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About our project

Phd student at UiT with M. Rypdal as supervisor

Employed at a local bank, a co-operation project supported by
the national research council.

In the bank | work in the risk management group which
counts 5+ 3 positions. (I am the 1).

Specfically | work with market risk (losses due to changes in
observerable variables).

Topic of research: Modern statistical methods in finance,
which translates into multifractals.
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Overview and outline

m 'Approximated maximum likelihood estimation in multifractal
random walks' , Lgvsletten and Rypdal 2012, Physical Review
E.

m Start with recalling what MLE is, and some simpler examples,
fractional Brownian motions:

m Computation of the likelihood (pdf)
m Some practical information
m A small Monte Carlo study, MLE vs. moment estimator

m Multifractals

m Current research
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m Motivation in finance
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Different models and inference.
Monte Carlo and practical info
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Preliminary
Situation: We have some data x = (x1, ..., xp), a model density
p(x|6) : R" — R, and wish to estimate the parameter vector 6.
One popular method is maximum likelihood estimatation (MLE) :

0= arg max L(0]x),

where L(0|x) = p(x|#) with x fixed (the data plugged into the pdf).

L(0]x)
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Example 1: Brownian motion with drift

m Model:
dX(t) = pdt + odB(t)

Define x; = X(t) — X(t — 1)
The random variables xq, ..., x, are independent N'(u, o2).

Analytical expression for the likelihood from which we can find
the maximum by differentiation.

m ML estimates: 2 =n"1Y x; ,86%=n"1Y(x — X)?
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Example 1: Brownian motion with drift

m Model:
dX(t) = pdt + odB(t)
m Define x; = X(t) — X(t —1)
m The random variables x, ..., x, are independent N'(p, o2).

m Analytical expression for the likelihood from which we can find
the maximum by differentiation.

m ML estimates: 2 =n"1Y x; ,86%=n"1Y(x — X)?

m Sidenote: Louis Bachelier, in his study of financial prices,
suggested this model as early as ~ 1900. It was later realized

that it was the logarithmic prices, rather than the prices
themselves, that should be modeled as a Brownian motion.
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Example 2: fractional Brownian motion

m Model:
dX(t) = pdt + odBy(t)

m By(t) a fractional Brownian motion:
m a Gaussian process with longe-range dependent increments

m x; = X(t) — X(t — 1) a fractional Gaussian noise.
m The Hurst-exponent H is a measure of the dependence
between x; and x;:
m H < 0.5, anti-correlated

m H = 0.5, uncorrelated (and independent-why?)
m H > 0.5, positive correlation

6
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Example 2: fractional Brownian motion

m Model:
dX(t) = pdt + odBy(t)

By (t) a fractional Brownian motion:
m a Gaussian process with longe-range dependent increments

x¢ = X(t) — X(t — 1) a fractional Gaussian noise.
The Hurst-exponent H is a measure of the dependence
between x; and xs:

m H < 0.5, anti-correlated

m H = 0.5, uncorrelated (and independent-why?)

m H > 0.5, positive correlation

Let ¥, to be the covariance-matrix of (x1,...,Xs).
The pdf:

1

p(x) = (27T)”/2|Zn|1/2

exp (50— )T, k- )

6

26



Example 2: fractional Gaussian noise

1 1 _
p(x) = (COREEE exp <—2(X — )T (x M))

m Problem: Inversion of the covariance matrix % ,,.
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Example 2: fractional Gaussian noise

1 1 _
p(x) = (COREEE exp <—2(X — )T (x M))

m Problem: Inversion of the covariance matrix % ,,.

m Consider the structure of the covariance matrix:

Sa(i,j) = B(xixg) — p* = y(li — JjI), (1)

so all the entries at a specific diagonal are equal.
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Example 2: fractional Gaussian noise

1 1 _
p(x) = W exp <—2(X —p) T (x - M))

m Problem: Inversion of the covariance matrix % ,,.

m Consider the structure of the covariance matrix:
Ta(iyj) = E(axy) — 1 = ~(li = j), (1)

so all the entries at a specific diagonal are equal.

m Reduces the computational cost of evaluating the likelihood to
O(n?) by the Durbin Levinson algorithm.
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Example 2: fractional Gaussian noise

1 1 _
p(x) = W exp <—2(X —p) T (x - M))

m Problem: Inversion of the covariance matrix % ,,.

m Consider the structure of the covariance matrix:

Sa(i,j) = B(xixg) — p* = y(li — JjI), (1)

so all the entries at a specific diagonal are equal.

m Reduces the computational cost of evaluating the likelihood to
O(n?) by the Durbin Levinson algorithm.

m The DL algorithm can also be used to simulate stationary
Gaussian processes.
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Some practical information

m | use the freely available software R.

m There is written a package (add-on) called LTSA, Linear Time
Series Analysis, which contains the aforementioned
Durbin-Levinson algorithm.

m Another interesting package is FGN (which uses LTSA).

m Simulating fractional Gaussian noise and using MLE is two
lines of code:
x<-SimulateFGN(n=10"4,H=0.9)

FitFGN (%)

m MclLeod et.al (2007) Algorithms for Linear Time Series

Analysis: With R Package, Journal of statistical software
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A small Monte Carlo study

fractional Brownian motion (fBm)

m For a fBm By(t) we have that
E|By(t + 6t) — By(t)]9 o 6¢(@)

with ((q) = Hq.

m As an alternative to MLE we consider the moment-estimator
He ={(2)/2

[ 6(2) found by a least square fit to the second order sample
moments of By(t + dt).
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A small Monte Carlo study

fractional Brownian motion (fBm)
Simulated npc = 500 sample paths, each with n = 2500 and
H = 0.7. For each realization the Hurst exponent is estimated by
the two estimators.

&

sd=0.036

sd=0.013
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Overview and outline

m 'Approximated maximum likelihood estimation in multifractal
random walks' , Lgvsletten and Rypdal 2012, Physical Review
E.

m Start with recalling what MLE is, and some simpler examples,
fractional Brownian motions:

m Computation of the likelihood (pdf)

m Some practical information

m A small Monte Carlo study, MLE vs. moment estimator
m Multifractals

m Motivation in finance
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Time-varying volatility

An empirical look
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Time-varying volatility

An empirical look
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Multifractal processes

Definition

A stochastic prosess {X(t),t € [0, T|} is multifractal if
E|X(t)]9 ~ t5(9),

and ((q) Is strictly concave.
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Multifractal processes

Properties
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Multifractal

processes
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Multifractal models

Definition
A stochastic prosess {X(t),t € [0, T|} is multifractal if

E|X(£)|9 ~ tC(q)’

and ((q) is strictly concave.

m Multifractal model of asset return, Mandelbrot, Calvet and
Fisher, 1997

m Markov switching multifractal, Calvet and Fisher 2001
m Multifractal random walk, Bacry et al. 2001
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Multifractal models

Definition
A stochastic prosess {X(t),t € [0, T|} is multifractal if

E|X(£)|9 ~ tC(q)’

and ((q) is strictly concave.

m Multifractal model of asset return, Mandelbrot, Calvet and
Fisher, 1997

m Markov switching multifractal, Calvet and Fisher 2001
m Multifractal random walk, Bacry et al. 2001

All of this models can be written as
X(t) = B(m([0, t]))

where B(t) is a Brownian motion and m is a multifractal random
measure. Note: E|X(t)|9 = ¢, E|m([0, t])|9/2.
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Multifractal models

The (log-normal) multifractal measure m defining the multifractal
random walk is given by

m([0, t]) = exp(h(t))

where h(t) is a 'Gaussian’ centered process with covariances

Cov(h(£), h(s)) = A2 log* ‘t_RS|

To verify the multifractality one can show the realation
h(at)2h(t) + Y(a)

where Y(a)gN(O, —\2log a) independent of h(t).
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Multifractal random walk

For the discrete time MRW model the observation equations are
given by
xi = o exp(he/2)e; (2)

where h; is a Gaussian process with covariances

Cov(hy, hs) = N logt ——————.
OV( ty 5) Og ‘t—S’—i—l
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Multifractal random walk

For the discrete time MRW model the observation equations are
given by
xi = o exp(he/2)e; (2)

where h; is a Gaussian process with covariances

Cov(hy, hs) = N logt ——————.
OV( ty 5) Og |t—5’+1

In the basic stochastic volatility model (Taylor, 1986) the
observation equations are the same, but h; follows an AR(1)

process:
he = ¢ht—1 + oyuy.
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The likelihood
The observation equations:
Xt = Uexp(ht/2)€t.

The pdf of x = (x1,..., Xp) is given by the integral

px) = | plh.x)dh = [ p(h)p(xln)dh.

m No closed-form solution for the integral

m Laplace approximation:
p(x) ~ by | det Q] V/2p(h*)p(x|h"), (3)

with h* the maximum of h — log p(x, h),
and € the corresponding Hessian matrix.
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The likelihood

m The Laplace approximation:
p(x) ~ by | det Q| /2p(h*)p(x|h"),
with h* the maximum of h — log p(x, h),

and 2 the corresponding Hessian matrix.

m The form of the first order derivatives:

dlog p(x, h)
T = b; + XJ:AU hj + g,-(x,-, h,') ,

m For the basic SV model the Markov property of h; implies that
the matrices A and € are tri-diagonal ~» computational ok.
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The likelihood

m The Laplace approximation:
p(x) ~ by | det Q|7Y/2p(h*)p(x|h"),

with h* the maximum of h — log p(x, h),
and  the corresponding Hessian matrix.

m The form of the first order derivatives:
0 log p(x, h)
T = b; + ZAU hj + g,-(x,-, h,‘) ,
J

m For the mrw we suggest a second approximation

p(ht’ht—l) ~ p(ht|ht—17"'7ht—’r)7 (4)

which makes the matrices A and €2 band-diagonal with
bandwidth 7.
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Some practical information

Multifractal random walk

m We have implemented the MLE procedure for the mrw model
in a R package.

m Version 0.2 of this package is hopefully soon to come, with
smoothing, filtering and volatility forecasting, together with
density forecast.

m We have also implemented utility functions for the MSM (part
of my master) and the basic SV model.
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A small Monte Carlo study

Multifractal random walk

(@  PDFof GMM estimatefor A (b)  PDFof GMM estimatefor 1. (c)  PDFof GMM estimatefor 1.
Sample length n=2500. Sample length n=5000. Sample length n=10000.
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n | sd(hwmn) | sd(Remm)
2500 0.03 0.08
5000 0.02 0.05

10000 0.01 0.04
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Concluding remarks

m We are not saying "always use ML'.
m For the use of the approximated likelihood method for other
inference problems:

m A multifractal approach towards inference in finance,
Lgvsletten O. and Rypdal M. 2012, arxiv

m A generalization of the (discrete-time) mrw to fractional
MRW and multifractal Ornstein-Uhlenbeck processes:

m Modeling electricity spot prices using mean-reverting
multifractal processes, Rypdal M. and Lgvsletten O. 2012,
submitted

m These models are also relevant in e.g. turbulence and
magnetospheric physics.

m We are very much open for collaboration!
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Current research

Forecasts based on the MRW model.
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