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Linear Programming

In standard formfor A € Q™*™,b € Q™,c € Q",

min (c, ) max (y, b)
Az =0 A'ly+s=c
z > () s >0
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Weakly vs Strongly Polynomial Algorithms for LP

LP with n variables, m constraints
L: encoding length of the input.

weakly polynomial Y ( strongly polynomial

o poly(m,n, L) basic arithmetic o poly(m,n) basic arithmetic operations.

operations. e PSPACE: all numbers occurring in the
e Standard variants of Ellipsoid and algorithm must remain polynomially
Interior point methods: running time bounded in input size.

bound heavily relies on L.




Fast Weakly Polynomial Algorithms for LP

g-approximate solution

Approximately optimal: (¢, z) < OPT + ¢||c||R
Approximately feasible: || Az — b|| < e(||A||r R + ||b]|)
log(1/¢) dependence = exact algorithm with L dependence.

Recent progress

Randomized O ((nnz(A) + m?2)+/m1og®Y (n) log(n/e)) Lee-Sidford '13-'19
Randomized O (n® log®!) (n) log(n/e)) Cohen, Lee, Sidford '19

Deterministic O(n® log®(n) log(n/€)) van den Brand '20

Randomized O((mn + m3) log®Y (n) log(n/€)) van den Brand, Lee, Sidford, Song 20




Fast Weakly Polynomial Algorithms for LP

Techniques

New variants of Interior Point Methods, using

e weighted and stochastic central paths
e fast approximate linear algebra
e efficient data structures




Strongly Polynomial Algorithms for LP

: Network flow problems

Maximum flow: Edmonds-Karp-Dinitz '70-72
Min-cost flow: Tardos '85

: Special classes of LP

Feasibility of 2-variable-per-inequality systems: Megiddo '83
Discounted Markov Decision Processes: Ye '05, Ye '11
Maximum generalized flow problem: V.'17, Olver- V. '20




Dependence on the constraint matrix only
min(c,z) Az =b, x > 0

Running time dependent only on constraint matrix A, but not on b and c.

General LP

e '‘Combinatorial LPs'
If Aintegraland |det(B)| < A for all square submatrices of A, then LP solvable in
poly(m, n,log A) arithmetic operations: Tardos '86
e 'Layered-least-squares (LLS) Interior Point Method'
LP solvable in O(n3'5 log ¥ 4) linear system solves: Vavasis-Ye '96
e 'Scaling invariant Layered-least-squares (LLS) Interior Point Method'
LP solvable in O(n2'5 log n log X% ) linear system solves: Dadush-Huiberts-Natura-V. '20




Dependence on the constraint matrix only
min(c,z) Az =b, x > 0
Running time dependent only on constraint matrix A, but not on b and c.

'Layered-least-squares (LLS) Interior Point Method'
LP solvable in O(n?"'5 log ¥ 4) linear system solves: Vavasis-Ye '96

Condition number x 4

XA = O(2LA )
Governs the stability of layered-least-squares solutions.

Depends only on the subspace ker(A).
NP-hard to approximate within a factor gpoly(rank(4)). 1, ncel '99




Can an exact LP algorithm also
be fast?

: Layered Least Squares IPMs

e Require computationally expensive special step directions
e Extending them to weighted central paths seems difficult




Black box approach

e Use fast approximate solver in black box manner

e |Learn information about the support of the optimal
solution

e Relies on proximity results on LP solutions




Tardos's framework: variable fixing

min(c,z) Ax =b, x > 0,A € Z™*"

Running time dependent only on constraint matrix A, but not on b and c.
Key idea for the first strongly polynomial algorithm for minimum cost flows.

~ Proximity

Use exact solvers to find optimal solution 2 to e-rounded (perturbed) problems. Proximity yields

that an optimal solution z* to the original problem is within poly(7) A - € of the rounded
problem.

: Variable Fixing

If the proximity is better than ||z ||, then we learn z} > 0 for a variable and so the
corresponding slack variable is s;-" = 0.
~~ delete variable and recurse on smaller problem.




Our contributions: Dadush-Natura-V. 20

Generalizing Tardos' result to real matrices

We give a blackbox algorithm that can handle any real matrix A € R™*™ and dependence
log x 4 instead of log A 4.

Usage of approximate solvers

We only require any approximate LP solver, and can directly leverage the fast approximate LP
algorithmes. O(mn"‘" Fl+o(1) log )_(A) exact deterministic LP algorithm using van den Brand '20.

: Certificates for infeasibility and large condition numbers

If primal or dual linear programming are infeasible we provide a Farkas certificate. In case that the
condition number is larger than our guess, we are able to provide a certificate.

X is hard to estimate. Iterative guesses M — max{M 2, certified lower bound at failure}.




Comparison to Tardos's algorithm

min(c,z) Ax =b, x > 0,A € Z™*"

: Tardos '86

Solves LP via O (mn) calls to an exact solver for min(é, z) Az = b, z > 0, A € Z™*™,

b, & integer vectors with entries O(n?A)

Key property: in a basic solution 2, we have £; = Qor ; > 1/(n0(1) A 4 ) foreveryi € |nl.
Inherently relies on integrality arguments

' DNV'20

o O(mn) calls to approximate LP
 log 4 dependence with no integrality required.




Comparison to Tardos's algorithm

min(c,z) Ax =b, x > 0,A € Z™*"
For the case when A is integral and log A4 = O(log X 4):

e The asymptotic running time of the two algorithms are similar.

e The fast approximate solvers can also be used in Tardos's framework.

e However, converting approximate to exact solutions requires expensive computations that have to
be done for each oracle call.

e DNV'20 can work with approximate solutions directly.




The mysterious \ 4

through a matroidal lens




The condition number \ 4

Definition.

XA = Sup {HA (ADAT)_1 AD| : D € D}

Introduced by Dikin '67, Stewart '89, Todd '90, ...
Bounds norm of oblique projections.
Depends only on the subspace ker(A).

Plays key role in certain interior point methods.




The circuit imbalance measure
...the “combinatorial” sister of \ 4

Definition. A circuit of A is a minimal linearly dependent subset of columns C' C |n/. Let C denote
the set of all circuits.

Definition. The circuit imbalance measure of A is

9

ol Ag = 0, supp(g) € C, i, € supp(g), }

KA 1= ma,x{

Lemma. If Aisa TU-matrix, then k4 = 1. More generally, if A is integer,then k4 < A 4.

Proof. For a TU-matrix, Az = 0,—1 < 2 < 1,25 = Qis aninteger polytope for all J C n.The
second part follows by Cramer's rule.

Theorem. [DHNV20] V1+ K% < x4 <nka.Thuslog(n + k4) = O(log(n + x4)).




e Ingeneral k < nA.

 For complete undirected graph:

k=2, but A > 23




Near-optimal rescaling

A € R™*" Let D denote the set of n X m positive diagonal matrices.

Diagonal rescaling (LP') of (LP): Replace A’ = AD,c = De¢c,b' = bforsome D € D.
Natural invariance of the central path and standard |IPMs.

Optimized versions of the condition numbers:

Xy = inf{xap : D € D}, kY :=inf{kysp:D € D}.

Finding a nearly-optimal rescaling of A DHNV '20

Given A € R™ " in O(n*m? + n°) time, we can compute

(i) rescaling D € D satisfying Xy < Xap < n()_(j:l)g’.
(i)t > 1satisfyingt < x4 < n(x%)*t.

e Inall algorithms we can replace log(n + X 4 ) dependence by log(n + X?% ) dependence.
e Recall that it is NP-hard to approximate x4 within a factor gpoly(rank(4)). Tyncel '99




Proximity theorems for ~ 4

ﬂ“




Linear Programming in subspace view

...a change of perspective

In standard formfor A € Q™*™,b € Q™,c € Q",

min (c, ) max (y, b)
Az =0 Aly+s=c
x>0 s >0

In subspace view for W = ker(A),d € Q",s.t. Ad = b,

min (c, x) max (¢ — 8,d)
re W +d se W+ +ec
x> () s >0




Hoffman proximity theorem

Theorem. Assume that the systemx € W + d, x > 0 is feasible. Then there exists a feasible solution such
that ||z — d||c < Kw||d" |1

Proof sketch.

e Takeanyfeasiblex € W +d,z > 0.Thus, LI‘H I]T_Il

r—deW.

We decomposex —d = g; + g2 + ... + g; into
sign-consistent circuits g; € W by Carathéodory's
theorem.

Delete circuits that do not intersect Supp(d_)

For all other circuits g and indices 7,

9i| < Ka|gk|forsomek € supp(d™)




Hoffman proximity theorem

Theorem. Assume that the systemx € W + d, x > 0 is feasible. Then there exists a feasible solution such
that ||z — dl|o0 < Kw||d™ [[s.

Click diagram to run iteration

B Positive J Negative B Positive | Confidence Interval




Variable fixing for feasibility

Theorem. Assume that the systemx € W + d, x > 0 is feasible. Then there exists a feasible solution such
that ||z — d|ec < kw||d" 1.

Recursive algorithm

e Use approximate solver to get near feasible
z € W + dwith ||z7||; "small".
Te=yein: &> mwlall i ||II|II
J :={i € |n]

2z < Kwllz7 |1
By proximity, there exists a feasible solution with
rr > 0.

Recurse on the subspace W' = proj ; (W) with

B Positive | Confidence Interval

d, — dJ. A[
o If W = ker(A),thenwe obtain W' = ker(A’) by

eliminating the variablesin 1.




Variable fixing for feasibility

Recursive algorithm

e Use approximate solver to get near feasible
z € W 4+ dwith ||z7||; "small".
e I:={i€n|: z; > kwl|lz"|1 }.
e Ji={icn]: z < kwllz |1 }.
e Recurse on the subspace W' = proj ; (W) withd' = dj.

Questions

e How do we guarantee that I # ()2
» How can we construct a feasible solution? Given ' € proj ;(W) + dj,xz’ > 0,how do we

recoverx € W +d,xz > 0?




The lifting operation

W C R" subspace, J C |n/
y € proj;(W),ie.dx € W,z; = y.
The lifting of y to W' is defined as

L?f(y) = argmin{||z|s: z € W,z; =y}

_ - _ Any x E W st yE=x
e Can be computed using a projection matrix. J
x'|= L ()

Lemma. || LY (¥)|loo < 5w llyll1-

Proof. A similar circuit decomposition argument.




The feasibility algorithm

| Oracle(e) |

|2 1
1z — d||eo< Crw||d™||1

T
N OOSEHd_

' Feasibility(W,d)

reW+d, x>0
|z — d||o< C'Kiynl|d” |1

Stronger system with proximity constraint useful
for "pullback”

Obtain z by applying the oracle with

e =1/(x - poly(n))

J:={ie€n]: z; <kwl|lz7|]1}.

If J = () then replace d by the projection
d/W.

Apply the recursive solver to proj ; (W)
and z 7 to obtain

T € proj;(W)+2z;, £ >0.

Lift the solution back up to obtain

z:=2+ LY (%—z5) > 0.

Non-negativity and proximity follows
from proximity of the recursive solver!




The feasibility algorithm

e Asdescribed above, we need < n calls to the oracle.
e Canbedecreased to < m calls (with a little more care.)
e This leads to an O(mn*°Y) log(ky + n)) feasibility algorithm using van den Brand '20.

Estimating and certifying Ky

e We maintain aguess M on K.
o If[|LY (y)|loo < M ||y||1 for every lifting call, the algorithm succeeds.

e Otherwise, we can recover a circuit with imbalance > M, showing that kyy > M.




Proximal optimal solutions

proximity works for optimization as well!

min (c, x) max (¢ — s, d)
reW +d se W+ +ec
x> () s >0

Llets > 0, s € W+ + cbe afeasible dual, but not necessarily optimal solution.

Theorem. Assuming that the primal is feasible, there exists an optimal solutionxz € W + d, x > 0 such
that ||z — dl|c < kw (||d"[[1 + || dsupp(s) ll1):




Optimization algorithm

min (c, x) max (¢ — s, d)
reW +d se W+ +ec
x> () s >0

Altogether nm calls to the black box solver.
We have < n Outer Loops each comprlsmg < m Inner Loops

Each Outer Loop finds d with ||d — d|| "small", and (2, 8) primal and dual optimal solutions to

min (c,z) z€W+d z>0.

Using proximity, we can use this to conclude 7 > 0 for a certain variable set I C [n| and recurse.




Constructive Hoffman proximity

More general form of Hoffman proximity theorem

Theorem.Let W C R"™ be a subspaceand £, u € R™ lower and upper bounds and assume that P =
{x € W : £ < x < u}isnon-empty. Then there exists x € P such that

|2lloo < mw (17111 + [lu”[1).

Certifying sometimes requires the following constructive version:

Theorem. Givensomey € Psuchanx € P with ||z||oc < kw (||[£7]|1 + ||©"]||1) can be found in
O(n?).

Proof idea. Sign-consistently reduce the norm of ¥ while maintaining containment in P..




Open questions

Feasibility needs m calls—can we make it min{m, n — m} to have the same for primal and dual?
Optimization takes mn calls—would fewer be enough?
Can we get better for special cases, such as max flow or min-cost flow?

Can we get faster (possibly non-deterministic) version of the constructive Hoffman algorithm?

Can we extend the black box approach to problems with unbounded K, such as generalized flows?

K - theory for more general convex programs e.g. Convex Quadratic Programs or Semidefinite
Programs (SDP)

K - theory for Integer Programming (IP)




