Hiring through Networks: Favors or Information?

Yann Bramoullé and Kenan Huremović

Aix-Marseille School of Economics

June 2016

Introduction

- Connections appear to be helpful in many contexts.
 - To get a job at a private firm, Brown, Setren & Topa (JLE 2016).
 - To publish a paper, Laband & Piette (JPE 1994), Brogaard, Engelberg & Parsons (JFE 2014).
 - ➤ To be hired or promoted in academia, Combes, Linnemer & Visser (LE 2008), Zinovyeva & Bagues (AEJ App 2015)
- ➤ Two main reasons with very different implications: better information or favors.
 - ► Favors could be due to altruism or repeated interactions, Bramoullé & Goyal (JDE 2016)

Introduction

- ► How to identify favors from information? Existing studies rely on measures of "objective" quality.
 - If the hired connected are better than the hired unconnected, info effects dominate. If the hired connected are worse than the hired unconnected, favors dominate.
 - Papers published by connected authors are more cited (Laband & Piette, Brogaard, Engelberg & Parsons)
 - In Spain, connected candidates who obtain the promotion publish less in the following 5 years (Zinovyeva & Bagues).

Introduction

- Two key limitations of existing studies:
 - ▶ (1) Needs a large enough time lag to build quality measures.
 - (2) Does not recover the respective sizes of the info and favor effects.
- ▶ In a recent wp, Li (2015) studies NIH grants and shows how quality measure can be used to identify both effects.
- Current view: proxy of true quality needed to identify why connections matter.

Our approach

- We develop a new framework to identify favors and information from data on hiring only.
- Key idea: if connections provide better information on unobservables, observables should have a lower impact on success rates.
- Information effect can be recovered from differences in the effects of observables between connected and unconnected.
- Favors can then be recovered from differences in baseline success rates.

Our approach

- We apply our method to the data assembled by Zinovyeva & Bagues.
 - Promotions to Associate and Full Professor in Spain between 2002 and 2006.
 - Large-scale natural experiment where juries are formed at random.
- We find no evidence of information effects and strong evidence of favors.
 - ▶ Favors stronger with strong ties than with weak ties.
 - Our results are consistent with the evidence obtained from future publications.

- A jury considers candidates for promotion.
- Candidate i's has ability

$$a_i = \mathbf{x}_i \boldsymbol{\beta} + u_i + v_i$$

- where x_i observed by the jury and the econometrician (publications, PhD students, age, gender).
- \triangleright u_i unobserved by the jury and the econometrician
- v_i observed by the jury but not the econometrician (performance in the exam)
- $\qquad \qquad \textbf{With } E(u_i|\mathbf{x}_i) = E(v_i|\mathbf{x}_i) = 0.$

- Some candidates are connected to the jury; others are not.
 - Assume that connections are random; connected and unconnected have the same distributions of x_i, u_i, v_i.
- Consider an unconnected candidate,
 - ▶ For the jury, expected ability $E(a_i|\mathbf{x}_i, v_i) = \mathbf{x}_i \boldsymbol{\beta} + v_i$.
 - ▶ Candidate promoted if $E(a_i|\mathbf{x}_i, v_i) \ge a_e$ where a_e exam-specific threshold.
 - ▶ For the econometrician, $p_u(h_i = 1|\mathbf{x}_i) = p(\mathbf{x}_i\boldsymbol{\beta} + v_i \ge a_e)$.
 - If $v_i \sim N(0,1)$, then

$$p_u(h_i = 1|\mathbf{x}_i) = \Phi(\mathbf{x}_i \boldsymbol{\beta} - a_e)$$

- ▶ When the candidate is connected, the jury receives a private signal s_i on his ability with $s_i = u_i + \varepsilon_i$ and $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$.
 - For the jury, expected ability $E(a_i|\mathbf{x}_i, s_i, v_i) = \mathbf{x}_i \boldsymbol{\beta} + E(u_i|s_i) + v_i$ and

$$E(u_i|s_i) = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_\varepsilon^2} s_i$$

▶ Without favors, the candidate is hired if $E(a_i|\mathbf{x}_i, v_i, s_i) \ge a_e$,

$$p_c(h_i=1|\mathbf{x}_i)=\Phi(rac{\mathbf{x}_ioldsymbol{eta}-a_{\mathsf{e}}}{\sigma}) ext{ and } \sigma^2=1+rac{\sigma_u^4}{\sigma_u^2+\sigma_{arepsilon}^2}>1$$

► Since the jury has an additional private signal, observables are relatively less informative for the econometrician.

- A jury provides favors if its promotion threshold is lower for connected candidates.
 - ▶ Hired if $E(a_i|\mathbf{x}_i, v_i, s_i) \ge a_e B$, hence

$$p_c(h_i = 1 | \mathbf{x}_i) = \Phi(\frac{\mathbf{x}_i \boldsymbol{\beta} + B - a_e}{\sigma})$$

- ► To sum up,
 - Information effects reduce the impact of observables on the hiring probability.
 - Favors shift the hiring probability to the left.

Framework: empirical implications

- ▶ If B increases, FOSD increase in $p_c(h_i = 1|\mathbf{x}_i)$.
 - If σ increases, SOSD decrease in $p_c(h_i = 1|\mathbf{x}_i)$.
- The observed effect of connections depend on observables.
 - If $\mathbf{x}_i \boldsymbol{\beta} \leq A_1$, $p_c(h_i = 1 | \mathbf{x}_i, \mathsf{info}) \geq p_c(h_i = 1 | \mathbf{x}_i, \mathsf{favor}) \geq p_u(h_i = 1 | \mathbf{x}_i)$.
 - $\begin{array}{l} \blacktriangleright \ \ \mathsf{If} \ A_1 \leq \mathbf{x}_i \boldsymbol{\beta} \leq A_2, \\ p_c(h_i = 1 | \mathbf{x}_i, \mathsf{favor}) \geq p_c(h_i = 1 | \mathbf{x}_i, \mathsf{info}) \geq p_u(h_i = 1 | \mathbf{x}_i). \end{array}$
 - $\begin{array}{l} \blacktriangleright \ \ \mathsf{If} \ A_2 \leq \mathbf{x}_i \boldsymbol{\beta}, \\ p_c(h_i = 1 | \mathbf{x}_i, \mathsf{favor}) \geq p_u(h_i = 1 | \mathbf{x}_i) \geq p_c(h_i = 1 | \mathbf{x}_i, \mathsf{info}). \end{array}$

▶ Empirically, we estimate probit regressions with interaction terms. Let $c_i = 0$ if unconnected and 1 if connected.

$$\Phi^{-1}(p)(h_i = 1|\mathbf{x}_i) = \beta_0 + \alpha_0 c_i + \sum_k \beta_k x_i^k + \sum_k \alpha_k c_i x_i^k$$

- ► The model predicts that $\forall k, \alpha_k/\beta_k < 0$ and $\forall k, l, \alpha_k/\beta_k = \alpha_l/\beta_l$.
 - ▶ Then recover the information effect $\alpha_k/\beta_k = (1-\sigma)/\sigma$.
 - ► Recover the bias through $B = (\alpha_0 \beta_0 \alpha_k / \beta_k) / (1 + \alpha_k / \beta_k)$ and can test for B > 0.
 - In the absence of info effects, $B = \alpha_0$.

- ▶ How to account for the number and types of links?
 - Each link brings an additional signal. Then,

$$\sigma^{2}(n_{s}, n_{w}) = 1 + \sigma_{u}^{2} - \frac{1}{\sigma_{u}^{-2} + n_{s}\sigma_{\varepsilon s}^{-2} + n_{w}\sigma_{\varepsilon w}^{-2}} > 1$$

- Proportional reduction in observables' impacts $I(n_s, n_w) = (1 \sigma)/\sigma$.
- Stronger with more ties conveying better information.
- ▶ Bias $B(n_s, n_w)$, could include non-linearities.
- Can then be estimated by maximum likelihood.

Application

- In Spain between 2002 and 2006, individuals wanting to become Associate or Full Professors had to get habilitación.
 - Highly competitive exam at the national level, 1 position for 10 candidates.
 - ▶ Data on all applications (31243) and all exams (967) in all disciplines (174).
- For each exam, evaluators were picked at random in a pool of eligible evaluators.
 - Randomization actually done with urns and balls by Ministry officials.
 - Participation mandatory, less than 2% of replacements.

Application

- Data on connections between candidates and potential evaluators:
 - Strong ties: PhD advisor, coauthor, colleague.
 - Weak ties: PhD committee member, member of a student's PhD committee, members of the same PhD committee.
- From these, compute the expected number of strong and weak connections to the jury.
- Conditional on expected connections, actual connections are random.
 - ► Strong ties: 32% (3%, 5%, 30%). Weak ties: 19% (7%, 4%, 12%).
 - Balance tests check out.

Empirical analysis

- As in Zinovyeva & Bagues:
 - Observables normalized to have mean 0 and variance 1 within exams.
 - Standard errors clustered at the exam level.
 - We control for the expected number of connections to the jury.
- In addition,
 - We include exam fixed effects (as much as possible).
 - We allow for heteroskedasticity in the expected number of connections.
 - We focus on candidates with at least one link to the pool of potential evaluators.

Empirical results

- Probit regressions with interaction terms.
- ▶ We cannot reject that $\forall k, l, \alpha_k/\beta_k = \alpha_l/\beta_l = 0$, except maybe for PhD_in_Spain.
 - The impact of observables similar for connected and unconnected.
 - No evidence of information effects.
- ▶ By contrast, strong evidence of a positive bias.

Information and Bias: Connected vs Unconnected

	(ef: 8)	(ef: 101)	(ef: 253)	(ef: 967)
(Intercept)	$\frac{(er. 6)}{-0.679^{***}}$	$\frac{(e1. \ 101)}{-1.336^{**}}$	$\frac{(el. 255)}{-0.506^{**}}$	$\frac{(e1. \ 307)}{0.167}$
(Intercept)	(0.117)	(0.520)	(0.214)	(0.468)
connected	0.382**	0.510^{***}	0.492^{***}	0.464^{**}
comiected	(0.162)	(0.171)	(0.174)	(0.185)
$z_phd_students$	0.071***	0.075***	0.076***	0.080***
Z-prid-stadorius	(0.017)	(0.018)	(0.018)	(0.019)
z_phd_committees	0.054***	0.053***	0.059***	0.065***
3-p 1101- 001 11111 00000	(0.017)	(0.018)	(0.018)	(0.019)
z_total_ais	0.144***	0.151***	0.150^{***}	0.144***
	(0.019)	(0.019)	(0.020)	(0.020)
z_{-} publications	0.064***	0.065***	0.067***	0.065***
T	(0.019)	(0.020)	(0.020)	(0.020)
female	-0.051	-0.077^{**}	-0.085^{**}	-0.104**
	(0.035)	(0.037)	(0.037)	(0.039)
age	-0.016^{***}	-0.016^{***}	-0.019^{***}	-0.027**
O	(0.003)	(0.003)	(0.003)	(0.003)
phd_in_spain	-0.246^{***}	-0.268****	-0.269^{***}	-0.274**
•	(0.044)	(0.045)	(0.045)	(0.049)
con_z_phdc	0.011	$0.007^{'}$	0.006	$0.013^{'}$
-	(0.024)	(0.025)	(0.025)	(0.028)
con_z_phds	0.009	0.006	0.006	0.015
-	(0.024)	(0.025)	(0.025)	(0.027)
con_z_ais	-0.027	-0.029	-0.025	-0.034
	(0.027)	(0.028)	(0.029)	(0.030)
con_z_pub	0.022	0.025	0.025	0.034
	(0.027)	(0.028)	(0.029)	(0.030)
con_female	0.012	0.014	0.014	0.002
	(0.048)	(0.050)	(0.051)	(0.053)
con_age	-0.003	-0.005	-0.005	-0.002
	(0.003)	(0.004)	(0.004)	(0.004)
con_phd_in_spain	0.146**	0.137**	0.136**	0.107
	(0.062)	(0.065)	(0.066)	(0.074)
Num. obs.	28452	28452	28452	28452

Empirical results

- Maximum likelihood estimations incorporating the number and types of links.
 - Preliminary estimations with $I(n_s, n_w) = I_s n_s + I_w n_w$ and $B(n_s, n_w) = B_s n_s + B_w n_w$ or quadratic.
- Significant bias associated with strong ties.
 - Marginal impact of an additional strong tie decreasing.
 - Some evidence of information effects on weak ties for Associated Professors.

ML estimation: Linear Information, Linear Bias

	All	FP	AP
Is	-0.015	0.021	-0.041
	(0.027)	(0.045)	(0.036)
Iw	-0.021	0.001	-0.118
	(0.055)	(0.062)	(0.112)
Bs	0.310^{***}	0.350^{***}	0.297^{***}
	(0.040)	(0.062)	(0.057)
Bw	0.109	0.104	0.074
	(0.077)	(0.079)	(0.174)
Num. obs.	28452	12945	15507

^{***}p < 0.01, **p < 0.05, *p < 0.1

ML estimation: Linear Information, Quadratic Bias

	All	FP	AP
Is	0.027	0.085	0.015
	(0.047)	(0.074)	(0.058)
Iw	-0.039	-0.018	-0.322***
	(0.070)	(0.073)	(0.031)
Bs	0.501^{***}	0.550^{***}	0.529^{***}
	(0.074)	(0.122)	(0.090)
Bss	-0.068***	-0.060***	-0.085***
	(0.013)	(0.022)	(0.019)
Bw	0.142	0.089	0.447
	(0.114)	(0.131)	(0.357)
Bww	-0.034^*	-0.006	-0.737^*
	(0.019)	(0.020)	(0.374)
Bsw	$0.019^{'}$	$0.015^{'}$	0.144
	(0.037)	(0.043)	(0.111)
Num. obs.	28452	12945	15507

^{***}p < 0.01, **p < 0.05, *p < 0.1

Variable bias and precision

- So far, assumption that the bias from favors and the signal's precision are constant.
 - What happens if they depend on observables?
- Suppose that $corr(\varepsilon_i, x_i^k) = \rho_k$.
 - Under normality, $var(\varepsilon_i|x_i^k) = (1-\rho_k^2)\sigma_{\varepsilon}^2$. Precision increasing with ρ_k .
 - By the law of iterated expectations, $E(E(u_i|s_i, \mathbf{x}_i)|\mathbf{x}_i) = E(u_i|\mathbf{x}_i) = 0.$
- Even with an arbitrary correlation structure, without favors $p_c(h_i=1|\mathbf{x}_i)=\Phi(\frac{\mathbf{x}_i\boldsymbol{\beta}-a_e}{\sigma})$ with $\sigma>1$.
 - Information effects induce the same relative reduction in impacts across observables.

Variable bias and precision

- Next, assume that the bias depends on observables.
 - $B_i = B_0 + \sum_k B_k x_k^i$
- The model is then not identified.
 - ▶ If $B_k < 0$, the impact of x_k^i is reduced for connected.
- However, one exclusion restriction is enough to recover identification.
 - For some k, $B_k = 0$.

Variable bias and precision

- ▶ In the application, assume that there is at least one variable on which the bias does not depend.
 - ► Then, independent on all others except PhD_in_Spain.
- Then, stronger bias for candidates who obtained their PhD in Spain.

Conclusion: summary

- ► We develop the first method to identify favors from information in the impact of connections, from data on hiring only.
- ► We apply it to data on academic promotions in Spain in 2002 and 2006.
- Our findings are broadly consistent with results obtained from later productivity.

Conclusion: further work

- Maximum likelihood estimations still preliminary.
- ▶ How to combine our approach with data on later productivity?
 - ► To provide further tests and/or more precise estimates.
- How to identify these effects when juries are not formed at random, and connected and unconnected differ in systematic ways?