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Inferring biological networks from data is currently an area of much interest. Understanding novel
biology based upon these networks has important implications for studying many diseases. We
examine two Monte Carlo schemes which it was hoped would provide a speed up over a widely used
Metropolis-Hastings scheme for inferring the networks: Tempering (both simulated and parallel)
and a novel ‘Tunnelling’ scheme. Analysis and empirical results provide a clearer understanding
of the nature of the MCMC problem and insight into the computational exploration of network
space. A parallel variant of Simulated Tempering called Parallel Tempering is found to provide
gains relative to other schemes on a 10 node problem with a vast state space. In addition the basis
of a possible application of Swendesen-Wang type cluster algorithms is detailed, though this was
not actually implemented.

I. INTRODUCTION

Thanks to modern experimental techniques, such as
DNA microarrays & protein arrays, researchers have an
abundance of biological data on which quantitative anal-
ysis can be performed. One particular method that has
received a lot of attention is probabilistic graphical mod-
els. One can measure, for example, the expression of
many genes or proteins under various conditions and us-
ing probabilistic graphical models infer from data rela-
tionships between these molecular components. Such a
network is shown in Figure 1, which shows interactions
between some proteins that are involved in the Epidermal
Growth Factor Receptor system, a system of particular
interest in cancer biology.

FIG. 1: The network relating the various components of the
Epidermal Growth Factor Receptor (EGFR) system which
was used to simulate data [1].

These biological networks can be represented by
graphs. A graph G = (V,E) is a mathematical object
consisting of a vertex set V and an edge set E. The

vertices (nodes) represent each of the molecular compo-
nents in the biological system of interest and the edges
connecting them denote interactions between these com-
ponents. Since the relations between the proteins are
causal the edges must be directed, i.e. A causes B or B
causes A. We apply the additional constraint that G must
be acyclic. That is there exist no paths following edges
such that one can start on any node and end up back
there. Such graphs are called Directed Acyclic Graphs
(DAGs). This is required to yield a well defined proba-
bilistic model, but precludes modelling of feedback loops
from steady state data. Feedback can be modelled using
dynamic variants of the models used herein.

Associated with each node i is a random variable,
which we label Xi. A link from node i to node j in
G implies (loosely speaking) a dependence of Xj on Xi.
Thanks to the acyclic structure of G we can factorise the
whole joint distribution P (X1...Xp|G)

P (X1...Xp|G) =
p∏
i=1

P (Xi|PaG(Xi)) (1)

where PaG(Xi) is the set of parents of Xi in G and
p = |V | is the number of nodes in G. For a detailed
discussion of probabilistic semantics see [2]. Root nodes
have no parents and so their probabilities are specified as
marginal distributions. In general the conditional prob-
abilities can be any suitable distribution but as in [1] we
are working with multinomial local conditionals.

We are interested in the posterior probability of any
particular graph G given the measured data X. We
use Bayes’ theorem to write this probability in terms of
the likelihood P (X|G) and a prior distribution P (G) on
DAGs.

P (G|X) ∝ P (X|G)P (G) (2)

The prior represents our belief about which graphs are
more likely a priori. We can use the prior to specify any
biology which is known about the system or what we
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believe to be unlikely in a realistic network. For example
consider the set of components shown in Figure 1, based
on current biological knowledge we might for example
want to penalise graphs which have direct interactions
between Ligands (cyan) and Cytosolic proteins (yellow).
This can be achieved using the prior. Since priors are not
the main focus of this project we will be using a uniform
prior P (G) = 1

|G| where G is the space of all DAGs.
The likelihood P (X|G) is simply how likely the data is

given a specified network structure. By integrating over
the multinomial local conditional model parameters Θ
we can write

P (X|G) =
∫
P (X|G,Θ)P (Θ|G) dΘ (3)

P (X|G,Θ) are the multinomial conditional distributions
chosen for (1) and P (Θ|G) is a prior on the parame-
ters of the multinomials. Since the Dirichlet distribu-
tion is conjugate to the multinomial conditional distribu-
tions choosing P (Θ|G) to be Dirichlet distributed yields
a closed form solution for the likelihood:

P (X|G) =
p∏
i=1

qi∏
j=1

Γ(N ′ij)
Γ(Nij +N ′ij)

ri∏
k=1

Γ(Nijk +N ′ijk)
Γ(N ′ijk)

(4)

As is often the case it is much easier to work in log space
so we can write the log-likelihood

logP (X|G) =
p∑
i=1

qi∑
j=1

(
log Γ(N ′ij)− log Γ(Nij +N ′ij)

+
ri∑
k=1

[
log Γ(Nijk +N ′ijk)− log Γ(N ′ijk)

])
(5)

In (4) and (5) Nijk is the number of observations in which
Xi takes value k and has parent configuration j. N ′ijk are
the parameters for the Dirichlet prior distribution, i.e.
the model hyperparameters. ri is the number of possible
values Xi can take and qi is the number of possible parent
configurations.

Nij =
ri∑
k=1

Nijk, N ′ij =
ri∑
k=1

N ′ijk

Once we have written down the likelihood as in (4)
we can ask any question about which graph is the most
probable or what are the chances of seeing individual fea-
tures. However to deal with the missing normalisation
constant in (2) we must enumerate the whole space G.
The number of directed graphs is 2p

2
. This can be seen

by representing the graph as an adjacency matrix, which
is equivalent to a binary number with p2 bits. While the
number of directed acyclic graphs (DAGs) is not as large
as the number of directed graphs it still grows super-
exponentially [3] so enumerating all DAGs becomes a

practical impossibility. For illustration by the time we
reach 11 nodes there are almost as many DAGs as there
are stars in the known universe. Despite this inability to
enumerate |G| we can still estimate the posterior prob-
ability distribution P (G|X) by using the Monte Carlo
method. The Monte Carlo method is capable of correctly
sampling from probability distributions which are known
up to some normalising constant.

Metropolis-Hastings [4, 5] is currently the most widely
used scheme for inferring network structures from data.
It is guaranteed to converge asymptotically but in prac-
tice this convergence (mixing) can take a long time, es-
pecially if the number of nodes p is large. Thus there is a
strong desire for Monte-Carlo schemes which mix faster
than the Metropolis-Hastings scheme.

II. MONTE CARLO SCHEMES

Loosely speaking the Monte-Carlo method works by
moving around our space of graphs G randomly but in
such a way that the number of times we visit a particu-
lar graph is proportional to its posterior probability. It
achieves this by proposing a new graph from some ‘pro-
posal distribution’, accepting or rejecting this new graph
according to an ‘acceptance probability’. Crucially the
acceptance probability is chosen so that the number of
times a graph is sampled is representative of its proba-
bility. For T samples our estimate of the probability of a
graph G is given by

P̂ (G|X) =
1
T

T∑
t=1

I(g(t) = G) (6)

where g(t) is the tth sampled graph and I(·) is the indica-
tor function which equals one if its argument is true and
0 otherwise.

The differences between Monte Carlo schemes consid-
ered here lie in the exact nature of the proposal dis-
tributions and corresponding acceptance probabilities.
We shall consider several different schemes for which
the baseline is taken to be the widely used Metropolis-
Hastings. All the schemes described technically use
the Metropolis-Hastings algorithm but from herein we
shall refer to the single edge flipping Metropolis-Hastings
scheme in wide use simply as the Metropolis-Hastings
(MH) scheme and the others by their respective names.

A. Metropolis-Hastings

There are two appealing aspects to the Metropolis-
Hastings scheme; firstly the proposal distribution Q is
very simple and secondly it is easy to show that the re-
sulting Markov chain satisfies detailed balance. Detailed
balance ensures that the Markov chain converges to the
correct unique stationary distribution (see §A 1).
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FIG. 2: The neighbourhood η(G) of a graph G is defined as
any DAG reachable from G by adding, deleting or flipping
only a single edge.

The proposal distribution Q involves picking so-called
‘neighbours’ with uniform probability. The neighbour-
hood η(G) of a graph G is defined to be all other graphs
G′ which are reachable by either removing, adding or
flipping only one edge while maintaining acyclicity. The
proposal distribution is then

Q(G→ G′) =
{

1
|η(G)| if G′ ∈ η(G)

0 otherwise
(7)

Obviously this proposal distribution has only short range
support. The acceptance probability has the form

A = min {1, α} (8)

where

α =
P (X|G′)Q(G′ → G)
P (X|G)Q(G→ G′)

=
P (X|G′)|η(G)|
P (X|G)|η(G′)|

(9)

Naturally we wish to reject as few moves as possible so
α is made to be as large as possible while still giving the
correct posterior distribution. The form of α shown in
(9) has this property.

B. Tunnelling

The Metropolis-Hastings scheme is guaranteed to con-
verge given enough time. However, in practice the mixing
time can be large. This because the resultant Markov
chain can get stuck in regions of locally high scoring
graphs (large P (G|X)). The tunnelling Monte-Carlo
scheme is designed to overcome this obstacle by allow-
ing the process to jump or ‘tunnel’ between regions of
high scoring graphs, thus allowing it to sample more of
G in a shorter time [6]. This scheme is similar in essence
to Metropolis-Hastings but it has a slightly modified pro-
posal distribution.

FIG. 3: Tunnelling Monte Carlo works by supplementing local
moves from the Metropolis proposal distribution Q with long
range jumps between high scoring graphs from the tunnelling
proposal distribution QT . This prevents the Markov chain
getting stuck in local maxima.

In order to jump between high scoring regions we first
have to know which regions of G these are. Before per-
forming any Monte-Carlo Steps (MCS) a set of highly
probably graphs GT ⊂ G (the modes) is pre-computed.
The modes must not be neighbours, that is

∀ G,G′ ∈ GT G /∈ η(G′) (10)

In practice this is computed using steepest ascent with
multiple random starting DAGs. By construction this
satisfies condition (10).

When considering the proposal distribution we now
have two possibilities to account for, either the current
graph is not a mode (G /∈ GT ) or it is (G ∈ GT ). If the
former is the case then we simply use the Metropolis-
Hastings proposal distribution

Q(G→ G′) =
{

1
|η(G)| if G′ ∈ η(G)

0 otherwise

If the proposed new graph G′ is a mode so that G /∈
GT ∧G′ ∈ GT then we summarily reject G′ with a prob-
ability p, this ensures detailed balance (see §A 2). If
however we are on a mode then with probability p we
propose a move using the new tunnelling proposal distri-
bution QT otherwise with probability (1− p) we use the
Metropolis-Hastings proposal Q. Using QT we uniformly
choose another mode s.t.

QT (G→ G′) =
{

1
|GT |−1 if G′ ∈ GT ∧G 6= G′

0 otherwise
(11)

Once we have proposed the new graph we accept it with
the usual Metropolis-Hastings probability given by (8).
It is important to note that if we used proposal distribu-
tion QT then α now becomes just

αT =
P (X|G′)QT (G′ → G)
P (X|G)QT (G→ G′)

=
P (X|G′)
P (X|G)

(12)
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FIG. 4: For a simple 1d example of two highly separated
Gaussians tunnelling Monte-Carlo (red) correctly estimates
the true distribution (blue) whereas a Metropolis sampler
(green) fails.

Since QT = 1
|GT |−1 is the same for all modes. As the

modes all have high scores, if we propose a tunnelling
move then it stands a reasonable chance of being ac-
cepted. Thus the tunnelling scheme strikes a balance
between short range movements and longer jumps.

The tunnelling scheme is expected to work in situations
with highly separated peaks where Metropolis-Hastings
fails. As a simple example of this consider a mixture
two Gaussians N(µ1, σ) and N(µ2, σ) such that P (x) ∝
N(µ1, σ)+N(µ2, σ) with |µ1−µ2| >> σ. Figure 4 shows
that unlike the Tunnelling sampler a simple Metropolis
sampler fails to estimate the distribution correctly. The
Metropolis sampler will pick up either peak randomly
but once it has found one it cannot escape to sample the
other peak correctly.

C. Tempering

Simulated Tempering (ST) is similar in spirit to tun-
nelling. It also aims help the Markov chain escape local
maxima. The ST scheme does not achieve this (as the
tunnelling scheme does) by supplementing its proposal
distribution with longer range support. Instead it com-
bines MH with higher temperature moves. Marinari and
Parisi [7] and Geyer and Thompson [8] have shown that
the ST scheme can provide large benefits with regards to
converge to particularly pathological probability distri-
butions however it does have the disadvantage that only
a subset of visited graphs can actually be taken as sam-
ples.

In this statistical application there is no equivalent to
the physical temperature however we can introduce an
analogue by writing

α =
(
P (X|G′)|η(G)|
P (X|G)|η(G′)|

)β
(13)

Here β = T−1 is the inverse temperature. Clearly as
β → 0 (infinite temperature) α = 1 and so we have the
uniform distribution one would expect. Similarly as β →
∞ (zero temperature) α =∞ if G′ is more likely or α = 0
if G is more likely and we recover steepest ascent.

We supplement the state (in this case our graph G)
with an index i ∈M = {1, ...m} so that now the state of
the system is the pair (G, i). Each index i labels a partic-
ular inverse temperature βi. The Markov chain now per-
forms its walk through this extended state space G ×M.
To perform this walk the following algorithm is applied

(1) The graph G is updated at the current temperature
βi according to any scheme for which there exists a
unique stationary distribution. For simplicity here
we use MH.

(2) Set j = i ± 1 with probabilities qi,j . Reflecting
boundary conditions imply q1,2 = qm,m−1 = 1 and
qi,i±1 = 1

2 for 1 < i < m.

(3) Accept or reject this new temperature with the
Metropolis probability min{1, r} where

r =
(P (X|G)|η(G)|)βj

(P (X|G)|η(G)|)βi

πj
πi

qj,i
qi,j

(14)

Here the πi’s are the pseudo-priors, so called because of
the way they multiply P (X|G)’s. They are simply num-
bers which have to be chosen in advance. The simplest
choice for the pseudo-priors is uniform however in prac-
tice this leads to the distributions not mixing and we
get stuck in the hottest distribution. It is possible to
update the pseudo-priors as the simulation proceeds to
give uniform acceptance rates. The method used here is
‘Stochastic Approximation’ [9]. It penalises distributions
in which we spend a lot of time by lowering their pseudo-
prior value πi and raising those of all other distributions
πi′ 6=i. This is achieved by updating the pseudo-priors
according to

π
(t+1)
i = π

(t)
i exp(−c0/(t+ n0))

π
(t+1)
i′ = π

(t)
i′ exp(c0/[m(t+ n0)])

c0 and n0 are user specified parameters so in a sense
we have simply replaced the problem of specifying suit-
able pseudo-priors with that of choosing c0 and n0, how-
ever these parameters just set how quickly we update the
pseudo-priors and hence how quickly we reach uniform
acceptance rates for moving up and down the tempera-
ture ladder.

In the ST algorithm described above, step (1) moves
around G and steps (2) and (3) move around M, thus
the extended state (G, i) can explore G ×M.

Parallel tempering (PT) is very similar to simulated
tempering but it makes use of parallel computing: in-
stead of performing a random walk on our temperatures
we run the chains at different temperatures in parallel.
Because of this we can run all m temperatures in the
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same time it takes to perform a MH run. Our state space
in this case has been extended to Gm. The algorithm is
similar to the ST algorithm;

(1) With probability α0 conduct a parallel step;

(a) Update each graph Gi using the MH scheme
at temperature βi.

(2) else conduct an exchange step;

(a) Randomly choose a neighbouring pair i and
j = i ± 1. Propose swapping Gi with Gj and
vice versa.

(b) Accept the swap with probability min{1, r}

r =
P (X|Gj)βi P (X|Gi)βj

P (X|Gi)βi P (X|Gj)βj
(15)

Naturally there is only benefit here if one has access to
parallel computing facilities but these are becoming more
and more available with even laptops having 2 or more
cores.

III. SIMULATION

In order to proceed further data on which the infer-
ence will be performed are required. Since we are work-
ing with a network we know, we can simulate data from
the network and use this for inference. To keep things
simple we only considered binary random variables so
Xi ∈ {0, 1} ∀Xi. We know from (1) how the probability
distributions (in this case Bernoulli) factorise. To intro-
duce the conditionality of child nodes we set the Bernoulli
success parameter to be either θ or (1− θ) depending on
the result of a boolean function of the node’s parents’
values. The algorithm for simulating a single datum is
then as follows:

(1) For each root node set its value to 1 with probabil-
ity θ0 and 0 otherwise.

(2) For all children of the these nodes if any of their
parents’ values is 1 set their value to 1 with proba-
bility θ and 0 with probability 1− θ, otherwise set
their value to 1 with probability 1 − θ and 0 with
probability θ.

(3) Repeat (2) until all nodes have been set.

For the data simulated in the project we used OR as the
boolean function and set θ0 = 0.5 and θ = 0.8

IV. SOME COMPUTATIONAL ISSUES

Before performing the Monte Carlo runs it serves to
consider some computational issues. For each scheme
there is quite a lot of computation which must be carried

out for each iteration, and a large number of iterations
are necessary for larger problems. Because of the in-
tensive nature of the computations required C++ was
chosen over MATLAB because of its speed. The main is-
sues are common across schemes, namely generating the
neighbourhoods η(G) & η(G′) and computing the two
log-likelihoods P (X|G) & P (X|G′).

Thankfully there are several ways of ameliorating these
issues. The most obvious is to store the η(G) and P (X|G)
from one step to the next. This saves having to compute
two neighbourhoods and log-likelihoods at each iteration.
If we accept the new graph G′ it becomes G and we
simply update the stored values for η(G) and P (X|G).
This provides a constant O(1) computational saving of
roughly a factor two.

A. Acyclicity Checking

To calculate η(G) we must loop over every edge, which
is p2 operations, then we must try either adding, deleting
or flipping the edge as appropriate. Once we have done
this we must check that the new graph is acyclic, itself an
expensive operation. If done naively this scales as O(p3).
It is possible to keep track of the so called ‘reachability
matrix’ for our graph so that when we come to create a
new graph G′ it is easy to check whether it is acyclic. The
reachability matrix is a binary matrix similar to the ad-
jacency matrix, which indicates whether there is a path
from one to node to another. The algorithm for updat-
ing the reachability matrix after performing an elemen-
tary edge operation is quite complicated but it avoids
the necessity of performing many matrix multiplications
which are required for the naive acyclicity checking [10].
Naturally it is possible to choose G′ (with the correct
probabilities) without computing all graphs in η(G) but
we still need to know how many graphs there are in η(G)
for the Hastings factor in our acceptance probabilities.

B. Caching

The next saving can be found by eliminating repeated
calculations of the likelihoods. Once we see a graph G
and calculate its likelihood we can store this so that next
time we see the graph G we do not have to re-calculate it.
The log-likelihoods are indexed by the graphs that repre-
sent them. It is difficult to say what order the computa-
tional saving provided by this method is, since in theory
there is a small chance that we never encounter the same
graph twice so we gain no saving and an equally small
chance that we never move off the graph we start on in
which case the savings would be enormous. Amortized
complexity analysis would give a better understanding
of the saving but is beyond the scope of this project. In
practice this simple addition provides a considerable a
speed-up.
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Naively storing the likelihoods in a C++ std::vector
means to search through the list of seen graphs takes
O(n) operations where n is the number of encountered
graphs. However if we impose a strict ordering on graphs
then we can reduce this to O(log n) by using std::set,
thus further reducing computation time. An obvious or-
dering arises from the fact there is a bijection between
graphs and binary numbers. This bijection is clear if we
represent the graphs by their adjacency matrices. Unfort-
nately we cannot simply convert the adjacency matrix to
an integer and use the computer’s built in comparison
operations. The reason for this is that for, say p = 10 we
have 90 possible edges which is more than we could store
in either the 32 or 64 bits available on current machines.
Thus we must directly compare the adjacency matrices as
if they were binary numbers. To implement a less than
operator for the adjacency matrices we take each con-
secutive entry to represent a higher power of two, then
the highest power of 2 where the adjacency matrices dif-
fer will tell us which graph is represented by the smaller
binary number.

It should be noted that inserting a graph into a
std::set, which can be anything from O(1) to at
worst O(n), is slower than adding one to the end of a
std::vector which is always O(1). Fortunately we per-
form many more look up operations than insertions and
so the savings here outweigh the extra cost of insertion.
We can also use std::set to store the graphs we have
sampled, which has the same benefits as above. In prac-
tice runs with p = 10, N = 200, T = 100, 000 took
20 minutes and 10 minutes for the std::vector and
std::set implementations respectively. This is a big
saving, which conveniently becomes more pronounced as
T increases.

V. RESULTS

A. Preliminaries

The graph space in which we perform our Monte Carlo
estimation is vast and with a highly variable posterior
distribution. We can attempt to gain a better picture
of the problem in hand by looking at two things; the
information entropy and the distances between graphs.

The information entropy H is a measure of how highly
peaked a distribution is. Mathematically it is defined as

H[p] = −
∑
i

pi ln pi. (16)

A higher information entropy means the distribution is
flatter. If we plot H[p] against the number of measure-
ments we can see from Figure 5 that although the entropy
does decrease with increasing N it is still quite high even
for N = 200 and the variation is quite high. To see lower
entropies still we used the method described in §III to
simulate data sets of varying size. The largest of which
was N = 2000 data points. This large amount of data

FIG. 5: (top) The information entropy of many subsets of
200 measurements plotted against the size of the subsets for
4 nodes. We can see a slight decrease but with large variance.
(bottom) As we increase the number of measurements we can
see that the distribution becomes more peaked around certain
modal graphs. Note proximity of DAGs to each other in this
chart implies nothing about whether they really are in each-
others’ neighbourhoods.

might seem too large to be obtained using something
like a DNA Microarray but it can be obtained using flow
cytometry, albeit for a smaller number of molecular com-
ponents.

The distances between graphs is also an important fac-
tor governing graph space. In this setting the distance d
between two graphs G and G′ is defined to be the mini-
mum number of elementary edge operations required to
get from G to G′, that is edge additions, deletions and
flips. If we represent the two graphs as binary adjacency
matrices AG and AG′ we can write

d = ||AG ⊕AG′ || 2
F − ||AG ∧ATG′ || 2

F (17)

where the boolean operations ⊕ (XOR) and ∧ (AND)
are applied element-wise to the matrices and || · || 2

F (the
Frobenius norm squared) is equal to the number of non-
zero elements. The first term counts how many edges
are different and the second term accounts for reversal
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moves.
Since we are interested in how well these schemes are

estimating the target posterior distribution in a given
time we need a way to measure this. For small systems
(less than 6 nodes) we can enumerate the whole space G
which means we know the true posterior. Thus we can
use the total variation norm ∆P to measure the difference
between our estimated distribution and the truth.

∆P =
∑
g∈G
|pg − qg| (18)

Where pg is the true probability of graph g and qg is
the probability from sampling the graph with our Monte
Carlo schemes (i.e. the number of times we see the graph
divided by the total number of samples). ∆P ranges from
0 which indicates a perfect estimate to 2 which tells us
our estimate is completely wrong.

While this provides a very clear measure of conver-
gence for small systems we will typically be interested
in larger systems where it is no longer applicable. In
this case we can examine the variance of probabilities
of individual edges for signs of convergence. The edge
probability P (e) is the probability of a specific edge e
appearing and is calculated in a very similar way to the
estimated posterior on graphs

P (e) =
1
T

T∑
t=1

I(e ∈ g(t)) (19)

Again I is the indicator function which returns 1 if e is
in the edge set of graph g(t) and 0 if it is not.

When we run multiple MC estimations, if our Markov
chains are converging to the correct posterior then we
would expect the edge probabilities to converge to the
same values. Thus the variance on the edge probabilities
gives us as indication of how well our Markov chains are
doing. If one scheme has consistently lower edge proba-
bility variances then it is likely doing better.

With the exception of Metropolis-Hastings all of the
schemes have at least one parameter to set. For the Tun-
nelling scheme there is just one; the probability p that we
propose a tunnelling jump if we are on a modal graph. A
range of values of p were examined though they were re-
stricted to p ∈ (0, 1). The reason for this is that if p = 0
we simply recover the Metropolis-Hastings scheme and if
p = 1 the state space is no longer irreducible. If p = 1
when we start on a mode we clearly only sample modes,
and when we do not start on a mode we never sample
the modes, either way our estimate of the posterior will
be terrible.

Simulated tempering has several parameters which
must be specified. Thankfully replacing specification of
the pseudo-priors with the stochastic approximation up-
date scheme makes this somewhat easier but we still have
to specify the following

1. The number of temperatures m

2. The temperatures themselves βi

3. The stochastic approximation parameters c0 and
n0

As noted by Geyer and Thompson [8] this is one of the
principle draw-backs of ST. Because of this a wide range
of parameters were examined. We tried m = 2, 3, 5 & 10
in combination with a maximum temperature of Tmax =
1.2− 5.0.

Parallel tempering is related to simulated tempering
and as such has a similar set of parameters. We must still
specify the number of different temperatures m and the
temperatures themselves βi. Instead of the parameters
c0 and n0 we must now set α0 the probability to make
a ‘parallel’ step instead of an ‘exchange’ step. Again a
range of temperatures and number of temperatures were
tested.

B. Empirical Analysis of Monte Carlo Schemes

To begin with a simplified network of 4 nodes was stud-
ied. The reasons for beginning with this subset of the
full network are (a) computation times are significantly
smaller on small networks and (b) The space of 4 node
DAGs contains only 543 graphs, so we can enumerate all
DAGs and compare our Monte Carlo results to the real
distribution. If we compare the actual scores of all 543
4-node DAGs and the scores obtained by using a long
Metropolis-Hastings (MH) run with T = 5000 ≈ 10× |G|
MCS we see there is a nice agreement between the dis-
tributions (Figure 6). The total variation for these two
distributions is 0.217 which is indicates a good, but not
fantastic, estimate.

Now comparing how Tunnelling performs against
Metropolis-Hastings on this 4 node system we can see
that there is no noticeable difference in performance be-
tween the two. Since this is a small system we can mea-
sure convergence using the total variation. In Figure 7
the total variation against number of Monte Carlo steps
(MCS) was averaged over 50 independent realisations. It
also appears here that varying the probability to make a
tunnelling jump p does not have any effect on the conver-
gence. Except of course where p = 1 which we already
know does not estimate the correct distribution. Again
the results were averaged over 50 independent realisa-
tions.

Next a slightly larger system of p = 5 nodes with
N = 2000 data points was examined. This is the largest
system for which we can compute the true posterior. The
mode set was computed using steepest ascent. Starting
from 500 initial random graphs we see 154 distinct modes
after the steepest ascent has been run, which suggests
that many of the initial graphs are converging to the same
peaks. If we look at Figure 8 we can see that the fraction
of accepted jumps which are tunnelling jumps between
modes levels off. This shows our samplers are making
tunnelling jumps consistently throughout the run. De-
spite the fact the Markov chains are making these jumps
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FIG. 6: The scores of all 543 4-node DAGs, and their MH
estimated scores. The total variation for these two distribu-
tions is small at ∆P = 0.22. Note that the positions of the
graphs on the x-axis implies nothing about their locality.

we do not see a gain (in terms of a lower total variation)
over the standard Metropolis-Hastings scheme.

One possible reason for this is that the mode set is
poorly specified. Figure 9 shows the true posterior dis-
tribution for 5 nodes with 2000 data points in blue. The
graphs that steepest ascent picked out as modes are high-
lighted in red. We can see that it has failed to find some
of the highest scoring graphs but has got stuck in many
low scoring but locally maximal graphs.

Next it was decided to take the top ranked 100 graphs
under the true posterior to be the mode set in an at-
tempt to see if tunnelling would offer a speed up. Due
to condition (10) only 35 of the top 100 could be kept.
Unfortunately even this did not cause tunnelling to out
perform Metropolis-Hastings. Again we still consistently
made tunnelling jumps throughout the runs.

Examining the structure of the graph space provides
some clues as to why Metropolis-Hastings performs as
well as tunnelling. If we plot the distances between the
top 50 graphs as defined by (17) we can see that the
most likely graphs (upper left quadrant of Figure 10) are
actually quite close together with respect to the single
edge operations. This is further highlighted if we look at
which graphs are in each others’ neighbourhoods. The
graphs which are in each others’ neighbour hoods are
highlighted in red.

Additionally almost all of the probability mass is con-
tained in the first twenty graphs. This is shown in Fig-
ure 11 which shows the cumulative posterior probability
against the number of DAGs ranked in descending order

FIG. 7: (top)The total-variation against Monte Carlo Steps
(MCS) for the Metropolis-Hastings and Tunnelling schemes.
Averaged over 50 realisations. (bottom) The performance of
the tunnelling does not depend on our choice of p in this case.

according to their posterior probability.
Next a larger 10 node system was examined. We used

plots similar to those in Figures 10 and 11 to determine
that the intermediate case with N = 1000 data points
was most likely to show an advantage to tunnelling.

Looking at the performance of simulated tempering
on the same systems we have tested tunnelling on re-
veals that it actually performs worse than the Metropolis-
Hastings scheme. Figure 12 shows a single run of a simu-
lated tempering sampler with typical parameters com-
pared to a Metropolis-Hastings sampler. We can see
that it fares far worse in terms of total variation. In-
deed in Figure 13 we can see a possible reason for this,
this plot shows how many samples were generated in to-
tal for each hundred samples which were generated at the
correct temperature. It is clear that in many cases we are
generating up to 100 times as many samples as are kept.
It is possible to alleviate this problem through the use
of the related parallel tempering scheme [11]. This poor
performance of the ST scheme was found with all param-
eter values and for all problems we applied it to. That is
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FIG. 8: The fraction of accepted moves which were tunnelling
jumps as a function of MCS

FIG. 9: The true posterior distribution for 5 nodes with 2000
data points. The modes computed using steepest ascent are
highlighted in red.

not to say that ST has no applications, indeed Geyer &
Thompson showed that it can correctly estimate partic-
ularly pathological distributions where MH struggles [8].

Returning now to the larger 10 node problem we turn
to the variances of the edge probabilities to indicate con-
vergence of our Markov chains. There are 90 possible
edges for the 10 node system since by definition we can-
not have edges which loop back to their parent node (the
diagonal entries ofAG must be zero). Since we have a rea-
sonably large number of variances here we can use a box
plot to compare the performance of different scheme. Fig-
ure 14 shows the standard deviation of edge probabilities
across 50 realisations for 10 different samplers. Sampler
1 is our baseline, the Metropolis-Hastings scheme, sam-
plers 2 - 7 are parallel tempering samplers and samplers
8 - 10 are tunnelling samplers. The parameter values for
each sampler are shown in Table I. We can see that still
tunnelling performs comparably to Metropolis-Hastings

FIG. 10: (top) The distances between the 50 most proba-
ble graphs for 5 nodes with 2000 data. The distance is the
minimum number of elementary operations needed to move
between the two graphs. (bottom) Shows those graphs which
are in each others’ neighbourhoods highlighted in red. We
can see that lots of the highest scoring graphs (including the
top two) are in each others’ neighbourhoods.

but encouragingly the standard deviations of the edge
probabilities are lower for all of the parallel tempering
schemes.

VI. SWENDSEN-WANG & CLUSTERING
ALGORITHMS

In statistical physics there exists a class of Monte Carlo
algorithms called ‘cluster algorithms’, which overcome
the problem of critical slowing down for systems of in-
teracting spins. For Ising type spins the two best known
are the Swendsen-Wang and Wolff algorithms [12–14] .
They are based on earlier work by Kasteleyn and For-
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FIG. 11: The cumulative probability of ranked graphs for
p = 5 with N = 2000. We have seen from Figure 10 that
the highest scoring graphs are close together and from this
plot we can see that they contain almost all of the probability
mass.

FIG. 12: A typical run of the ST scheme shown in comparison
to a typical MH run for p = 5 nodes and N = 2000 data. The
many wasted samples lead to a much slower convergence.

tuin [15, 16]. A particular spin si can be either up (+1)
or down (−1). A set of spins {si} has an energy given by
the Hamiltonian

H({si}) = −
∑
〈ij〉

Jij(sisj − 1) (20)

Using classical equilibrium statistical mechanics we can
write the probability of seeing a particular set of spins as

P ({si}) =
e−βH({si})

Z
=
eβ
∑
〈ij〉 Jij(sisj−1)

Z
(21)

This model displays a phase transition at a critical tem-
perature βc. When the inverse temperature β is close
to βc long range spacial and temporal correlations arise.
This causes the usual single spin flipping Metropolis al-
gorithm to slow dramatically. The reason being that if

FIG. 13: In order to generate samples with the ST scheme we
must discard many graphs sampled at the wrong tempera-
tures. This plot shows the total number of samples generated
to generate each 100 retained samples of a single ST run.

FIG. 14: A box plot of the edge probability standard devia-
tions from 50 realisations for the 90 possible edges for the 10
nodes system with 1000 data points. The schemes and their
parameters are detailed in table I. From this we can see that
it appears that PT offers at least some gains in all cases where
as TN appears to perform much the same as MH.

one spin is flipped it is very likely that it will belong to
a cluster of similarly aligned spins and thus this will be
energetically unfavourable. It is therefore very likely this
spin will flip back long before we flip the whole cluster.

The cluster algorithms overcome this problem by map-
ping the Ising model to an equivalent model where the
constant interactions Jij are replaced by either infinite
interactions or no interactions. Spins with J ′ij = ∞ are
forced to be parallel and spins with J ′ij = 0 are com-
pletely independent. By adding these bonds with the
correct probability p we ensure that the spin configura-
tions {si} have the same statistical weight as in the orig-
inal Ising model. Since the clusters are now completely
independent we are free to chose their orientations ran-
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Sampler Type Parameters

1 MH -

2 PT m = 5, Tmax = 2.5, α0 = 0.9

3 PT m = 3, Tmax = 1.5, α0 = 0.9

4 PT m = 5, Tmax = 2.5, α0 = 0.7

5 PT m = 5, Tmax = 1.5, α0 = 0.5

6 PT m = 10, Tmax = 1.5, α0 = 0.7

7 PT m = 5, Tmax = 1.5, α0 = 0.9

8 TN p = 0.25, Nmodes = 200

9 TN p = 0.50, Nmodes = 200

10 TN p = 0.75, Nmodes = 200

TABLE I: The various samplers and their parameters used in
the 10 nodes, 1000 data case. See Figure 14

FIG. 15: We map the Ising model with interactions Jij to an
equivalent model with interactions J ′

ij = {0,∞}. Choosing p
correctly ensures the two models are equivalent.

domly allowing us to update many spins at once.
We can draw a direct analogy between this problem

and our graph inference problem. Just as in this applica-
tion we are trying to estimate a probability distribution
where we know the probability as a function of our state
but we only know this up to a constant of proportional-
ity. In this statistical physics application the state is {si}
which is equivalent to our G and the unknown constant
of proportionality Z is equivalent to our missing constant
in Bayes’ theorem (2). The analogy holds further appeal
when it is noted that G can be represented as a binary
adjacency matrix AG. The entries of AG directly corre-
spond to the spins in the Ising model. Of course there
are several complications to consider and overcome.

One of the keys to the Swendsen-Wang formalism is
that it is possible to factorise P ({si}) in terms of the
interacting pairs, that is

P ({si}) ∝ eβ
∏
〈ij〉

eJij(sisj−1) =
∏
〈ij〉

pij (22)

The reason for this is that the Hamiltonian (20) is written
in terms of a sum over interacting pairs. We are inter-
ested in the posterior probability P (G|X) which is equiv-
alent in the Ising model to exp(−βH)/Z thus it is clear
that our log-likelihood is directly equivalent to −βH.

Thankfully our log-likelihood (5) is also written as a
sum over ‘interacting’ terms. In its present form this
might not be obvious as the dependence of (5) on G,
and hence AG, is implicit. It is hidden in the Nijk’s. It

is non-trivial to write the log-likelihood explicitly as a
function of the adjacency matrix AG. This is where one
of the complications arises.

A node can have anywhere from zero to (p − 1) par-
ents: we must not only consider pairs of spins but pairs
of spins, triples of spins and so on up to (p − 1)-tuples
of spins. Each grouping of spins has a different proba-
bility of begin bound together to ensure the models are
equivalent. Careful, here p is the number of nodes not
the probability of adding a bond between spins. To fur-
ther complicate matters there is no sense of locality in
AG in the same fashion there is in {si} so we must take
into account all possible combinations of these edges. Ex-
tending the right hand side of (22) to account for these
facts yields

P (G|X) ∝
p−1∏
j=1

∏
〈i1...ij〉

pi1...ij (23)

Writing the factors of the posterior pi1...ij explicitly in
terms of the entries i1 through ij in the adjacency matrix
is a remaining challenge. However in principle once this
is achieved the mapping is complete.

VII. DISCUSSION

We began §V B by looking at a small 4 node subset of
the full network shown in Figure 1 with 200 data points.
The results show that in this small case Metropolis-
Hastings performs admirably providing a good estimate
of the posterior distribution with a total variation of
∆P = 0.217. Indeed in this case we found that tun-
nelling offers no benefit over Metropolis-Hastings for any
value of the jump probability p. Figure 7 shows that our
tunnelling performance does not depend on p, however
it is churlish to conclude that the tunnelling scheme is
insensitive to our choice of p. In this case it seems ob-
vious that its performance will not depend on p since
tunnelling confers no advantage. If there is a case where
tunnelling provides a noticeable speed up then presum-
ably the amount of speedup must depend on p, for if we
reduce p to zero then we just recover Metropolis-Hastings
and any benefit is lost.

Looking at the information entropy for the N = 200
case we concluded that tunnelling would not offer any
benefit here for two reasons: firstly the size of the system
is simply too small and secondly the distribution was too
dispersed. Here we have 4 nodes which means there are
only 12 possible edges thus it is only a short distance
between any two graphs. Also because of the high in-
formation entropy there is at least some mass on most
graphs thus there exist paths between the most likely
graphs which Metropolis-Hastings can take.

On the basis of this we decided to examine systems in
a much lower entropy regime with N = 2000. In addition
we looked at 5 nodes, which while not an especially large
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system does mean we can still use total variation to mea-
sure convergence. Here we still found that tunnelling did
not mix any quicker than Metropolis-Hastings. One pos-
sible factor we thought could be hindering tunnelling was
the choice of mode set. Starting from 500 initial graphs
steepest ascend converged to just 154 modal graphs, i.e.
lots of graphs were approaching the same peaks. Given
that the size of the state space |G| is roughly 30,000 the
modal set is still a very small subset of the whole space.

The fact that many reach the same peaks might then
seem to be encouraging but if we highlight the 154 modes
on the true posterior distribution (Figure 9) we can see
immediately that we have missed several of the highest
scoring graphs and picked up many low scoring graphs.
Figure 8 shows that we consistently make tunnelling
jumps throughout the run so it would seem we spend a
lot of time jumping between relatively low scoring graphs
which will not help us considerably with our estimate of
P (G|X).

Looking at the distances between the 50 most likely
graphs for p=5, N=2000 we can see that steepest ascent
fails to pick up some of the high scoring graphs because
many of them are in fact in the neighbourhood of the
most probable graph (Figure 10). The distances between
the 15 most likely graphs are all a few steps at most
and thus Metropolis-Hastings does not struggle to get
between these and there is no benefit to be had from
tunnelling. Figure 11 shows that the first 20 most likely
graphs contain over 90% of the probability mass and so
once we find this peak with what ever scheme, we will
have a reasonable estimate. By going to N = 2000 we
have, if anything, gone too far and picked out a single
peak.

When considering the larger 10 node system we also
estimated plots like Figures 10 and 11 for various values
of N and found that the mid range value of N = 1000
looked to have the more desired property of relatively
spaced out peaks.

Before moving to the larger system let us consider the
simulated tempering scheme. In all cases tested and for
all parameter values the simulated tempering performed
worse than Metropolis-Hastings. It is entirely possible
that since we make moves at higher temperatures and
only drop down occasionally to sample from the desired
distribution that the Markov chain is exploring regions
of G which contain low scoring graphs and then when we
sample at the correct temperature β = 1 we are sam-
pling a relatively low scoring graph. However in practice
this effect is almost entirely dominated by a second ef-
fect which was alluded to in the previous sentence: we
can only keep samples at β = 1. Thus any samples we
make at β 6= 1 must be discarded.

This problem becomes worse as m increases and also
if we poorly specify the temperatures. The neighbouring
temperatures must be fairly close for the acceptance rates
for moving between them to be appreciable. Thus if we
want a high maximum temperature we must have lots of
temperatures which leads to many wasted samples. In

this graph setting no regime was found where the gains
of simulated tempering outweighed this disadvantage.

Returning now to the 10 node problem we saw that
we must estimate whether we think our chains have con-
verged by examining the standard deviation across 50
realisations of the 90 different edge probabilities (Figure
14). Using this as a measure for how well our samplers
were estimating the posterior distribution we found that
even in this case, which looked the most promising, that
tunnelling still performs much the same as Metropolis-
Hastings for a range of jump probabilities.

The fact that we have failed to locate a regime where
tunnelling offers an advantage would suggest that MCMC
on graphs is not as difficult as previously believed and
provides added confidence in results based upon standard
Metropolis-Hastings estimation. In addition it appears
that in this situation the parallel tempering scheme does
offer an advantage. The edge standard deviations are
noticeably lower for all choices of parameters. Although
parallel tempering still discards many samples we can see
the benefits in the same time as a Metropolis-Hastings
sampler since it utilises parallel computing facilities to
run in the same time. This is a pleasing result which
suggests that if one wants to be as confident as possible
in the estimate of P (G|X) then it is possible to do better
than Metropolis-Hastings.

Finally we discussed possible application of Swendsen-
Wang type algorithms to the graph problem. While there
remain several complications and considerations to over-
come the analogy is clear and direct. Our log likelihood
can be seen directly to play the role of the Hamiltonian
and the entries of the adjacency matrix the role of the
spins. Whether in practice this provides a speed up re-
mains to be seen and would probably only be seen in
larger systems where we have the usual problems of di-
agnosing convergence. However this in an obvious exten-
sion to the work here.
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APPENDIX A

1. Proof of Detailed Balance For The
Metropolis-Hastings Scheme

Detailed balance implies

P (G|X)T (G→ G′) = P (G′|X)T (G′ → G) (A1)

where T , the transition matrix, is the probability of mov-
ing to G′ from G. One can write T in terms of the pro-
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posal distribution and acceptance probability such that

P (G|X)
P (G′|X)

=
T (G′ → G)
T (G→ G′)

=
|η(G)|
|η(G′)|

min{1, α−1}
min{1, α}

(A2)

Without loss of generality this is

P (G|X)
P (G′|X)

=
|η(G)|
|η(G′)|

1
α

(A3)

By substituting in for α from (8)

P (G|X)
P (G′|X)

=
|η(G)|
|η(G′)|

P (G|X)|η(G′)|
P (G′|X)|η(G)|

(A4)

=
P (G|X)
P (G′|X)

(A5)

2

2. Proof of Detailed Balance For The Tunnelling
Scheme

To show that (A1) is satisfied for the Tunnelling
scheme we consider the three possible cases where nei-
ther, one or both of G and G′ are in GT . If neither
are modal graphs then we simply make a Metropolis-
Hastings move and the proof in §A 1 holds.

Now consider the case where both graphs are in GT .
Condition (10) ensures that we cannot move between
these two using the usual Metropolis-Hastings proposal
Q such that

T (G→ G′) = p
1

|GT | − 1
min{1, αT } (A6)

where we have αT given by (12) so that

P (G|X)
P (G′|X)

=
T (G′ → G)
T (G→ G′)

=
p

p

(|GT | − 1)
(|GT | − 1)

min{1, α−1
T }

min{1, αT }
(A7)

cancelling and without loss of generality

P (G|X)
P (G′|X)

=
1
αT

=
P (G|X)
P (G′|X)

(A8)

2

The last case to consider is that when only one of G
or G′ is a modal graph. Assume G′ is the modal graph.
We can only move onto this graph by a local Metropolis-
Hastings move which leads to

T (G→ G′) = (1− p)|η(G)|−1 min{1, α} (A9)

Now the reverse can again only occur via local moves, but
since G′ is a mode this is only invoked with probability
(1− p), thus

T (G′ → G) = (1− p)|η(G′)|−1 min{1, α−1} (A10)
Combining these two gives

P (G|X)
P (G′|X)

=
T (G′ → G)
T (G→ G′)

=
(1− p)
(1− p)

|η(G)|
|η(G′)|

min{1, α−1}
min{1, α}

(A11)
Cancelling the (1 − p)’s we can see from (A2) that this
satisfies (A1). 2
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