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About our project

Phd student at UiT with M. Rypdal as supervisor

Employed at a local bank, a co-operation project supported by
the national research council.

In the bank I work in the risk management group which
counts 5 + 1

4 positions. (I am the 1
4 ).

Specfically I work with market risk (losses due to changes in
observerable variables).

Topic of research: Modern statistical methods in finance,
which translates into multifractals.
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Overview and outline

’Approximated maximum likelihood estimation in multifractal
random walks’ , Løvsletten and Rypdal 2012, Physical Review
E.

Start with recalling what MLE is, and some simpler examples,
fractional Brownian motions:

Computation of the likelihood (pdf)
Some practical information
A small Monte Carlo study, MLE vs. moment estimator

Multifractals

Motivation in finance
Properties
Different models and inference.
Monte Carlo and practical info

Current research
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Preliminary
Situation: We have some data x = (x1, . . . , xn), a model density
p(x|θ) : Rn → R+ and wish to estimate the parameter vector θ.
One popular method is maximum likelihood estimatation (MLE) :

θ̂ = arg max
θ

L(θ|x),

where L(θ|x) = p(x|θ) with x fixed (the data plugged into the pdf).

θ

L
(θ
|x
)

θ̂
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Example 1: Brownian motion with drift

Model:
dX (t) = µdt + σdB(t)

Define xt = X (t)− X (t − 1)

The random variables x1, . . . , xn are independent N (µ, σ2).

Analytical expression for the likelihood from which we can find
the maximum by differentiation.

ML estimates: µ̂ = n−1
∑

xi , σ̂2 = n−1
∑

(xi − x̄)2

Sidenote: Louis Bachelier, in his study of financial prices,
suggested this model as early as ∼ 1900. It was later realized
that it was the logarithmic prices, rather than the prices
themselves, that should be modeled as a Brownian motion.
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Example 2: fractional Brownian motion

Model:
dX (t) = µdt + σdBH(t)

BH(t) a fractional Brownian motion:

a Gaussian process with longe-range dependent increments

xt = X (t)− X (t − 1) a fractional Gaussian noise.

The Hurst-exponent H is a measure of the dependence
between xt and xs :

H < 0.5, anti-correlated
H = 0.5, uncorrelated (and independent-why?)
H > 0.5, positive correlation

Let Σn to be the covariance-matrix of (x1, . . . , xn).

The pdf:

p(x) =
1

(2π)n/2|Σn|1/2
exp

(
−1

2
(x− µ)TΣ−1

n (x− µ)

)
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Example 2: fractional Gaussian noise

p(x) =
1

(2π)n/2|Σn|1/2
exp

(
−1

2
(x− µ)TΣ−1

n (x− µ)

)

Problem: Inversion of the covariance matrix Σn.

Consider the structure of the covariance matrix:

Σn(i , j) = E(xixj)− µ2 = γ(|i − j |), (1)

so all the entries at a specific diagonal are equal.

Reduces the computational cost of evaluating the likelihood to
O(n2) by the Durbin Levinson algorithm.

The DL algorithm can also be used to simulate stationary
Gaussian processes.
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Some practical information

I use the freely available software R.

There is written a package (add-on) called LTSA, Linear Time
Series Analysis, which contains the aforementioned
Durbin-Levinson algorithm.

Another interesting package is FGN (which uses LTSA).

Simulating fractional Gaussian noise and using MLE is two
lines of code:

x<-SimulateFGN(n=10^4,H=0.9)

FitFGN(x)

McLeod et.al (2007) Algorithms for Linear Time Series
Analysis: With R Package, Journal of statistical software
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A small Monte Carlo study
fractional Brownian motion (fBm)

For a fBm BH(t) we have that

E|BH(t + δt)− BH(t)|q ∝ δtζ(q)

with ζ(q) = Hq.

As an alternative to MLE we consider the moment-estimator
Ĥζ = ζ̂(2)/2

ζ̂(2) found by a least square fit to the second order sample
moments of BH(t + δt).
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A small Monte Carlo study
fractional Brownian motion (fBm)

Simulated nMC = 500 sample paths, each with n = 2500 and
H = 0.7. For each realization the Hurst exponent is estimated by
the two estimators.

Ĥζ

0.60 0.65 0.70 0.75 0.80 0.85

sd=0.036

ĤML

0.60 0.65 0.70 0.75 0.80 0.85

sd=0.013
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Time-varying volatility
An empirical look
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Time-varying volatility
An empirical look
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Multifractal processes

Definition

A stochastic prosess {X (t), t ∈ [0,T ]} is multifractal if

E|X (t)|q ∼ tζ(q),

and ζ(q) is strictly concave.
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Multifractal processes
Properties
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Multifractal processes
Properties
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Multifractal models

Definition

A stochastic prosess {X (t), t ∈ [0,T ]} is multifractal if

E|X (t)|q ∼ tζ(q),

and ζ(q) is strictly concave.

Multifractal model of asset return, Mandelbrot, Calvet and
Fisher, 1997

Markov switching multifractal, Calvet and Fisher 2001

Multifractal random walk, Bacry et al. 2001

All of this models can be written as

X (t) = B(m([0, t]))

where B(t) is a Brownian motion and m is a multifractal random
measure. Note: E|X (t)|q = cq E|m([0, t])|q/2.
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Multifractal models

Definition

The (log-normal) multifractal measure m defining the multifractal
random walk is given by

m([0, t]) = exp(h(t))

where h(t) is a ’Gaussian’ centered process with covariances

Cov(h(t), h(s)) = λ2 log+ R

|t − s|

To verify the multifractality one can show the realation

h(at)
d
=h(t) + Y (a)

where Y (a)
d∼N(0,−λ2 log a) independent of h(t).
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Multifractal random walk

For the discrete time MRW model the observation equations are
given by

xt = σ exp(ht/2)εt (2)

where ht is a Gaussian process with covariances

Cov(ht , hs) = λ2 log+ R

|t − s|+ 1
.

In the basic stochastic volatility model (Taylor, 1986) the
observation equations are the same, but ht follows an AR(1)
process:

ht = φht−1 + σuut .

19 / 26



Multifractal random walk

For the discrete time MRW model the observation equations are
given by

xt = σ exp(ht/2)εt (2)

where ht is a Gaussian process with covariances

Cov(ht , hs) = λ2 log+ R

|t − s|+ 1
.

In the basic stochastic volatility model (Taylor, 1986) the
observation equations are the same, but ht follows an AR(1)
process:

ht = φht−1 + σuut .

19 / 26



The likelihood

The observation equations:

xt = σ exp(ht/2)εt .

The pdf of x = (x1, . . . , xn) is given by the integral

p(x) =

∫
Rn

p(h, x)dh =

∫
Rn

p(h)p(x|h)dh.

No closed-form solution for the integral

Laplace approximation:

p(x) ≈ bn | det Ω|−1/2p(h∗)p(x|h∗), (3)

with h∗ the maximum of h 7→ log p(x,h),
and Ω the corresponding Hessian matrix.
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The likelihood

The Laplace approximation:

p(x) ≈ bn | det Ω|−1/2p(h∗)p(x|h∗),

with h∗ the maximum of h 7→ log p(x,h),
and Ω the corresponding Hessian matrix.

The form of the first order derivatives:

∂ log p(x , h)

∂hi
= bi +

∑
j

Aij hj + gi (xi , hi ) ,

For the basic SV model the Markov property of ht implies that
the matrices A and Ω are tri-diagonal  computational ok.
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The likelihood
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p(x) ≈ bn | det Ω|−1/2p(h∗)p(x|h∗),

with h∗ the maximum of h 7→ log p(x,h),
and Ω the corresponding Hessian matrix.

The form of the first order derivatives:

∂ log p(x, h)

∂hi
= bi +

∑
j

Aij hj + gi (xi , hi ) ,

For the mrw we suggest a second approximation

p(ht |ht−1) ≈ p(ht |ht−1, . . . , ht−τ ), (4)

which makes the matrices A and Ω band-diagonal with
bandwidth τ .
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Some practical information

We have implemented the MLE procedure for the mrw model
in a R package.

Version 0.2 of this package is hopefully soon to come, with
smoothing, filtering and volatility forecasting, together with
density forecast.

We have also implemented utility functions for the MSM (part
of my master) and the basic SV model.
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A small Monte Carlo study
Multifractal random walk
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2500 0.03 0.08
5000 0.02 0.05

10000 0.01 0.04
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Concluding remarks

We are not saying ’always use ML’.

For the use of the approximated likelihood method for other
inference problems:

A multifractal approach towards inference in finance,
Løvsletten O. and Rypdal M. 2012, arxiv

A generalization of the (discrete-time) mrw to fractional
MRW and multifractal Ornstein-Uhlenbeck processes:

Modeling electricity spot prices using mean-reverting
multifractal processes, Rypdal M. and Løvsletten O. 2012,
submitted
These models are also relevant in e.g. turbulence and
magnetospheric physics.

We are very much open for collaboration!
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Current research
Forecasts based on the MRW model.
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