Dynamic Maintenance of Low-Stretch
Probabilistic Tree Embeddings with Applications

Sebastian Forster!, Gramoz Goranci?, Monika Henzinger?

LUniversity of Salzburg
2University of Toronto — University of Glasgow
3University of Vienna

DIMAP Seminar, University of Warwick
May 2021

Dynamic Low-Stretch Tree Embeddings

Tree-Based Graph Approximations

Powerful Theme in Graph Algorithms

» Approximate arbitrary graphs by trees
» Why? Many graph problems are easy on trees l
> Map the tree solution back to the original graph

Dynamic Low-Stretch Tree Embeddings

Tree-Based Graph Approximations

Powerful Theme in Graph Algorithms

» Approximate arbitrary graphs by trees
» Why? Many graph problems are easy on trees l
> Map the tree solution back to the original graph

example property preserved

Spanning Tree/Forest Connectivity

BFS Tree/Shortest-Path Tree | Distance from a source
Gomory-Hu Tree Pairwise s-t max flow/min-cut
Tree Cut/Flow Sparsifier Cut/Flow

Low-Stretch Spanning Trees | Average Pairwise Distance

Prob. Low-Stretch Trees ‘ (Exp.) Pairwise Distance

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE) [Bartal'96]

Definition
» For any simple graph G = (V, E), n = |V]|,
m = |E|, a probability distribution 7 over trees

{T;}: is an a—probabilistic tree embedding
(a—PTE) iff for all u,v € V

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE) [Bartal'96]

Definition
» For any simple graph G = (V, E), n = |V]|,
m = |E|, a probability distribution 7 over trees

{T;}: is an a—probabilistic tree embedding
(a—PTE) iff for all u,v € V

(1) V(G)CV(T;) forall i |

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE) [Bartal'96]

Definition
» For any simple graph G = (V, E), n = |V]|,
m = |E|, a probability distribution 7 over trees

{T;}: is an a—probabilistic tree embedding
(a—PTE) iff for all u,v € V

(1) V(G)C V(T;) for all i |
(2) disty, (u,v) > distg(u,v) for all 4

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE) [Bartal'96]

Definition
» For any simple graph G = (V, E), n = |V]|,
m = |E|, a probability distribution 7 over trees

{T;}: is an a—probabilistic tree embedding
(a—PTE) iff for all u,v € V

(1) V(G)CV(T;) for all i |
(2) disty, (u,v) > distg(u,v) for all 4
(3) Ep~,[distr(u,v)] < a-distg(u,v)

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE) [Bartal'96]

Definition
» For any simple graph G = (V, E), n = |V|,
m = |E|, a probability distribution 7 over trees
{T;}: is an a—probabilistic tree embedding
(a—PTE) iff for all u,v € V

(1) V(G)CV(T;) for all i |
(2) disty, (u,v) > distg(u,v) for all 4
(3) Ep~,[distr(u,v)] < a-distg(u,v)

> Goal: Find an a—PTE with small « (stretch)

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE) [Bartal'96]

Definition
» For any simple graph G = (V, E), n = |V]|,
m = |E|, a probability distribution 7 over trees
{T;}: is an a—probabilistic tree embedding
(a—PTE) iff for all u,v € V

(1) V(G)CV(T;) for all i |
(2) disty, (u,v) > distg(u,v) for all 4
(3) Ep~,[distr(u,v)] < a-distg(u,v)

> Goal: Find an a—PTE with small « (stretch)

Applications
» buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings

Tree Embedding of Cycles

C, T

Bad News [Rabinovich Raz'95]

» For any tree that deterministically approximates the n-cycle, it holds
that o = Q(n)

Dynamic Low-Stretch Tree Embeddings

Tree Embedding of Cycles

C, T

Bad News [Rabinovich Raz'95]

» For any tree that deterministically approximates the n-cycle, it holds
that o = Q(n)

Good News [Karp'89]
» The n-cycle C,, admits a 2-PTE — ALG: delete an edge at random!
» For each edge (u,v) in the cycle C,,

1 -1
E(distr(u,v))=—-(n—1)+ NTl1<o. diste, (u,v)
n n

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE)

expected stretch o | runtime | reference
(’)(log2 n) polynomial [Bartal'96]
O(lognloglogn) | polynomial [Bartal'98]
O(logn) polynomial [Fakcharoenphol et al.’03]
O(logn) O(mlog®n) | [Mendel Schwob'09]
O(logn) O(mlogn) | [Blelloch Guh Sun'17]

Dynamic Low-Stretch Tree Embeddings

Probabilistic Tree Embedding (PTE)

expected stretch o | runtime | reference
(’)(log2 n) polynomial [Bartal'96]
O(lognloglogn) | polynomial [Bartal'98]
O(logn) polynomial [Fakcharoenphol et al.’03]
O(logn) O(mlog®n) | [Mendel Schwob'09]
O(logn) O(mlogn) | [Blelloch Guh Sun'17]

Lower Bound [Bartal’96]

» For any n, there exists a graph G,, such that for any a-PTE of G, it
holds that o = Q(logn).

Dynamic Low-Stretch Tree Embeddings

Fully-Dynamic Probabilistic Tree Embedding

input graph G

‘ Dynamic
o Algorithm

)
"V
M\YJA?'

N

W

adversary inserts and
deletes edges

Goal:

random tree T'

update

algorithm adds and
removes nodes/edges

> minimize update time (time to handle edge insertions/deletions)

> ensure that T has small (expected) stretch after each update

Dynamic Low-Stretch Tree Embeddings

Dynamic PTE — Our Result

» The first dynamic algorithm for maintaining probabilistic low-stretch
tree embedding in sub-linear time per update

(1) our bounds are amortized, assume oblivious adversary

(2) can handle graphs with polynomially bounded weights

Stretch | Update time | Stretch type | Tree type | Reference
O(log" n) m1/2+e()
ne) ne) expected low-depth | [Our result]

O(logn)%—2

ml/i+o(1) (1)

1 < {logn

Dynamic Low-Stretch Tree Embeddings

Dynamic PTE — Our Result

» The first dynamic algorithm for maintaining probabilistic low-stretch
tree embedding in sub-linear time per update

(1) our bounds are amortized, assume oblivious adversary

(2) can handle graphs with polynomially bounded weights

Stretch | Update time | Stretch type | Tree type | Reference
O(log" n) m1/2+e()
ne) ne) expected low-depth | [Our result]
O(logn)Bi—2 ml/i+o(1) (1)

ne) no() average spanning | [Chechik Zhang'20]
1 < {logn

Dynamic Low-Stretch Tree Embeddings

Dynamic PTE — Our Result

» The first dynamic algorithm for maintaining probabilistic low-stretch
tree embedding in sub-linear time per update

(1) our bounds are amortized, assume oblivious adversary

(2) can handle graphs with polynomially bounded weights

Stretch | Update time | Stretch type | Tree type | Reference
O(log" n) m1/2+e()
ne) ne) expected low-depth | [Our result]
O(logn)Bi—2 ml/i+o(1) (1)
ne) no() average spanning | [Chechik Zhang'20]
ne pl/2+o(l) [Forster Goranci'19]
1 < {logn

Dynamic Low-Stretch Tree Embeddings

Buy-At-Bulk Network Design

Input
» Graph G = (V, E), positive lengths /.
> [source-sink s;,t; with demand dem(7)

» non-decreasing, sub-additive function f

Dynamic Low-Stretch Tree Embeddings

Buy-At-Bulk Network Design

Input
» Graph G = (V, E), positive lengths /.
> [source-sink s;,t; with demand dem(7)

» non-decreasing, sub-additive function f

Routing & Edge cost

> routing of demands is a collection of paths {P;}; that sends dem(s;, t;)
units of commodity from s; to ¢;

> cost: ¢(e) amount of commodity set along the edge, i.e.,

Ce = Z dem(7)

i:e€P;

Dynamic Low-Stretch Tree Embeddings

Buy-At-Bulk Network Design

Input
» Graph G = (V, E), positive lengths /.
> [source-sink s;,t; with demand dem(7)

» non-decreasing, sub-additive function f

Routing & Edge cost

> routing of demands is a collection of paths {P;}; that sends dem(s;, t;)
units of commodity from s; to ¢;

> cost: ¢(e) amount of commodity set along the edge, i.e.,
Ce = Z dem(7)
i:e€P;
Goal:
» find a routing { P;}; that minimizes total cost) __, /. f(c.)

Dynamic Low-Stretch Tree Embeddings

Applications of Dynamic PTE

Fully Dynamic All-Pairs Shortest Path
Approx ‘ Update time ‘ Query time ‘ Reference
O(logn)3=2 | m!/ite1) O(logn)®/? | [Our result]
20kp) (1) @(\/ﬁnl/k) O(k?p?) [Abraham et al.’14]

> goes below the O(y/m) bound on update time with non-trivial approx.

lp =1+ {lognl*l/k/log(m/nlfl/’“ﬂ

Dynamic Low-Stretch Tree Embeddings

Applications of Dynamic PTE

Fully Dynamic All-Pairs Shortest Path

Approx ‘ Update time ‘ Query time ‘ Reference
O(logn)3=2 | mt/ite(®) O(logn)®/? | [Our result]
20kp) (1) @(ﬁnl/k) O(k?p?) [Abraham et al.’14]

> goes below the O(y/m) bound on update time with non-trivial approx.
Fully Dynamic Buy-At-Bulk Network Design

Approx ‘ Update time ‘ Query time ‘ Reference
O(logn)3i—2 ‘ mt/ite() ‘ O(klog®? n) ‘ [Our result]

» this constitutes the first dynamic algorithm for the problem

lp =1+ {lognl*l/k/log(m/nlfl/’“ﬂ

Dynamic Low-Stretch Tree Embeddings

Overview

[Decremental PTE]

l_l

| Decremental LDD | | Top-Down Clust. B'96 |
[

)
I Pruning CZ'20 | [Decremental SSSP HKN'14] [Dynamic Ball-Growing]

Dynamic Low-Stretch Tree Embeddings

Overview

[Decremental PTE]

l_l

| Decremental LDD | | Top-Down Clust. B'96 |
[

)
| Pruning CZ'20 | [Decremental SSSP HKN'14] [Dynamic Ball-Growing]

Extension to Fully Dynamic Setting
» Introduce a new “bootstrapping” idea

» Recursively employ fully dynamic algorithms in the reduction

Dynamic Low-Stretch Tree Embeddings

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

» cluster graphs into small diameter clusters w/ few inter-cluster edges

Dynamic Low-Stretch Tree Embeddings 11/23

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

» cluster graphs into small diameter clusters w/ few inter-cluster edges

(8,7)—(probabilistic) LDD [Linial Saks'93, Bartal'96]
» A randomized partitioning of G = (V, E) into
vertex-disjoint clusters C1 ...} such that

(1) weak diameter of each C; is at most 3

(2) P(u € Cj,v € Cjx;) < for each edge (u,v)

Dynamic Low-Stretch Tree Embeddings 11/23

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

» cluster graphs into small diameter clusters w/ few inter-cluster edges

(8,7)—(probabilistic) LDD [Linial Saks'93, Bartal'96]
» A randomized partitioning of G = (V, E) into
vertex-disjoint clusters C1 ...} such that

(1) weak diameter of each C; is at most 3
(2) P(u € Cj,v € Cjx;) < for each edge (u,v)

Applications

» key tool for constructing tree-based graph approximation for distances,
i.e.g, low-stretch spanning trees, probabilistic tree embeddings

» approximation algorithms, e.g., min-max graph partitioning

Dynamic Low-Stretch Tree Embeddings 11/23

Probabilistic LDD under Edge Deletions

Goal
» maintain (3,7)-probabilistic LDD {C;}F_, of

graph G under edge deletions; & may change 6 ‘
’ 9

Dynamic Low-Stretch Tree Embeddings

Probabilistic LDD under Edge Deletions

Goal
» maintain (3,7)-probabilistic LDD {C;}F_, of

graph G under edge deletions; & may change 6 ‘

Theorem [Forster G Henzinger'21]

» For 8 € (0,1), there is a data-structure for
maintaining a (3, O(3~ " log® n))—probabilistic %) Q

LDD of G in m'T°() total update time.

Dynamic Low-Stretch Tree Embeddings

Probabilistic LDD under Edge Deletions

Goal
» maintain (3,7)-probabilistic LDD {C;}F_, of

graph G under edge deletions; & may change g ‘

Theorem [Forster G Henzinger'21]

» For 8 € (0,1), there is a data-structure for
maintaining a (3, O(3~ " log® n))—probabilistic %) Q

LDD of G in m'T°() total update time.

Important Feature
> our runtime is independent of 37!
» key requirement for top-down graph clustering

» all previous dynamic graph clusterings [Saranurak Wang'19], [Chechik
Zhang'20], [Forster Goranci'19] have runtimes depending on 37!

Dynamic Low-Stretch Tree Embeddings

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal'96]
» Set i < 1, every vertex is unmarked initially
» While there are unmarked vertices:
e Pick an unmarked vertex v
e Sample R, ~ Geom(p) with p = O(B~logn)
e Add all unmarked vertices in Ballg (v, R,) to C;
e Seti«+i+1

Dynamic Low-Stretch Tree Embeddings 13/23

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal'96]
» Set i < 1, every vertex is unmarked initially
» While there are unmarked vertices:
e Pick an unmarked vertex v
Sample R, ~ Geom(p) with p = O(B~ ' logn)
e Add all unmarked vertices in Ballg (v, R,) to C;
e Seti«+i+1

Claim
> Ball-Growing constructs a (3, O(5~ " logn))—LDD in O(m) time

Dynamic Low-Stretch Tree Embeddings 13/23

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal'96]
» Set i < 1, every vertex is unmarked initially
» While there are unmarked vertices:
e Pick an unmarked vertex v
e Sample R, ~ Geom(p) with p = O(B~logn)
e Add all unmarked vertices in Ballg (v, R,) to C;
e Seti«+i+1

Claim
> Ball-Growing constructs a (3, O(5~ " logn))—LDD in O(m) time

How to make it Dynamic?
> white box and extend cluster pruning of [Chechik Zhang'20]

Dynamic Low-Stretch Tree Embeddings 13/23

Handling Deletions — Cluster Pruning

DELETE(e)
» G+ G\ {e} and PRUNE(C) for all C with e € C
PRrRUNE(C)
» If |C| > 1and Jv € C s.t. disti(c,v) > p logn: v
e Sample R ~ Geom(p), set B < Ballg(v, R)
e If vol(B) <1/2-vol"(C): ‘ ;
e C « C\ B, Form new cluster B

e ASSIGNCENTER(B), PRUNE(B)
o Else: AsSIGNCENTER(C)
e PRUNE(C)

ASSIGNCENTER(C)

» Pick a random vertex as center c proportional to vertex degrees
» |nit 2-approx. decremental SSSP Agxn on C' [Henzinger et al.'14]

Dynamic Low-Stretch Tree Embeddings

Cluster Pruning — Dynamic Ball Growing

Dynamic Ball-Growing Process
» For rounds i =1 to k:
(1) Select a vertex ¢; of G; = (V\ (B1U...UB;_1),E\ (E1U...UE;_1))
with G; =G
(2) Sample R; ~ Geom(p) and grow ball B; from ¢; of radius R; in G;

Dynamic Low-Stretch Tree Embeddings

Cluster Pruning — Dynamic Ball Growing

Dynamic Ball-Growing Process
» For rounds i = 1 to k:

(1) Select a vertex ¢; of G; = (V\ (B1U...UB;_1),E\ (E1U...UE;_1))
Wlth Gl = G

(2) Sample R; ~ Geom(p) and grow ball B; from ¢; of radius R; in G;

Guarantees

>
>

v

after each round i, R; = O(p~!logn) with high probability

for any edge e € E'\ (E1 U...U E},) the probability of e leaving a ball is
at most p

whenever a cluster is created we associate a dynamic ball-grow. process
each edge can participate in at most O(logn) clusters
deleted edges F1, ..., Fx don't see the values Ry, ..., Ry

Dynamic Low-Stretch Tree Embeddings

Cluster Pruning — Running Time

Decremental approx. SSSP [Henzinger et al.’14]
(1) can maintain 2-approx to SSSP in m!'*°(}) total update time

Local Ball Growing and Center Reassignments
(2) Can compute B := Ballc (v, R) in O(vol(B)logvol(B))
(3) Total number of center reassignments is O(logn¢)

Dynamic Low-Stretch Tree Embeddings 16/23

Cluster Pruning — Running Time

Decremental approx. SSSP [Henzinger et al.’14]
(1) can maintain 2-approx to SSSP in m!'*°(}) total update time

Local Ball Growing and Center Reassignments
(2) Can compute B := Ball¢(v, R) in O(vol(B)log vol(B))
(3) Total number of center reassignments is O(logn¢)

Analysis
» Consider cluster C, charge runtime to calls ASSIGNCENTER(C') and
PRUNE(C), sans B's

» Runtime of ASSIGNCENTER is dominated by (1)

> By (3), total cost of AsSIGNCENTER on C'is O(mg, °™)

> By (2), and as we remove each ball B with volume < 1/2 - vol*(C),

charge O(logmc) to each edge in C for O(m,.logm.) runtime

140(1)

» Charged run time to C'is m , Clusters are disjoint!

> As volume halves, we have O(logn) levels, thus m'*°(1) total update
time

Dynamic Low-Stretch Tree Embeddings 16/23

Decremental Probabilistic Tree Embedding

Theorem [Forster G Henzinger'21]

» Given a graph G = (V, E) undergoing edge
deletions, can maintain a random tree T of
height O(logn) with
(1) O(log® n) expected stretch, and
(2) m**°() total update time |

Dynamic Low-Stretch Tree Embeddings 17/23

Decremental Probabilistic Tree Embedding

Theorem [Forster G Henzinger'21]

» Given a graph G = (V, E) undergoing edge
deletions, can maintain a random tree T of
height O(logn) with
(1) O(log® n) expected stretch, and
(2) m**°() total update time |

High Level Idea

» Apply decremental LDDs in a non-recursive way
using top-down graph clustering.

Dynamic Low-Stretch Tree Embeddings 17/23

Attempt #1: Bottom-Up Clustering [AKPW'91]

Dynamic Low-Stretch Tree Embeddings

Attempt #1: Bottom-Up Clustering [AKPW'91]

Dynamic Low-Stretch Tree Embeddings

Attempt #1: Bottom-Up Clustering [AKPW'91]

Dynamic Low-Stretch Tree Embeddings

Attempt #1: Bottom-Up Clustering [AKPW'91]

Dynamic Low-Stretch Tree Embeddings

Attempt #1: Bottom-Up Clustering [AKPW'91]

Dynamic Low-Stretch Tree Embeddings

Attempt #1: Bottom-Up Clustering [AKPW'91]

> gives only subpolynomial expected stretch 2vog" = po(1)

» requires fully-dynamic LDDs; deletions in one level translate to
insertions/deletions in the levels below

Dynamic Low-Stretch Tree Embeddings

Attempt #2: Decremental LDD to Decremental PTE

Recursive Top-Down Clustering [Bartal'96]
» Find an LDD with diameter A/2 in G
> For each cluster C; recursively find a rooted tree T; with diameter A/4

» Construct T by creating a root node v and connecting it to the root
node of each T; with weight A

» Challenge: difficult to control recourse — propagation of updates
among decremental LDDs

Dynamic Low-Stretch Tree Embeddings

Attempt #3: Decremental LDD to Decremental PTE

Iterative Top-Down Clustering
» Hierarchy Invariant: All

inter-cluster edges at level i are Level log, A
deleted from the LDDs at level
i—1,...,0

» Maintain a decremental Level log, A-1
probabilistic LDD for each level

in thfe hierarchy to handle the Leveltog,a-2 (D
deletions from the levels above .

» Maintain cluster connections
between neighbouring levels in .
the hierarchy so we have access to Levelo
an explicit tree after each deletion

Dynamic Low-Stretch Tree Embeddings

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE
» Rebuild every k updates
> Pass deletions to decremental PTE T, with stretch O(log® n), height O(logn)
» Add inserted edge into set I, let U be the endpoints of T
» After each update:

e Let P =,y pv, where p, is the path from v to root of Ta
e Compute a (static) PTE Tg of TU P
e Maintain Tc = (Ta \ P) U Ts.

Dynamic Low-Stretch Tree Embeddings

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE
» Rebuild every k updates
> Pass deletions to decremental PTE T, with stretch O(log® n), height O(logn)
» Add inserted edge into set I, let U be the endpoints of T
» After each update:

e Let P =,y pv, where p, is the path from v to root of Ta
e Compute a (static) PTE Tg of TU P
e Maintain Tc = (Ta \ P) U Ts.

Analysis
> Expected stretch increases to O(log” 1) — due to Th
» Runtime: m!' oW /k 4 klog® n = m!/?t°() | optimized when k = m!/2

Dynamic Low-Stretch Tree Embeddings

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE
» Rebuild every k updates
> Pass deletions to decremental PTE T, with stretch O(log® n), height O(logn)

> Add inserted edge into set I, let U be the endpoints of I

» After each update:
o Let P = Ungpv, where p, is the path from v to root of T
e Compute a (static) PTE Tg of TU P
e Maintain Tc = (Ta \ P) U Ts.

Analysis
> Expected stretch increases to O(log” 1) — due to Th
» Runtime: m't°W /k + klog® n = m'/?t°(1) | optimized when k = m!/?

Extensions
» Can generalize the above approach to multiple levels
» Requires bounding the number of changes to the aux. graph T U P

Dynamic Low-Stretch Tree Embeddings

Fully Dynamic APSP via Dynamic PTE

PREPROCESSING(G)
» Maintain O(logn) copies of dynamic PTEs {T;};

INSERT/DELETE(e)

> Pass the insertion/deletion of e to each T;

QUERY (s,)
» Compute shortest path from s to ¢ on each T;
» Return the one that attains the minimum

Dynamic Low-Stretch Tree Embeddings

Fully Dynamic APSP via Dynamic PTE

PREPROCESSING(G)
» Maintain O(logn) copies of dynamic PTEs {T;};
INSERT/DELETE(e)

> Pass the insertion/deletion of e to each T;

QUERY (s,)
» Compute shortest path from s to ¢ on each T;
» Return the one that attains the minimum

> approx: O(logn)* 2, updateT: m!'/"+o) queryT: O(logn)>/?

Dynamic Low-Stretch Tree Embeddings

Summary and Future Directions

Summary

» The first fully dynamic algorithm for probabilistic tree embedding with
competitive guarantees on expected stretch and update time

> Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Dynamic Low-Stretch Tree Embeddings 23/23

Summary and Future Directions

Summary
» The first fully dynamic algorithm for probabilistic tree embedding with
competitive guarantees on expected stretch and update time

» Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions
» Improve the expected stretch and running time of our dynamic PTE to
polylogarithmic, respectively
» Apply our dynamic PTE to other optimization problems
» Transfer our ideas to fully dynamic cut-based tree sparsifiers with
polylogarithmic guarantees

Dynamic Low-Stretch Tree Embeddings 23/23

Summary and Future Directions

Summary
» The first fully dynamic algorithm for probabilistic tree embedding with
competitive guarantees on expected stretch and update time

» Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions
» Improve the expected stretch and running time of our dynamic PTE to
polylogarithmic, respectively
» Apply our dynamic PTE to other optimization problems
» Transfer our ideas to fully dynamic cut-based tree sparsifiers with
polylogarithmic guarantees

Thank you!

Dynamic Low-Stretch Tree Embeddings 23/23

