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Emergent phenomena are ubiquitous  This work focuses on one particular sys- If the jump rates gx(k) decrease with P,
In systems with a large number of in- tem, the zero-range process (ZRP), In k then there can exist a critical den-
teracting components. Such systems  which particles move on a lattice with sity pe = pee) < 0. .
arise across physical and social sci- jump rates specified by local interactions. In the thermodynamic limit N, L — oo e ;condensed
ences. Examples include traffic be- The ZRP has been widely applied as with p = N/L fixed. For p > p ex-
haviour and ribosomes moving along a model for nonequilibrium phenomena cess particles condense on a single
messenger RNA in protein synthesis. and as an effective model for the dynam- site (bellow). A similar result has also
These systems can be studied math- ics of phase boundaries such as in exclu- been proven rigorously for L fixed as >
ematically in the context of nonequilib-  sion processes [3]. Although the steady N — oo for a homogeneous system P ¢
rium statistical mechanics applied to in-  state is given exactly by a factorised form [6].
teracting particle systems [1,2]. it still displays non-trivial properties such
as the possibility of a condensation tran- n n (p—p )L
sition. Previous studies of the ZRP have
assumed the interactions between parti- f fluid condensed
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cles are spatially homogeneous [4]. This
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IS not typically the case for real systems. p
We consider the effect of a random per- ol | | | ol |
turbation of the jump rates and show that X X
P — P— , . a small perturbation can have a signifi- p < pem VL M, S NL W o
Figure: Phase transitions in nonequilibrium | cant effect on the behaviour of the sys- - ) p= e s be
systems can be inconvenient. tem [5]. . .
Generic choice of Jump rates .
g < 1 50' Phase diagram
The Zero Range Process Ol ((DeMmogENEaLS): |
g«(n) =1 +b/n”, homogeneous 1.0~ ————————— -0
The ZRP is a continuous time Markov g(3) vn =1, g«(0)=0. fluid
Chain with state space X, = N in p(_zmm New (disorder): disordered 0.5 — — ——
which particles jump on a lattice A, = v Y - :
{1,...,L} at rates which depend only s : 3_ 9«(n) = exp(ex(n) +b/n%), i condensed
the departure site and the number <1 3 5 a4 5 6”.5 vn>1, g(0)=0 T 4, 3b
of particles there. Configurations are C e e e e ex(n) are iid rvs with
given by 7 = (1x)xen Where 7y is the E(ey(n)) = 0, variance 62 > 0. —0.5+
occupation number of site x. Particles  Generator: - /

leave site x at rate gx(nx) and jump to rf _ F(r*Y) _ f
site x +y with probabilty p(y). B Y < c<earch Goals

» Examine stationary properties of the  » Explain finite size behaviour by study-

Motivation

system in the canonical and grand- Ing the contribution of the condensate

. canonical ensemble from numerical to the total entropy.
The Bus route model Exn Process studies of the current and the total v/ Support theoretical results on the
A totally asymmetric exclusion ~€)-y O entropy, 1/LlogZ(L,N). change of the stationary behaviour

process Is an example of a
coarse-grained description, inter-
nal structures are integrated out
leaving effective dynamics de-
pending only on the distance be-
tween particles.

using Monte Carlo simulations [5] .

Preliminary results

Monte Carlo (MC)

T 1T ' ' —
Analysis of a system with fixed disorder. 7L [o 6-08.6= 112 .
™ 3 4 Y. For MC results L = 1024. For N/L > p. ol |2 =088 =0 P
g(4) 9D g3 ' . (nx),me = p§ except for the“slowest” site, s oenee |
VAR Va\ Mapping to the ZRP this is expected to contain the conden- ~ , f P *

For exclusion processes each site contains at sate. Fory the slowest site we define, S AP0 0 o0y olon
| @ most one particle and they move at rates de- 1 (N — (ny),m0) N //4 !
(1 2 3 4 pendent on the particle and the number of sites Pog == | hIuNt) I .

. . . Ao BB L8 AR A D A-B-A-A-ap =V
c . . to the next particle. The mapping between this as N — oo we expect ppg — pc, in acor- 0(;«: R
ZRP and the zero range process is illustrated. dence with [6]. N/L
Steady states Numerics 25 Pe=0T5 P, =277
The stationary current j = (gx(nx)) IS S
iIndependent of the site X. I S—— S ———— A
8 _ _ _ L R Canonical: ) ’
Canonical ensemble: Fixed number of particles > nx = N, Z(L,N —1) 075
x=1 jcan (N /L) = —= Jean e s
L L Joan (N/L) Z(L,N) os-# | Data points; correspond
Nt () = 2N D) I ] wx(m)d (Zxm — N, Grand canonical: || toMCresults above
y _q ) i ! !
here the stati ight . by wy (n) = [Tx—1 9x(k) ™ lgcan(p) = 9lp) imverseot - p(9) oLt R |
where the stationary weights are given by wy(n) = | [,_. g . _ o 1 2 3 4 s
X K=1 9% —  Jjgean(p) < ¢c = o(pc). N/L

Grand canonical ensemble: Expected number of particles is fixed by the

fugacity ¢. Steady state V;; IS given by product of one site marginals,
1

Uy o(1x) = mwx (7% )™,
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