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The Context: Proof Complexity

* Proof systems:
* A way to analyse
algorithms run-time:

* Each proof-line is a step in
the algorithm

o : * A way to approach NP vs
(. Dynamic™ ) | TR coNP (hence P vs NP
Positivstellensatz f"g;‘,‘g?; Frﬁge pro bl e( m: )
77777 = | A - » Size lower bounds against
( P ) proofs of UNSAT ruIeg out
(Lconstant depth Frege that certain kind of
505 s witnesses can establish
. NP=coNP.
olynomia S . . .
( Calculus ) * IPS: circuit representation
s of algebraic proofs (like

( Nullstellensatz )—--( resolution ) Circu It VS S pa IS Ity measu re)




Motivation 1

* Are semi-algebraic proofs stronger
than algebraic ones?



Algebraic Proofs

* Inference in a polynomial ideal over a field:

ifp,q € (f1(X), ..., fm(X))

then

h-p € (f1(x), ..., f,,(’c)), for any polynomial h
and

p+q € {fi(X), .., fn(X))

Observe: preserves equalities with O:
if f,(a) = = f,,(@) = 0 (for a field assignment)
then all inferred polynomials = 0 (under assignment).
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Semi-Algebraic Proofs

Inference in the cone over reals R:

1) Ifp,q € cone(fi(x),..., (%))
then

p-q € cone(f;(x),..., fm(X)) and
p+q € cone(fi(X),..., fm(X)),

2) and for any polynomial s

s € cone(fy(%), ..., [ (%)), and

3) ifc = 0thenc € cone(f;(%), ..., fn (X))
O.

if fi(a) =0, ..., f,n,(@) = 0 (for a field assighnment)
then all inferred polynomials = 0 (under assignment).
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Semi-Algebraic Proofs

0:
Inference in the cone over reals R:

1) Ifp,q € cone(f;(X), ..., fn(X))
then

p-q € cone(f;(%),..., fp(¥)) and
p +q € cone(f1(%x), ..., fm (X)),

2) and for any polynomial s
s? € cone(f1(%), ..., f;n (%)), and

3) ifc = 0thenc € cone(f;(X), ..., f;n(%))

Observe: preserves inequalities = 0:
if f,(a) =0, ..., f,,,(@) = 0 (for a field assignment)
then all inferred polynomials = 0 (under assignment).



Semi-Algebraic Proofs

flaaaaa a20,..,/m/fffmmmfm a aaaa a =0 (for aaa a field assignme

0:

Inference in the cone over reals R:
1) If p,q € cone(f; (%), ..., fn(%))
then 0
p-q € cone(f;(%x), ..., f;n(x)) and
p+4q € cone(fi(X), ..., fn (X)),

2) and for any polynomial s

s2 € cone(f,(%), ..., fn(%)), and

3) if c = 0 then ¢ € cone(f; (%), ..., fin (X))

if f111(a)=0,..., (@) = 0 (for a field assignment)
if f1(@) =0, ..., ;,(@) = 0 (for a field assignment)

then all inferred polynomials = 0 (under assignment).
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Semi-Algebraic Proofs

0 (under assignment).
fl a aaaa a20,..,/mfffmmmfm a aaaa a =0 (for aaa a field assignry
0:
Inference in the cone over reals R:
1) Ifp,q € cone(fi (%), ..., fin (X)) 0
then
p-q € cone(f;(x), ..., f;n(x)) and
p+q € cone(fi (%), ..., fm (X)),

2) and for any polynomial s

s? € cone(fy (%), ..., f;n (X)), and

3) if c = 0 then ¢ € cone(f; (%), ..., f;n (X))

then all inferred polynomials = 0 (under assignment).
if f1(@) =0, ..., ;,(@) = 0 (for a field assignment)

then all inferred polynomials = 0 (under assignment).
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What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

algebraic proofs:

2) > 0):

- = 0 as a pair of inequalities: p = 0
and —p = 0.

one(p, —p) 2 (p)
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What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

» algebraic proofs:

* In our setting we freely have semi-algebraic = algebraic proofs:

2) > 0):

- = 0 as a pair of inequalities: p = 0
and —p = 0.

one(p, —p) 2 (p)
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What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

» algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of
equalities and inequalities:

2) > 0):

- = 0 as a pair of inequalities: p = 0
and —p = 0.

one(p, —p) 2 (p)
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What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

» algebraic proofs:
1) Semi-algebraic proofs refute both unsatisfiable sets of
equalities and inequalities:

For equalities we will be working in the ideal (e.g., in
PC):

polynomials in the ideal + polynomials in the cone
of equalities of inequalities

2) > 0):

- = 0 as a pair of inequalities: p = 0
and —p = 0.

one(p, —p) 2 (p)
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What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

* 0):
* algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of
equalities and inequalities:

For equalities we will be working in the ideal (e.g., in
PC

polynomials in the ideal + polynomials in the cone
of equalities of inequalities

2) Otherwise (even without the boolean axioms x i =
iii =0):
3) > 0):

- = 0 as a pair of inequalities: p = 0
and —p = 0.

one(p, —p) =2 (p) 33



What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

* (as a pair of inequalities: pp=0and -pp=0.
e 0):
* algebraic proofs:

1) Semi-algebraic proofs refute both unsatisfiable sets of
equalities and inequalities:

For polynomials in the ideal } \_II_VO polynomials in the cone |., in
PC] of equalities of inequalities

- Can treat equalities: p = 0 as a pair of inequalities: p = 0
and —p = 0.

2) > 0):
- = 0 as a pair of inequalities: p = 0
and —p = 0.
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What’s Stronger: Algebraic or
Semi-Algebraic Proofs?

* onep,—ppp,~ppp,~P=2pppp:

e asa pair of inequalities: pp=>0and -pp=0.
e 0):

» algebraic proofs:

1) Se polynomials in the ideal fute polynomials in the cone ets of

eq of equalities ies: of inequalities
For equalities we will be working in the ideal (e.g., in
PC):

- Then cone(p, —p) 2 (p)

2) = O) 35



What’s Stronger: Algebraic or

D,—PPP,—PPP,—P2PPPP:

Semi-Algebraic Proofs?

as a pair of inequalities: pp=0and -pp=0.

0):

algebraic

1)

2)

Ser

polynomials in the ideal
of equalities

+
futed

polynomials in the cone
of inequalities

ots of

equalities and inequalities:
For equalities we will be working in the ideal (e.g., in

PC):
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What’s Stronger: Algebraic or

D,—PPP,—PPP,—P2PPPP:

Semi-Algebraic Proofs?

as a pair of inequalities: pp=0and -pp=0.

0):

algebraic

1)

2)

Ser

polynomials in the ideal
of equalities

+
futed

polynomials in the cone
of inequalities

ots of

equalities and inequalities:
For equalities we will be working in the ideal (e.g., in

PC):
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Motivation 2

* (Conditional) lower bounds on
strong proof systems.

* Unknown for e.g. Frege and
beyond.



Our Results



Our Results

1. Algebraic proofs weaker than semi-algebraic
ones (under complexity assumptions)

* Formulate the Cone Proof System (CPS)

* A proof system that characterises very strong semi-algebraic
reasoning

* Cone Proof System = Positivstellensatz over algebraic circuits
* Semi-algebraic analogue of IPS (GP14)

e CPSis strictly stronger than IPS (under complexity
assumptions)

e Even the strongest algebraic proof system (IPS) cannot
simulate the “weakest” semi-algebraic proof system (under
complexity assumptions)
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Our Results

2. Conditional |

e BVP hard for IPS

* BVP is very easy for CPS (or any semi-algebraic proof
system from SoS and beyond)

* Hardness under complexity assumption:

* Hardness assumptions: computing factorials with
constant-free algebraic circuits is hard:



Our Results

2. Conditional | k,,m! m=1 co for any nonzero integers k., in at
most (log 72z ) ¢ operations.

ogm)cogmogmm(logm)c

 BVP hard for IPS

* BVP is very easy for CPS (or any semi-algebraic proof system from
SoS and beyond)

* Hardness under complexity assumption:

* Hardness assumptions: computing factorials with constant-
free algebraic circuits is hard:

* cannot compute kmm! m = 1 oo for any nonzero integers k,, in
at most (logm)° operations.
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Our Results

2. Conditional lower bounds against strong
proof systems (cnt.)

* Recall IPS refutation is “a single circuit that
computes the algebraic refutation”.

e Our lower bound extends (Forbes, Shpilka, T.,
Wigderson 2016) functional lower bounds
approach to IPS

e Can’t get better without actually showing VP#VNP
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* BVP characterises semi-algebraic proofs:
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e Assume an algebraic proof system P is strong
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simulates semi-algebraic proofs (of the
“corresponding complexity”) iff it refutes BVP
efficiently.
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Our Results

3. Characterising the advantage of semi-
algebraic proofs over algebraic ones

* BVP characterises semi-algebraic proofs:
IPS + BVP = CPS

e Assume an algebraic proof system P is strong
enough to do efficient bit-arithmetic. Then, P
simulates semi-algebraic proofs (of the
“corresponding complexity”) iff it refutes BVP
efficiently.



Moral

*One can do interesting things with
coefficients of relatively large
magnitudes (though their size is still
polynomiall)



Moral

Algebraic proofs can do efficiently basic
bit-arithmetic (we show this).

* But assuming Shub-Smale Hypothesis,
algebraic proofs cannot prove basic
properties about the bits of
polynomials, given a polynomial
equation; e.g., that

+-o4x, =0 F Bit;(x; + -+ x,) = 0



Moral

xX1l+.+xnxxxnnnxn-=0F Bit/BitBiti
iiBiti x1+..+xn x1xxx11x1+..+x
naxaxnmnxn x1+..+xn =0

Algebraic proofs can do efficiently basic bit-
arithmetic (we show this).

* But assuming Shub-Smale Hypothesis,
algebraic proofs cannot prove basic
properties about the bits of polynomials,
given a polynomial equation; e.g., that

x111 +-+x, =0 F Bit;(xy + - + x,,)
=0



The Technical Part



Algebraic circuits

Fix a field [F -
An algebraic circuit over [F T
computes a formal polynomial / \

over [F 7 \ / »\3

Size = # of nodes
(X1+X,) - (X%,+3)= X %, +x,24+3x,+3x,

69



Shub-Smale Hypothesis

* A constant-free circuit is an algebraic circuit that
uses 1,0,-1 as the only constants available on
leaves.

* For integer m, 7(m) is the smallest constant-free
circuit that computes m.

* Shub-Smale Hypothesis: no constant-free circuit of
size at most (logm)¢, for a constant ¢, computes
(k,m!);._,, for any nonzero integers k...



|[deal Proof System (IPS)

* A refutation of f;(x) = --- = f,,,(x) = 0 for
polynomials f;(x) in F|x] is a constant-free algebraic

circuit C(x, y, Z) such that:
1. C(x,0,0) = 0;
2. C(x, f1(5%), o, firn(3), X% — x4, e, x2 —x,) = 1
(equality as formal polynomials).
* The size of the IPS proof is the size of the circuit C.



IPS Conditional Lower Bounds

Thm: Assuming Shub-Smale Hypothesis there are no

poly(n)-size (constant-free) IPS refutations over Q of
the BVP : x; + 2x, + 4x3 + -+ 2" 1x,, = —1.

Proof Sketch.

Step 1: FSTW16: IPS = NS over circuits. Hence, consider
by way of contradiction:

n
g (g +2x +4x3 + -+ 20y, + 1) + E hi-(xF—x;)=1
i=1

with g of poly(n) algebraic circuit.



IPS Conditional Lower Bounds

Thm: Assuming Shub-Smale Hypothesis there are no
poly(n)-size (constant-free) IPS refutations over Q of
the BVP : x; + 2x, + 4x3 + -+ 2" 1x,, = —1.

Proof Sketch (cnt.).

Step 2: Show that it is enough to prove lower bounds
for IPS refutations over Z of

g°(x1+2x2+4x3+--°+2n_1xn+1)+2n hl (xlz _xl) =M
=1
for all nonzero integers M with t(M) is poly(n).

Idea: Multiply the IPSgy enough times to get all
constants integers (t(M) remains poly(n)).



IPS Conditional Lower Bounds

Proof Sketch (cnt.).
Step 3: Consider the refutation over Z
g - (xq + 2xy + 4x3 +---+2"‘1xn+1)+2 h; (xlz —xl-) =M
=1
for M with t(M)=poly(n).

* Restriction: For every number b in [0,2"-1] with bit-
vector b = (b ... b,)

gtb-(by+2by,+4bs+--+2"1h, +1)+0=M"Tbh
A-(by+2b, +4bs+--+2" b, +1)=M

where A is some integer dependent on b.

Corollary: M is an integer of t(M)=poly(n) and is
divisible by every number in [1,2"]



IPS Conditional Lower Bounds

Proof Sketch (cnt.).
Step 3: Consider the refutation over Z
g - (xq + 2xy + 4x3 +---+2"‘1xn+1)+2 h; (xlz —xl-) =M
=1
for M with t(M)=poly(n).

* Restriction: For every number b in [0,2"-1] with bit-
vector b = (b ... b,)

gtb-(by+2by,+4bs+--+2"1h, +1)+0=M"Tbh
A-(by+2b, +4bs+--+2" b, +1)=M

where A is some integer dependent on b.

Corollary: M is an integer of t(M)=poly(n) and is
divisible by every number in [1,2"]



IPS Conditional Lower Bounds

Proof Sketch (cnt.).
Step 4:

Lemma: If M is an integer of t(M)=poly(n) and is divisible by
](cevleryll number in [1,2"] then Shub-Smale Hypothesis is
alse!

Proof sketch. We show there exists a poly(n)-size constant-
free circuit that computes 2™! (hence, t(m!)=log‘m , for m a
power of 2; almost what we need).

» By repeated squaring: 7(M?2") = poly(n)
* Fact: Consider the prime factorization of 2™!
° an — le p;;k

* p;is at most 2" (hence, it’s a factor of M), and
* r;is at most 2™.

* Hence, every pfi is a factor of M2". QED



T-conjecture based lower bounds

* Under the T-conjecture we can
establish IPS lower bounds over the
field of rational functions in the
indeterminate single variable v.



The Cone Proof System



Cone Proof System (CPS)

A y-conic circuit is a circuit C(x, y) in which
* y-variables are assumed to be nonnegative;

e X variables or negative constants (that may be
negative) must be part of a squared sub-circuit.

Fact: / -i-\

A y-conic circuit C(X,y) computes
only non-negative values when y C)

are non-negative; i.e., ( )

polynomials in cone(Vy)

X1 Y,



Cone Proof System (CPS)

A CPS refutation of f;(x) = -+ = f,,,(x) = 0and h;(x) =
0,...,h;(x) = 0, for polynomials in R[x] is a constant-free
algebraic circuit C (X, y) such that:

1. C(x,y) is a y-conic circuit;

2 C(x H) =-1

where

H = {f;(%), —f;(%), hi (%), x7 — x5, —(x§ — x;),%j, 1 — x]-}i’j

* The size of the IPS proof is the size of the circuit C.



Cone Proof System (CPS)

A CPS refutation of f;(x) = -+ = f,,,(x) = 0and h;(x) =
0,...,h;(x) = 0, for polynomials in R[x] is a constant-free
algebraic circuit C (X, y) such that:

1. C(x,y) is a y-conic circuit;

2 C(x H) =-1

where

H = {f;(%), —f;(%), hi (%), x7 — x5, —(x§ — x;),%j, 1 — x]-}i’j

* The size of the IPS proof is the size of the circuit C.

Thm: CPS simulates all known (to us) proof systems
(e.g., IPS, SoS, Positivstellensatz, EF).



a

CPS Upper Bounds

Proposition: CPS admits linear size refutations of the
binary value principle BVP,.
Proof. |dea: because we have the boolean axioms for

the x variables o
S = YL2t -+ 1

{:1?1 >0,.... 2, >0, —5>0, 5>0. :1?% —x1 > 0,... _:1?,‘;1 —a, > 0,
— (22 —21) >0 — (22 —2,) >0, 1—27>0 1—2,>0
(*1.1 x1)>0,.... (J.n ) >0, r1 > 0,..., T, = }
T
T [ — — . .—J_ ) )
(*’f(:r- Y ) T Z 2! “Yi | T Un+1
1=1
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T
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CPS Upper Bounds

Proposition: CPS admits linear size refutations of the
binary value principle BVP,.
Proof. |dea: because we have the boolean axioms for

the x variables o
S = 2?12?—-—1 SRR

H:={21>0,..., 2, >0, —S>0, S>0,




CPS Upper Bounds

Proposition: CPS admits linear size refutations of the
binary value principle BVP,.
Proof. |dea: because we have the boolean axioms for

the x variables o
S = 2?12?—-—1 SRR

H:={21>0,..., 2, >0, —S>0, S>0,




CPS Upper Bounds

Proposition: CPS admits linear size refutations of the
binary value principle BVP,.
Proof. |dea: because we have the boolean axioms for

the x variables o
S = Yr. 21 .o o4+ 1

{;1?120....‘;1??1130 -5>0 5>0, f—iﬂl20.....;?%—1?.,120.




CPS Upper Bounds

Proposition: CPS admits linear size refutations of the
binary value principle BVP,.
Proof. |dea: because we have the boolean axioms for

the x variables o
S = Yr. 21 .o o4+ 1

{;1?120....‘;1??1130 -5>0 5>0, f—iﬂl20.....;?%—1?.,120.




CPS = IPS+Binary Value Principle

e |[IPS* and CPS*:

IPS and CPS over Q, where: possible values
that are computed along the IPS or CPS
proofs (as circuits) are not super-
exponential (for 0-1 input variables).

Theorem: |PS* = CPS* iff IPS*
admits poly(n)-size refutations
of the Binary Value Principle.



Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

VAL (BIT:(f)---BITy(f)) = f



Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof
(from boolean axioms) of

VAL (BIT:(f)---BITy(f)) = f



Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof
(from boolean axioms) of

VAL (BIT:(f)---BITy(f)) = f



Thanks for listening!
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

Proof sketch: Let C(%, F) = —1 be a CPS* refutation of F.

. (x, F) = —1 s freely provable in IPS*:
C(x,F) + 1 = 0 (this is still not a refutation of F'!)

* IPS can do efficient bit-arithmetic as follows:

* Define VAL(w) :=w, + 2w, +.. .+ 2"%2w__, - 2" w_to be the value of
an integer number given by the n boolean bits w in two’s
complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean
axioms) of

where BIT.(f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x
to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =—]isfree|fy provablein IPS*: CC x,F xxxx,FFFF x,F
+1=0 (this is still not a refutation of F FF F !)

Proof sketch: Let C(X, F) = —1 be a CPS* refutation of F.

* As a polynomial identity C x,x,F = —1is freely provable in IPS*:
C(x,F) + 1 = 0 (this is still not a refutation ofF!)

* IPS can do efficient bit-arithmetic as follows:

* Define VAL(w) :=w, + 2w, + .. .+ 2"2w__, - 2" 1w _to be the value of an
integer number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean
axioms) of

where BIT (f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x
to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =—]isfree|fy provablein IPS*: CC x,F xxxx,FFFF x,F
+1=0 (this is still not a refutation of F FF F !)

Proof sketch: Let C(X, F) = —1 be a CPS* refutation of F.

. - . ) IPS proofs A=B means:
* As a polynomial identity C x,x,F = —1isfreely provablt fom boolean axioms we

C(x,F) + 1 = 0 (this is still not a refutation ofF!) .
* |PS can do efficient bit-arithmetic as follows:
* Define VAL(w) :=w, + 2w, + .. .+ 2"2w__, - 2" 1w _to be the value of an
integer number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean
axioms) of

where BIT (f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x
to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =—]isfree|fy provablein IPS*: CC x,F xxxx,FFFF x,F
+1=0 (this is still not a refutation of F FF F !)

Proof sketch: Let C(X, F) = —1 be a CPS* refutation of F.

* |PS can do efficient bit-arithmetic as follows: Iff:mpgngaﬁ:zonrfsaﬁ
* |PS can do efficient bit-arithmetic as follows: can prove A-B

* Define VAL(w) :=w, + 2w, + .. .+ 2"2w__, - 2" 1w _to be the value of an
integer number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean
axioms) of

where BIT (f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x
to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =—]isfree|fy provablein IPS*: CC x,F xxxx,FFFF x,F
+1=0 (this is still not a refutation of F FF F !)

Proof sketch: Let C(X, F) = —1 be a CPS* refutation of F.

* |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:

from boolean axioms we
can prove A-B

* Define VAL(W) :=w, + 2w, + .. .+ 2"2w__, - 2" 1w _to be the value ot an
integer number given by the n boolean bits w in two’s complement.

* Define VAL(w) :=w, + 2w, + .. .+ 2"2w__, - 2" 1w _to be the value of an
integer number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f|)-size proof (from boolean
axioms) of

where BIT (f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x
to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =-1isfreely provableinIPS*: CC x,F xxxx,FFFF x,F +1=0
(this is still not a refutation of F FF F !)

Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
* Define VAL(W) := w, + 2w, +.. .+ 2"2w__, - 2" 1w _to be the value _. _. c@npovert

number given by the n boolean bits w in two’s complement.
Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

where BIT,(f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x

to f that range over {0, 1} values.
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Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
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number given by the n boolean bits w in two’s complement.
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where BIT,(f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x

to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =-1isfreely provableinIPS*: CC x,F xxxx,FFFF x,F +1=0
(this is still not a refutation of F FF F !)

Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
* Define VAL(W) := w, + 2w, +.. .+ 2"2w__, - 2" 1w _to be the value _. _. c@npovert

number given by the n boolean bits w in two’s complement.
Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

where BIT,(f) is the polynomial that computes the ith bit of
the number computed by f as a function of the variables x

to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =-1isfreely provableinIPS*: CC x,F xxxx,FFFF x,F +1=0
(this is still not a refutation of F FF F !)

Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
* Define VAL(W) := w, + 2w, +.. .+ 2"2w__, - 2" 1w _to be the value _. _. c@npovert

number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

VAL (BIT, (f)---BIT,(f)) = f

where BIT,(f) is the polynomial that computes the ith bit of

the number computed by f as a function of the variables x

to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =-1isfreely provableinIPS*: CC x,F xxxx,FFFF x,F +1=0
(this is still not a refutation of F FF F !)

Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
* Define VAL(W) := w, + 2w, +.. .+ 2"2w__, - 2" 1w _to be the value _. _. c@npovert

number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

where BIT (f) is the pol VAL (BITl (f) - - - BITR(JC)] _ JC

where BIT.(f) is the polynomial that computes the ith bit o
the number computed by f as a function of the variables x

to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =-1isfreely provableinIPS*: CC x,F xxxx,FFFF x,F +1=0
(this is still not a refutation of F FF F !)

Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
* Define VAL(W) := w, + 2w, +.. .+ 2"2w__, - 2" 1w _to be the value _. _. c@npovert

number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

where BIT,(f) is the pol VAL (BITl (f) T BITH(JC)) —

the number computed by f as a function of the variables x

the number computed by f as a function of the variables x

to f that range over {0, 1} values.
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Thm: CPS* = |PS*+BVPn (over Z, for simplicity)

FFFF x,F =-1isfreely provableinIPS*: CC x,F xxxx,FFFF x,F +1=0
(this is still not a refutation of F FF F !)

Proof sketch: Let C (i, F) = —1 be a CPS* refutation of F.

e |PS can do efficient bit-arithmetic as follows: IPS proofs A=B means:
from boolean axioms we
* Define VAL(W) := w, + 2w, +.. .+ 2"2w__, - 2" 1w _to be the value _. _. c@npovert

number given by the n boolean bits w in two’s complement.

Lemma: For any circuit f, IPS* has a poly(|f])-size proof (from boolean axioms) of

where BIT,(f) is the pol VAL (BITl (f) T BITH(JC)) —

the number computed by f as a function of the variables x

to f that range over {0, 1} values.

to f that range over {0, 1} values.
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Proof (cnt.)

* We have IPS* proof from boolean axioms of
C(x,F) = VAL(BIT,(C) - - - BIT (C)) = -1.

* Since Cis a conic circuit and thus preserves non-
negative signs we can prove:

the sign-bit BIT (C) = 0.
* We are left with the need to refute
VAL(BIT,(C) - - - BIT, ,(C)) = -1
which is precisely BVP.,.

QED



IPS; >, IPSq

Prop: Size-s constant-free IPS, from F of
H, for F a set of assumptions (F, H written
as constant-free algebraic circuits over Z)
then there exists a size < 4s constant-free
boolean IPS, proof of M - H, for some M
in Z\{0}, such that t(M) < 4s.

Proof. Multiply the IPSy enough times to
get all constants integers.
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