
Weighted Min-Cut: A Cross-Paradigm
Algorithm

Sagnik Mukhopadhyay

University of Sheffield, UK

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation
programme under grant agreement No 715672

Weighted min-cut and our results

The (global) mincut problem
Remove edges to disconnect the graph (minimize total weight)

“[This problem] plays an important role in the design of
communication networks. If a few links are cut …”

LEDA (http://www.algorithmic-solutions.info/)

http://www.algorithmic-solutions.info/

The (global) mincut problem
• Cut:
• Set of edges whose removal disconnects
𝐺.

• Min-cut:
• Cut with minimum total edge weight.

Goal: Find a min-cut in a weighted graph.

12

1

3

2 1

14 6

12

1
15

6
9

32

20 10

State of the arts: near-linear time
Complexity

Karger SODA’93
Karger, Stein STOC’93

𝑂(𝑛! log! 𝑛)

Karger STOC’96 𝑶(𝒎 𝐥𝐨𝐠𝟑 𝒏)

Hard to adapt to new
computational models

Problem:

Complicated dynamic programming &
data structures

n=#nodes, m=#edges

Assume 𝑚 ≥ 𝑛 log! 𝑛 for simplicity

No efficient algorithms in distributed, streaming,
query complexity

Models of computation

Cut Query: Allowed to query arbitrary cuts of 𝐺. Charged once per query.

Dynamic semi-streaming: 𝑂(𝑛 polylog 𝑛) bits of internal memory. Charged once per pass.

Sequential: Standard unit-cost RAM model.

Parallel PRAM: Concurrent read exclusive write. Complexity is (work, depth) of computation.

Distributed CONGEST: Bandwidth restricted (𝑂(log 𝑛) bits per round). Charged once per round.

Previous work

Sequential
model

Cut-query
model

Dynamic semi-
streaming model

Distributed
CONGEST

[Karger STOC’96] 𝑂 𝑚 log! 𝑛 Rand

[KT STOC’15] 𝑂(𝑚 log"# 𝑛) Det
[HRW SODA’17] 𝑂(𝑚 log# 𝑛) Det
[GNT, SODA’20] 𝑂(𝑚 log 𝑛) Rand

[RSW ITCS’19] ,𝑂(𝑛)

[ACK STOC’19, RSW ITCS’19, AD SOSA’21] 2 passes
[DHNS STOC’19] ,𝑂(𝑛$.&&' + 𝐷$.$$!𝑛$.&&()
[GNT SODA’20] ,𝑂(𝑛$.& + 𝐷$.#𝑛$.')

Simple graphs!

Weighted
min-cut

Parallel
PRAM

[GG SPAA’18] 𝑂(𝑚 log) 𝑛) work, 𝑂(log!𝑛) depth

Our results

Sequential
model

Cut-query
model

Dynamic semi-
streaming model

Distributed
CONGEST

[Karger STOC’96] 𝑂(𝑚 log! 𝑛)

[KT STOC’15] 𝑂(𝑚 log"# 𝑛)
[HRW SODA’17] 𝑂(𝑚 log# 𝑛)
[GNT, SODA’20] 𝑂(𝑚 log 𝑛)

[RSW ITCS’19] ,𝑂(𝑛)

[ACK STOC’19, RSW ITCS’19, AD SOSA’21] 2 passes [DHNS STOC’19] ,𝑂(𝑛$.&&' + 𝐷$.$$!𝑛$.&&()
[GNT SODA’20] ,𝑂(𝑛$.& + 𝐷$.#𝑛$.')

Weighted
min-cut

Parallel
PRAM

[GG SPAA’18] 𝑂(𝑚 log) 𝑛) work, 𝑂(log!𝑛) depth

One schematic
algorithm

Our results

Sequential
model

Cut-query
model

Dynamic semi-
streaming model

Distributed
CONGEST

[Karger STOC’96] 𝑂(𝑚 log! 𝑛)

[KT STOC’15] 𝑂(𝑚 log"# 𝑛)
[HRW SODA’17] 𝑂(𝑚 log# 𝑛)
[GNT, SODA’20] 𝑂(𝑚 log 𝑛)

[RSW ITCS’19] ,𝑂(𝑛)

[DHNS STOC’19] ,𝑂(𝑛$.&&' + 𝐷$.$$!𝑛$.&&()
[GNT SODA’20] ,𝑂(𝑛$.& + 𝐷$.#𝑛$.')

Weighted
min-cut

Parallel
PRAM

[GG SPAA’18] 𝑂(𝑚 log) 𝑛) work, 𝑂(log!𝑛) depth

One schematic
algorithm

Weighted: ,𝑂(𝑛)

Weighted: log 𝑛 passes

Weighted: O 𝑚 log 𝑛 + 𝑛"*+

Weighted: ,𝑂 𝑛 + 𝐷

Weighted: 𝑂(𝑚 log 𝑛) work, 𝑂(log!𝑛) depth

STOC 2020

STOC 2020

STOC 2020

STOC 2021

SPAA 2021

[ACK STOC’19, RSW ITCS’19, AD SOSA’21] 2 passes

Today: Cut-query model

A cut (S", 2𝑆")
𝑆" 2𝑆"

Value of the cut (S", 2𝑆")

A cut (S#, 𝑆#)

S# 𝑆#

Value of the cut (S#, 𝑆#)

Today: Cut-query model

A cut (S", 2𝑆")
𝑆" 2𝑆"

Value of the cut (S", 2𝑆")
A cut (S#, 𝑆#)

S# 𝑆#
Value of the cut (S#, 𝑆#)

Graph cuts ⇔ Submodular function

Cut-query ⇔ Submodular function
minimization via query

Our result

Common barrier: How to overcome?

Remark:

• Assuming simple graph makes life a lot easier!

• None of the improvements on simple graphs follow Karger’s framework.

What is so hard about Karger’s framework?

2-respecting cut
• Main subroutine of Karger’s algorithm.

• Spanning tree:
• A tree 𝑇 with edges from E(𝐺) that spans

all vertices.

• 2-respecting cut:
• Cut 𝐶 with at most 2 edges from 𝑇.

2-respecting cut
• Spanning tree:
• A tree 𝑇 with edges from E(𝐺) that spans

all vertices.

• 2-respecting cut:
• Cut 𝐶 with at most 2 edges from 𝑇.

Not 2-respecting

2-respecting cut
• Spanning tree:
• A tree 𝑇 with edges from E(𝐺) that spans

all vertices.

• 2-respecting cut:
• Cut 𝐶 with at most 2 edges from 𝑇.

Goal: Find a 2 –respecting min-cut in a
weighted graph given a spanning tree 𝑇.

Theorem (Karger). Efficient algorithm for solving 2-respecting min-cut implies
efficient algorithm for solving min-cut.

Main
bottleneck!

One (schematic) algorithm that works across models

Our result

New improved algorithm for min 2-resp cut problem.

A closer look…

Simple and efficient algorithm for min 2-resp cut for all
models

𝑒"

𝑒#

𝑒,

𝑒)

𝑒- 𝑒.

𝑒(

𝑒'

𝑒"$ 𝑒"
𝑒#

𝑒,

𝑒/

𝑒" 𝑒# 𝑒- 𝑒/

Cut(𝑒" , 𝑒#)

Ed
ge

s o
f 𝑇

Edges of 𝑇

A closer look…

• 𝑛! many entries to look up.

• Goal: Minimize the number of look-ups to find a minimum value.

𝑒"

𝑒#

𝑒!

𝑒)

𝑒0 𝑒.

𝑒(

𝑒'

𝑒"$ 𝑒"
𝑒#

𝑒,

𝑒/

𝑒" 𝑒# 𝑒- 𝑒/

Cut(𝑒" , 𝑒#)

Ed
ge

s o
f 𝑇

Edges of 𝑇

A quick detour: Matrix min-entry puzzle

Matrix min-entry problem

Input: I will write down an 𝑛×𝑛 matrix M (you don’t see M but know 𝑛).
Promise: Monotonicity - column minimums never move up as we go right

Puzzle time!

Goal: Find the minimum entry in M.
Query: You can ask for one entry at a time. How many entries do you need?

= min of each column

Example: 0 4 2 3
4 2 2 1
3 3 1 0
5 5 3 2

Solution for matrix min-entry

𝑂 𝑛 log 𝑛 queries by divide and conquer.
1. Find min in the middle column
• by asking for everything in that column.

2. The recurse on both sides.
3. Search area decreases by half.

Puzzle time!

In fact, there is an O(n)-query solution [SMAWK]. But it’s not useful for us (too sequential)

Matrix min-entry to Global min-cut

Mincut à Matrix min-entry

23

2-respecting min-cut: Easy to find spanning tree T that 2-
constains the min-cut.

Cost matrix: Guess two tree-edges crossing the cuts
Entries in 𝑛×𝑛 matrix

There are 𝑶(𝒏𝟐) candidate
cuts

Cut-query model: Can find 1 entry by 1 query.

mincut

𝑒"
𝑒#

𝑒,

𝑒/

𝑒" 𝑒# 𝑒- 𝑒/

Cost(𝑒! , 𝑒")Ed
ge

s o
f 𝑇

Edges of 𝑇

Technical

Mincut à Matrix min-entry

24

2-respecting min-cut: Easy to find spanning tree T that 2-
constains the min-cut.

Cost matrix: Guess two tree-edges crossing the cuts
Entries in 𝑛×𝑛 matrix

There are 𝑶(𝒏𝟐) candidate
cuts

Too expensive to compute all matrix entries

1 stream-pass can compute
only n entries.

mincut

𝑒"
𝑒#

𝑒,

𝑒/

𝑒" 𝑒# 𝑒- 𝑒/

Cost(𝑒! , 𝑒")Ed
ge

s o
f 𝑇

Edges of 𝑇

Technical

Mincut à Matrix min-entry

10

mincut

e1 e2

e3

𝒆𝟏$

𝒆𝟐$

𝒆𝟑$

𝑒:; 𝑒<; 𝑒=;

𝑒:
𝑒<
𝑒=

Monotone matrix

25

Cute trick: Assume we know two paths in T where
the best candidates are in

Lemma: The corresponding cost matrix is monotone
like in the puzzle!

Technical

Key idea: Spanning tree with 2 paths

e1 e2 e3

e4

e5e01e02e03e04

e05

3 4

10

1
5

6

r

Root

𝑪𝒐𝒔𝒕 𝒆𝒊, 𝒆𝒋 ,
𝒆𝒊 ∈ 𝑳, 𝒆𝒋 ∈ 𝑹Bipartite path problem

Technical

Cost matrix revisited

e1 e2 e3

e4

e5e01e02e03e04

e05

3 4

10

1
5

6

r

19 25

13 24 18

20

16 22

25

19 18

19 25 14 14

2019 25 14 14

1

2

3

4

5

1 2 3 4 5

L

R

0 14

17 11 11

𝑪𝒐𝒔𝒕(𝟒, 𝟏)
Question: Why is the cost matrix monotone?

Technical

Structure of cost matrix

I1
i

i0

Add +3

e1 e2 e3

e4

e5e01e02e03e04

e05

3 4

10

1
5

6

r

Technical

𝑒′#

𝑒′)
⋮

Structure of cost matrix

Add +3

I1

I3

I3

i

i0

i

j

Add +4

e1 e2 e3

e4

e5e01e02e03e04

e05

3 4

10

1
5

6

r

Technical

𝑒′#

𝑒′0

⋮

𝑒"

I1
I2

I3

I3

i

i0

j j0

i

j

Structure of cost matrix

Add
Add +10

Add

e1 e2 e3

e4

e5e01e02e03e04

e05

3 4

10

1
5

6

r

Technical

Monotonicity of cost matrix

I1
I2

I3

I3

i

i0

j j0

i

j
Add

Add

Add

These operations result in a monotone matix.

• Queries needed to solve bipartite path
problem = 𝑶(𝒏 𝐥𝐨𝐠𝒏).

Technical

Mincut à Matrix min-entry (2)

32

Cute trick: Assume we know two paths in T where
the best candidates are in

Lemma: The corresponding cost matrix is monotone
like in the puzzle!

Decompose T into paths using path decomposition (e.g. heavy-light, bough/layering decomposition) & the
simulate matrix min-entry algorithm for some pairs of paths

Leftover details: Picking a few pairs

Heavy-light decomposition

Technical

Choosing a few pairs from decomposition

Picking up few pairs of path

34

Lemma (Not quite true): Each path can be paired with only one path such that
the minimum 2-respect cut belongs to one such pair.

e1

e2

e3
e4

e5

e6

1

2

3

4

5

6

Cut 𝑒=, 𝑒J = deg 3 + deg 4 − 2 ×𝑤𝑡 3,4

Star graph

Cut 𝑒=, 𝑒J < deg 3 , deg(4) wt 3,4 >
deg 3
2

,
deg 4
2

Picking up few pairs of path

35

Lemma (Not quite true): Each path can be paired with only one path such that
the minimum 2-respect cut belongs to one such pair.

e1

e2

e3
e4

e5

e6

1

2

3

4

5

6

Star graph

Cut 𝑒=, 𝑒J < deg 3 , deg(4) wt 3,4 >
deg 3
2

,
deg 4
2

𝒆𝟑 can only pair with 𝒆𝟒.

Picking up few pairs of path

36

Lemma (Not quite true): Each path can be paired with only one path such that
the minimum 2-respect cut belongs to one such pair.

Lemma (Almost true): Each path can be paired with only one root-to-leaf path
such that the minimum 2-respect cut belongs to one such pair.

log 𝑛 many paths from the tree
decomposition

All results follow from one schematic algorithm
(with different implementation details)

(The case where two candidates are in the same path is easy)

1. Decompose T into paths using
bough/layering decomposition.

2. Each edge e in A picks path B that is
interesting to it.

3. Simulate the matrix min-entry
algorithm on the cost matrix of every
such pair (A,B) after contracting
useless edges.

37

𝑒

𝑒′

𝑒↓ 𝑒′↓

B

Cut-query simulation

Query simulation: Cut-query Streaming Sequential

𝑂(𝑛) cut queries in 1 passTrivial Range operation DS

More on range DS

Summary

• Spanning tree packing. Cut sparsifier with random neighbor sampling

• 2-respecting min-cut is the main bottle-neck of min-cut.

• Spanning tree: Path Can be solved quickly using properties of
• Monotone matrix

• Spanning tree: Star-graph Can be solved quickly using edge pairing

• Putting it all together: General spanning tree Tree decomposition
and almost correct lemma

Skipped this!
Karger framework

Open problems

Open problems

• Graph problems in 2-party communication setting.

• Min-cut in dynamic setting.

• Directed min-cut and vertex connectivity.

• Other graph problems admitting cross-paradigm algorithm (?)

Thank you.

Simulating a cut-query

Range operation data-structure

• Takes 𝑚 points in a 2-d plane.

• Preprocessing: 𝑂 𝑚 .

• Query: An axis-aligned rectangle
𝑅.
• Count points in 𝑅: 𝑂 𝑛M .
• Sample point from 𝑅: 𝑂 𝑛M .

• Amortized.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

𝑅

[Gawrychowski-Mozes-Weimann, 2020]

elements x depth

arity x depth

Range operation on spanning tree

11

6 10

1 4 5 9

7 82 3

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

𝑤𝑡(4,1)

• 𝐶(4↓, 10↓): 1 range count query.
[Gawrychowski-Mozes-Weimann, 2020]

Range operation on spanning tree

11

6 10

1 4 5 9

7 82 3

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11• 𝐶(4↓, 𝑉 − 4↓): 2 range count queries.
[Gawrychowski-Mozes-Weimann, 2020]

Range operation on spanning tree

Matrix min-entry requires O m + *𝑂(𝑛/01) time.

Range
operation

Pre
processing

Minimum 2-resp cut requires O m + *𝑂(𝑛/01) time.

(A little more work)

Minimum cut requires O m log n + *𝑂(𝑛/01) time.

log 𝑛 many tree packing

Back to summary
[Gawrychowski-Mozes-Weimann, 2020]

