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Long Range Dependence

Definition

A Long Range Dependent process is a stationary process for which

∞∑
k=−∞

ρ(k) =∞.

... [T]he stationary long memory processes form a layer
among the stationary processes that is “near the
boundary” with non-stationary processes, or,
alternatively, as the layer separating the non-stationary
processes from the “usual” stationary processes.
[Samorodnitsky, 2006]
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ARFIMA processes

Definition

A process {Xt} is an ARFIMA(p, d , q) process if it is the solution
to:

Φ(B)(1− B)dXt = Θ(B)εt ,

where Φ(z) = 1 +

p∑
j=1

φjz
j and Θ(z) = 1 +

q∑
j=1

θjz
j ,

and the innovations {εt} are iid with 0 mean and variance σ2 <∞.
We say that {Xt} is an ARFIMA(p, d , q) process with mean µ, if
{Xt − µ} is an ARFIMA(p, d , q) process.
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ARFIMA parameters

µ – location parameter

σ – scale parameter

d – long memory parameter (long memory process iff
0 < d < 0.5 )

φ – p-dimensional short memory parameter

θ – q-dimensional short memory parameter

Which parameters are of interest?

When considering long memory processes, we are usually primarily
interested in the parameter d (and possibly µ). The parameters
σ,φ,θ (and even p, q) are essentially nuisance parameters.
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Outline of problem

Assume Gaussian distribution for the innovations

Bayesian: use flat priors for µ, log(σ), and d ...

... but can use any set of (independent) priors if desired.

Even assuming Gaussianity, the likelihood for d is very
complex – impossible to find analytic posterior

Must resort to MCMC methods in order to obtain samples
from the posterior

Don’t want to assume form of short memory (i.e. p, q) –
must use Reversible-Jump (RJ) MCMC [Green, 1995]
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Outline of method

Re-parameterisation of model to enforce stationarity
constraints on Φ and Θ

Efficient calculation of Gaussian likelihood (long memory
correlation structure prevents use of standard quick methods)

Necessary use of Metropolis–Hastings algorithm requires
careful selection of proposal distributions

Correlation between parameters (e.g. φ and d) requires
blocking.
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Example: ‘Pure’ Gaussian Long Range Dependence
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(1− B)0.25Xt = εt
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Example: ‘Pure’ Gaussian Long Range Dependence

0.0 0.1 0.2 0.3 0.4 0.5

Density estimate of π(d)

d

Similarly good results for µ and σ

The posterior model probability for the (0, d , 0) model was
70%
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Example: ‘Corrupted’ Gaussian Long Range Dependence
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(1 + 0.75B)(1− B)0.25Xt = (1 + 0.5B)εt
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Example: ‘Corrupted’ Gaussian Long Range Dependence

0.0 0.1 0.2 0.3 0.4 0.5

Density estimate of π(d)

d

The posterior model probability for the (1, d , 1) model was
77%

The posterior model probability for the (0, d , 0) model was 0%
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Dependence of posterior variance on n
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Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Dependence of posterior variance on n

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0

n

σ d

27 28 29 210 211 212 213 214

σd ∝ n−1 2

σd ∝ n−1/2

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Dependence of posterior variance on n

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0

n

σ d

27 28 29 210 211 212 213 214

σd ∝ n−1 2

σd ∝ n−1/2

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Outline

1 Introduction

2 Exact Bayesian analysis for Gaussian case

3 Approximate Bayesian analysis for general case

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Assumptions and general method

Drop the Gaussianity assumption

Replace with a more general distribution (e.g. α-stable)

Seek joint inference about d and α

Initially (for simplicity) we assume no short memory, i.e. we
assume a (0, d , 0) model

Infinite variance means that auto-covariance approach is no
longer sound

Lack of closed form for α-stable density implies lack of closed
form for likelihood
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Solution

Approximate the long memory process as a very high order
AR process

Construct the likelihood sequentially and evaluate using
specialised efficient methods

f (x1, . . . , xt |H) = f (xt |xt−1, . . . , x1,H)f (xt−1, . . . , x1|H)

where H is the finite recent history of the process x0, x−1, . . . , x−n

Use auxiliary variables to integrate out the (unknown) history
H
In practice, setting H = x̄ , . . . , x̄ suffices, providing enormous
computational saving.

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Solution

Approximate the long memory process as a very high order
AR process

Construct the likelihood sequentially and evaluate using
specialised efficient methods

f (x1, . . . , xt |H) = f (xt |xt−1, . . . , x1,H)f (xt−1, . . . , x1|H)

where H is the finite recent history of the process x0, x−1, . . . , x−n

Use auxiliary variables to integrate out the (unknown) history
H
In practice, setting H = x̄ , . . . , x̄ suffices, providing enormous
computational saving.

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Solution

Approximate the long memory process as a very high order
AR process

Construct the likelihood sequentially and evaluate using
specialised efficient methods

f (x1, . . . , xt |H) = f (xt |xt−1, . . . , x1,H)f (xt−1, . . . , x1|H)

where H is the finite recent history of the process x0, x−1, . . . , x−n

Use auxiliary variables to integrate out the (unknown) history
H
In practice, setting H = x̄ , . . . , x̄ suffices, providing enormous
computational saving.

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Solution

Approximate the long memory process as a very high order
AR process

Construct the likelihood sequentially and evaluate using
specialised efficient methods

f (x1, . . . , xt |H) = f (xt |xt−1, . . . , x1,H)f (xt−1, . . . , x1|H)

where H is the finite recent history of the process x0, x−1, . . . , x−n

Use auxiliary variables to integrate out the (unknown) history
H
In practice, setting H = x̄ , . . . , x̄ suffices, providing enormous
computational saving.

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Example: ‘Pure’ symmetric α-stable long memory
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(1− B)0.15Xt = εt , α = 1.5

Graves et al. Non-Gaussian Long-Range Dependency



Introduction Exact Bayesian analysis for Gaussian case Approximate Bayesian analysis for general case

Example: ‘Pure’ symmetric α-stable long memory
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Example: ‘Pure’ symmetric α-stable long memory
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Example: ‘Pure’ symmetric α-stable long memory
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Dependence of posterior variance on n
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Example: ‘Pure’ asymmetric α-stable long memory
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(1− B)0.1Xt = εt , α = 1.5 β = 0.5
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Example: ‘Pure’ asymmetric α-stable long memory
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Good estimation of all other parameters
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