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Tree Cut Sparsifier

» given (undirected) graph G = (V,E)

» compute tree T = (Vr, ET) with V 2 V that approximates
cutsin G

Formally, for all subsets S <V

%mincutT(S’,V \'S) < cutg(S,V\S) <mincutr(S,V\S)

q is the quality of the T
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Tree Cut Sparsifier

Graph G:

Tree T':
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Tree Cut Sparsifier

Motivation:
Complicated cut-related problems can be (approximately) solved
on G by only considering the problem on T.

Minimum Bisection

Simulteneous Source Location

>
>

> k-multicut
» Min-max graph partitioning
>

Online Multicut
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Previous Work

> [R 02]
existence; quality O (log® n) (flow sparsifier)
» [Bienkowski, Korzeniowski, R 03]
polynomial time; quality O(log4 n) (flow sparsifier)
» [Harrelson, Hildrum, Rao 03]
polynomial time; quality O(log2 nloglogn) (flow sparsifier)
> [R, Shah 14]
polynomial time; quality O(logl'5 nloglogn) (cut sparsifier)
existence; quality O (lognloglogn) (cut sparsifier)
> [R, Shah, Taubig 14]
nearly linear time; quality O (log* n) (flow sparsifier)
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Main Result

dynamic construction of a tree cut sparsifier for unweighted
graphs

» update time: n°)

> quality; no®

fully dynamic, deterministic, can be deamortized...
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Main Result

Consequences for Dynamic Graph Algorithms

> s-t maxflow/mincut
approx: n°M update time: n°), query time: O(logn)

> sparsest cut
approx: n°Y update time: n°1), query time: O(logn)

» multicommodity flow, multi-cut
approx: n°Y update time: kn°Y), query time: O (klogn)

> treewidth-decomposition
approx: n°Y update time: tw -n°@

> connectivity
update time: n°Y, query time: O (logn)
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Proof Techniques of Existing Approaches

> leaf nodes of T correspond to vertices in G
> a level of the tree induces a partitioning of V into subsets

Graph G

Tree T




Proof Techniques of Existing Approaches

> an edge in the tree is assigned a capacity equal to the
capacity of the corresponding cut in G

Graph G

Tree T




Proof Techniques of Existing Approaches

> equivalently a graph edge contributes to the capacity of
every tree edge on the path between its endpoints in T

Graph G

Tree T




Proof Techniques of Existing Approaches

> this already guarantees that
cutg(S,V\S) < mincutr(S,V\S)

Graph G

Tree T




Proof Techniques of Existing Approaches

> let P; be the partitioning on level i; level O is the leaf level
> let Gp be the graph obtained from G by contracting subsets
in P

Property I:
For a cluster S on some level i + 1 the graph G{S}», must

expand well

Property II:
The set S must have good boundary-expansion in G



Property |

» cluster S on level i + 1 partitioned into sub-clusters
> the graph G{S}, is obtained by
> take induced subgraph G[S] but turn edges leaving S into
self-loops
> then contract subsets of P;
> expands well means we can route an all-to-all flow problem
between edges of G {S}p; with small congestion (C))



Property Il

» good boundary-expansion means we can route an all-to-all
flow problem between boundary edges of S with small
congestion (Cy)



Proof

q - cutg(S,V\S) = mincutr(S,V\5S)

> take any multicommodity flow that can be routed in T with
congestion at most 1

> route it in G with congestion at most g
» demand for the multicommodity flow is between edges of G

> an edge sends/receives at most one unit of flow in this
demand
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Proof Techniques of Existing Approaches

» what does demand between edges mean?

Graph G

Tree T




Route demand in G

> go top down level by level
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Route demand in G

> go top down level by level

> route in the contracted graph (congestion 2C))

» undo the contraction and fill the gaps (congestion 2C,Cy))
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Bottom Up Construction
For a bottom-up construction it is difficult to guarantee a good
value for Cj.

There is a (trivial) guarantee of C/.
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Bottom Up Construction

Property I:
For a cluster S on some level i + 1 the graph G{S}», allows
all-to-all routing between edges with congestion

Property II':
For a cluster S on some level i + 1 the graph G{S}», allows

all-to-all routing between boundary-edges with congestion C},

Then we guarantee Property Il with (Cj)"
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Expander Decomposition

[Thatchaphol Saranurak, Di Wang 2019]
Given graph G = (V,E), and parameter ¢ partition V into
disjoint pieces Uy, Ua,... s.t.

» G{U;} can route all-to-all on its edges with congestion 1/¢

> S IE(U, VUl < O(pm)

This only gives something good for Property I...
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Expander Decomposition

Given graph G = (V,E), and parameter ¢ partition V into
disjoint pieces Uy, Uy,... s.t.

> G[U;]*/® can route all-to-all on its edges with congestion
logm/¢

> SIEWU;LV\ Uyl < O(pm)
where o« = Q(1/ polylogn).

GlU;1%% is G[U;] where every outgoing edge is transformed
into /¢ many self-loops.

This means we get C}, = logm/x!!!
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Existence

> give every edge money ¢ log |S| for each cluster S of one of
its end-points

> total amount of money handed out is 2¢pm logn

> distribute money to cut-edges so that in the end every
cut-edges has money at least one -> small number of
cut-edges
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Existence

congestion > 2logn/¢ = cut <logmn - m -vol(S)

every edge incident to S reduces its money by at least ¢
money available: > ¢ - vol(S)

vV v.v Yy

every edge in the cut needs (at most)

1+ax/¢p-2¢plogn <2
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Choosing Parameters

In each iteration the number of edges reduces by a factor of ¢.
Height h < log; ¢, m.

C = llogn

Ci = (logm/c)h

Quality: h - C - Cy

Choose ¢ = 1/eViosn
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Making Things Dynamics...

Expander Pruning
> given G and subset U with G[U]*/® a ¢-expander
> (< ¢vol(U)) edge-updates for which one endpoint is in U

We can maintain a pruned set P such that
> Py =0, Pi € Pi
» vol(P;) <32i/¢ and |E(P;,U \ P;)| < 161
» |[E(P;,V\U)| <16i/x
> GIU]¥? is a ¢p/38-expander
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Pruning
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Maintaining the Expander Decomposition

0
m Harald Racke 28/29



Open Problems

> Better guarantee on the quality?

> Guarantees for vertex sparsifiers, i.e., sparsifiers w.r.t. a
subset of vertices?
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