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• Biological Networks describe the 

interactions of a set of molecular 

constituents, e.g. Proteins or genes.

Biological Networks

• Simulated Tempering makes moves 

at various temperatures.

Alternative Schemes

constituents, e.g. Proteins or genes.

• They can be represented 

mathematically using a graph.

Figure 1: An example of a biological system

• The higher temperature moves 

allow the chain to move freely

through graph space. 

• We can only keep the β=1 samples 

so we must generate many samplesFigure 1: An example of a biological system

and their interactions. Some constituent

biological components of the Epidermal

Growth Factor Receptor system.

• Tunnelling Monte Carlo 

so we must generate many samples

for every one we retain.
Figure 4: Tunnelling moves avoid getting

stuck around local maxima.

• We use a stochastic model for the 

biological network called a “graphical 

model”.

• Use Bayes’ theorem to relate the 

“marginal likelihood” to the 

“posterior distribution”.

Inference
• Tunnelling Monte Carlo 

supplements the edge flipping moves 

of Metropolis-Hastings.

• Long range jumps between pre-

computed modes are possible.
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model”.

• The graph must be acyclic (DAG).

• The Structure of the network can be 

inferred from data.

“posterior distribution”. computed modes are possible.

• These long range jumps stop the 

Markov chain getting stuck in local 

maxima.
posterior likelihood prior

Figure 5: To generate a few correct

samples takes many disregarded samples

in simulated tempering.

MCS Retained

• Convergence to the posterior is 

Initial Results

data hyper-parametersnodes

Monte Carlo

• Convergence to the posterior is 

measured (for 4 and 5 nodes) using 

the total variation norm.
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• We want P(G|X) but this requires 

enumerating all DAGs.

• For 11 nodes the number of DAGs is 

comparable to the number of stars in 

Monte Carlo
• Initial results show that in the high 

entropy regime considered methods 

provide no advantage over  MH.

• In fact ST performs much worse
MCS (actual)
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comparable to the number of stars in 

the known universe!

• Enumeration is simply not possible.

• We can still estimate the posterior 

distribution by using Monte Carlo.

• In fact ST performs much worse

since we must disregard many 

samples.

Figure 6: For 5 nodes in the high entropy

case all schemes converge relatively

quickly (except simulated tempering).

MCS (actual)

distribution by using Monte Carlo.

• The most common method is the 

Metropolis-Hastings algorithm.

• We move around graph space by 

adding, deleting and reversing edges.

• In the low entropy (many data) 

regime the tunnelling and simulated 

tempering schemes may offer some 

• Modification of the proposal 

distribution for use with MH 

algorithm.

Extensions & Further Work

Figure 2: Possible moves in graph space

consist of adding, deleting or reversingadding, deleting and reversing edges.

• Moves are accepted or rejected with 

certain probabilities to ensure 

detailed balance.

tempering schemes may offer some 

advantage.

• Run the schemes with more data.

• Computation time becomes 

more of an issue.

algorithm.

• Changing more than one edge at 

a time.

• Possible application of cluster 

algorithms from statistical physics 

consist of adding, deleting or reversing

single edges. All are possible as long as the

resulting graph is still acyclic.

• Metropolis-Hastings can be slow to 

converge (mix). 

• Also, more data can pose a References

more of an issue. algorithms from statistical physics 

such as Swendsen-Wang.
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challenge for Metropolis-Hastings.

• If the most likely graphs are highly 

separated our estimate of the 

posterior will be poor.

Schemes such as simulated 
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• Schemes such as simulated 

tempering and tunnelling Monte 

Carlo attempt to over come this.
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Figure 3: As we increase the number of

measurements the probability distribution

becomes more peaked. This can cause

trouble if the peaks are highly separated.


