeterminate single variable y.

The Cone Proof System

Cone Proof System (CPS)

A \overline{y} -conic circuit is a circuit $C(\overline{x}, \overline{y})$ in which

- \bar{y} -variables are assumed to be nonnegative;
- \bar{x} variables or negative constants (that may be negative) must be **part of a squared sub-circuit.**

Fact:

A \overline{y} -conic circuit $C(\overline{x}, \overline{y})$ computes only non-negative values when \overline{y} are non-negative; i.e., polynomials in cone(\overline{y})

Cone Proof System (CPS)

A **CPS** refutation of $f_1(\bar{x}) = \cdots = f_m(\bar{x}) = 0$ and $h_1(\bar{x}) \geq 0$, ..., $h_k(\bar{x}) \geq 0$, for polynomials in $\mathbb{R}[\bar{x}]$ is a constant-free algebraic circuit $C(\bar{x}, \bar{y})$ such that:

- 1. $C(\bar{x}, \bar{y})$ is a \bar{y} -conic circuit;
- 2. $C(\bar{x}, \bar{H}) = -1$

where

$$\overline{H} = \left\{ f_i(\bar{x}), -f_i(\bar{x}), h_i(\bar{x}), x_j^2 - x_j, -(x_j^2 - x_j), x_j, 1 - x_j \right\}_{i,j}$$

• The **size** of the IPS proof is the size of the circuit *C*.

Cone Proof System (CPS)

A **CPS** refutation of $f_1(\bar{x}) = \cdots = f_m(\bar{x}) = 0$ and $h_1(\bar{x}) \geq 0$, ..., $h_k(\bar{x}) \geq 0$, for polynomials in $\mathbb{R}[\bar{x}]$ is a constant-free algebraic circuit $C(\bar{x}, \bar{y})$ such that:

- 1. $C(\bar{x}, \bar{y})$ is a \bar{y} -conic circuit;
- 2. $C(\bar{x}, \bar{H}) = -1$

where

$$\overline{H} = \left\{ f_i(\bar{x}), -f_i(\bar{x}), h_i(\bar{x}), x_j^2 - x_j, -(x_j^2 - x_j), x_j, 1 - x_j \right\}_{i,j}$$

• The **size** of the IPS proof is the size of the circuit *C*.

Thm: CPS simulates all known (to us) proof systems (e.g., IPS, SoS, Positivstellensatz, EF).

Proposition: CPS admits *linear size* refutations of the binary value principle BVP_n .

$$S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1.$$

$$\overline{\mathcal{H}} := \left\{ x_1 \ge 0, \dots, \ x_n \ge 0, \ -S \ge 0, \ S \ge 0, \ x_1^2 - x_1 \ge 0, \dots, x_n^2 - x_n \ge 0, \right.$$

$$-(x_1^2 - x_1) \ge 0, \dots, \ -(x_n^2 - x_n) \ge 0, \ 1 - x_1 \ge 0, \dots, \ 1 - x_n \ge 0 \right\}$$

$$C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} \cdot y_i \right) + y_{n+1}$$

$$C(\overline{x}, \overline{\mathcal{H}}) = C(\overline{x}, x_1, \dots, x_n, -S, \dots) = (\sum_{i=1}^n 2^{i-1} \cdot x_i) + (-S) =$$

Proposition: CPS admits *linear size* refutations of the binary value principle BVP_n .

$$S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1.$$

$$\overline{\mathcal{H}} := \left\{ \underbrace{x_1 \geq 0, \dots, x_n \geq 0, \quad -S \geq 0, \quad S \geq 0, \quad x_1^2 - x_1 \geq 0, \dots, x_n^2 - x_n \geq 0, \\ -(x_1^2 - x_1) \geq 0, \dots, \quad -(x_n^2 - x_n) \geq 0, \quad 1 - x_1 \geq 0, \dots, \quad 1 - x_n \geq 0 \right\}$$

$$C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} \cdot y_i \right) + y_{n+1}$$

$$C(\overline{x}, \overline{\mathcal{H}}) = C(\overline{x}, x_1, \dots, x_n, -S, \dots) = (\sum_{i=1}^n 2^{i-1} \cdot x_i) + (-S) =$$

Proposition: CPS admits *linear size* refutations of the binary value principle BVP_n .

$$S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1.$$

$$\overline{\mathcal{H}} := \{ x_1 \ge 0, \dots, x_n \ge 0, -S \ge 0, S \ge 0, x_1^2 - x_1 \ge 0, \dots, x_n^2 - x_n \ge 0, -(x_1^2 - x_1) \ge 0, \dots, -(x_n^2 - x_n) \ge 0, 1 - x_1 \ge 0, \dots, 1 - x_n \ge 0 \}$$

$$C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} \cdot y_i \right) + y_{n+1}$$

$$C(\overline{x}, \overline{\mathcal{H}}) = C(\overline{x}, x_1, \dots, x_n, -S, \dots) = (\sum_{i=1}^n 2^{i-1} \cdot x_i) + (-S) =$$

Proposition: CPS admits *linear size* refutations of the binary value principle BVP_n .

$$S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1.$$

$$\overline{\mathcal{H}} := \{ x_1 \ge 0, \dots, x_n \ge 0, -S \ge 0, S \ge 0, x_1^2 - x_1 \ge 0, \dots, x_n^2 - x_n \ge 0, -(x_1^2 - x_1) \ge 0, \dots, -(x_n^2 - x_n) \ge 0, 1 - x_1 \ge 0, \dots, 1 - x_n \ge 0 \}$$

$$C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} (y_i) + y_{n+1} \right)$$

$$C(\overline{x}, \overline{\mathcal{H}}) = C(\overline{x}, x_1, \dots, x_n, -S, \dots) = (\sum_{i=1}^n 2^{i-1} \cdot x_i) + (-S) =$$

Proposition: CPS admits *linear size* refutations of the binary value principle BVP_n .

$$S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1.$$

$$\overline{\mathcal{H}} := \left\{ x_1 \ge 0, \dots, x_n \ge 0, -S \ge 0, S \ge 0, x_1^2 - x_1 \ge 0, \dots, x_n^2 - x_n \ge 0, -(x_1^2 - x_1) \ge 0, \dots, -(x_n^2 - x_n) \ge 0, 1 - x_1 \ge 0, \dots, 1 - x_n \ge 0 \right\}$$

$$C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} (y_i) + y_{n+1} \right)$$

$$C(\overline{x}, \overline{\mathcal{H}}) = C(\overline{x}, x_1, \dots, x_n, -S, \dots) = (\sum_{i=1}^n 2^{i-1} \cdot x_i) + (-S) =$$

Proposition: CPS admits *linear size* refutations of the binary value principle BVP_n .

$$S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1.$$

$$\overline{\mathcal{H}} := \{ x_1 \ge 0, \dots, x_n \ge 0, -S \ge 0, S \ge 0, x_1^2 - x_1 \ge 0, \dots, x_n^2 - x_n \ge 0, -(x_1^2 - x_1) \ge 0, \dots -(x_n^2 - x_n) \ge 0, 1 - x_1 \ge 0, \dots, 1 - x_n \ge 0 \}$$

$$C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} (y_i) + (y_{n+1}) \right)$$

$$C(\overline{x}, \overline{\mathcal{H}}) = C(\overline{x}, x_1, \dots, x_n, -S, \dots) = (\sum_{i=1}^n 2^{i-1} \cdot x_i) + (-S) =$$

CPS = IPS+Binary Value Principle

• IPS* and CPS*:

IPS and CPS over \mathbb{Q} , where: possible values that are computed along the IPS or CPS proofs (as circuits) are *not super-exponential* (for 0-1 input variables).

Theorem: IPS* = CPS* iff IPS* admits poly(n)-size refutations of the Binary Value Principle.

$$VAL\left(\mathrm{BIT}_1(f)\cdots\mathrm{BIT}_n(f)\right)=f$$

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

$$VAL\left(BIT_1(f)\cdots BIT_n(f)\right) = f$$

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

$$VAL\left(BIT_1(f)\cdots BIT_n(f)\right) = f$$

Thanks for listening!

Appendix

Thm:
$$CPS^* = IPS^* + BVP_n$$
 (over \mathbb{Z} , for simplicity)

Proof sketch: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

- $(\bar{x}, \bar{F}) = -1$ is freely provable in IPS*: $C(\bar{x}, \bar{F}) + 1 = 0$ (this is still not a refutation of \bar{F} !)
- IPS can do efficient bit-arithmetic as follows:
- Define VAL(w) := $w_1 + 2w_2 + \ldots + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value of an integer number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

- As a polynomial identity C(x, x, F) = -1 is freely provable in IPS*: $C(\bar{x}, \bar{F}) + 1 = 0$ (this is still not a refutation of \bar{F} !)
- IPS can do efficient bit-arithmetic as follows:
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value of an integer number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

• As a polynomial identity C(x, x, x, F) = -1 is freely provable $C(\bar{x}, \bar{F}) + 1 = 0$ (this is still not a refutation of \bar{F} !)

IPS proofs A=B means: from boolean axioms we can prove A-B

- IPS can do efficient bit-arithmetic as follows:
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value of an integer number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

- IPS can do efficient bit-arithmetic as follows:
- IPS can do efficient bit-arithmetic as follows:

IPS proofs A=B means: from boolean axioms we can prove A-B

• Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} - 2^{n-1}w_n$ to be the value of an integer number given by the *n* boolean bits *w* in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

IPS can do efficient bit-arithmetic as follows:

IPS proofs A=B means: from boolean axioms we can prove A-B

- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value of an integer number given by the *n* boolean bits *w* in two's complement.
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value of an integer number given by the *n* boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

FFFF x, F=-1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F+1=0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

number given by the *n* boolean bits *w* in two's complement.

- IPS can do efficient bit-arithmetic as follows:
 - Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value from boolean axioms we can prove A-B

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

where $BIT_i(f)$ is the polynomial that computes the *i*th bit of the number computed by f as a function of the variables x to f that range over $\{0, 1\}$ values.

IPS proofs A=B means:

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

- IPS can do efficient bit-arithmetic as follows:
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value from boolean axioms we number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

where $BIT_i(f)$ is the polynomial that computes the *i*th bit of the number computed by f as a function of the variables x to f that range over $\{0, 1\}$ values.

IPS proofs A=B means:

FFFF x, F=-1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F+1=0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

- IPS can do efficient bit-arithmetic as follows:
 - Define VAL(w) := $w_1 + 2w_2 + \ldots + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value $\frac{\text{can prove A-B}}{\text{can prove A-B}}$ number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

$$VAL\left(BIT_1(f)\cdots BIT_n(f)\right) = f$$

where $BIT_i(f)$ is the polynomial that computes the *i*th bit of the number computed by f as a function of the variables x to f that range over $\{0, 1\}$ values.

IPS proofs A=B means:

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

IPS can do efficient bit-arithmetic as follows:

- IPS proofs A=B means: from boolean axioms we can prove A-B
- Define VAL(w) := $w_1 + 2w_2 + \ldots + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value \ldots can prove A-B number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit *J*, IPS inas a poly(|*J*||)-size proof (from boolean axioms) of

$$VAL\left(BIT_1(f)\cdots BIT_n(f)\right) = f$$

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

• IPS can do efficient bit-arithmetic as follows:

- IPS proofs A=B means: from boolean axioms we can prove A-B
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit *J*, IPS inas a poly(|*J*||)-size proof (from boolean axioms) of

where
$$\operatorname{BIT}_{i}(f)$$
 is the pol $\operatorname{VAL}\left(\operatorname{BIT}_{1}(f)\cdots\operatorname{BIT}_{n}(f)\right)=f$

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

IPS can do efficient bit-arithmetic as follows:

- IPS proofs A=B means: from boolean axioms we ue can prove A-B
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value $\frac{can prove A-B}{can prove A-B}$ number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit *J*, iPS has a poly(|*J*||)-size proof (from boolean axioms) of

where
$$\operatorname{BIT}_{i}(f)$$
 is the pol $\operatorname{VAL}\left(\operatorname{BIT}_{1}(f)\cdots\operatorname{BIT}_{n}(f)\right)=f$

the number computed by f as a function of the variables x

the number computed by f as a function of the variables x to f that range over $\{0, 1\}$ values.

FFFF x, F = -1 is freely provable in IPS*: CC x, F xxxx, FFFF x, F + 1 = 0 (this is still not a refutation of FFFF!)

Proof **sketch**: Let $C(\bar{x}, \bar{F}) = -1$ be a CPS* refutation of \bar{F} .

IPS can do efficient bit-arithmetic as follows:

- IPS proofs A=B means: from boolean axioms we can prove A-B
- Define VAL(w) := $w_1 + 2w_2 + ... + 2^{n-2}w_{n-1} 2^{n-1}w_n$ to be the value number given by the n boolean bits w in two's complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean axioms) of

Lemma: For any circuit *J*, iPS has a poly(|*J*||)-size proof (from boolean axioms) of

where
$$\operatorname{BIT}_{i}(f)$$
 is the pol $\operatorname{VAL}\left(\operatorname{BIT}_{1}(f)\cdots\operatorname{BIT}_{n}(f)\right)=f$

the number computed by f as a function of the variables x

to f that range over {0, 1} values.

to f that range over {0, 1} values.

Proof (cnt.)

We have IPS* proof from boolean axioms of

$$C(\bar{x}, \bar{F}) = VAL(BIT_1(C) \cdot \cdot \cdot BIT_n(C)) = -1.$$

 Since C is a conic circuit and thus preserves nonnegative signs we can prove:

the sign-bit
$$BIT_n(C) = 0$$
.

We are left with the need to refute

$$VAL(BIT_1(C) \cdot \cdot \cdot BIT_{n-1}(C)) = -1$$

which is precisely BVP_n.

QED

$$IPS_{\mathbb{Z}} \geq_{p} IPS_{\mathbb{Q}}$$

Prop: Size-s constant-free IPS_Q from F of H, for F a set of assumptions (F, H written as constant-free algebraic circuits over Z) then there exists a size \leq 4s constant-free boolean IPS_Z proof of M · H, for some M in $\mathbb{Z}\setminus\{0\}$, such that $\tau(M) \leq 4s$.

Proof. Multiply the IPS $_{\mathbb{Q}}$ enough times to get all constants integers.