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Abstract

Understanding the link between various universality classes of non-equilibrium phase transitions is an
important question and has direct consequences across many different disciplines. To that end we in-
vestigated properties of the conserved Manna sandpile model and attempted to construct a variant of
the contact process which shared the Manna universality class behaviour. For the Manna model the
relative excess of particles and density of active sites were found to scale with exponents α = 0.208(2)
and δ = −0.176(3) with time and β = 1 and γ = 0.333(7) ' 1/3 with density respectively. A variant
of the contact process was defined which coupled the activity to a conserved background field as in the
Manna model and the properties measured. Similar scaling behaviour was not found for this model.

1 Introduction

Self-organised criticality is a topic which has attracted much attention in recent years [1–5]. It usually
occurs in cases where the system is slowly driven and the driving force is dissipated quickly but spo-
radically, usually in some form of spontaneous energy cascade or avalanche. Such systems are diverse,
ranging from earthquake models [6] to interface depinning [1]. Despite the fact the models are quite dif-
ferent they seem to display similar behaviour at criticality, this is called universality [7, 8]. Traditionally
the most active area of focus for investigations into self-organised criticality has been sandpile models,
starting with the BTW model in 1987 [9].

If the system is driven slowly with energy escaping from the boundaries the system approaches and
then remains in a critical state where we see energy cascades of all sizes distributed as a power law [9].
Therefore this set up is known as the self-organised criticality (SOC) ensemble. If instead we impose
periodic boundary conditions so that energy cannot escape and we no longer drive the system so the
energy in the system remains constant we are then in the so called fixed-energy ensemble. In this case
the system no longer approaches criticality by itself but can be made to exist at its critical point by
tuning the amount of energy in the system. This is the control parameter. In this fashion we establish
a link between self-organised and ordinary criticality. For sandpile models the ‘energy’ is the number of
particles that sit on the lattice, so in the fixed-energy ensemble we have a conserved number of particles
in the system and the control parameter is the density of particles.

By changing this control parameter one can observe an absorbing phase transition, i.e. a transition
from a fluctuation into a frozen phase. Below the critical density the system can reach states where all
activity has ceased. Above this critical density however the activity will carry on ad infinitum (in an
infinite system).

In this project we examine a sandpile model called the conserved Manna model [10] which is the
subject of much current research. The Manna model differs from deterministic models such as the BTW
model in that it is a stochastic sandpile model. This inherent stochasticity is a desirable feature which
leads to less artifacts which could obscure universal behaviour [11]. Like other models the Manna model
exhibits an absorbing phase transition when in the fixed energy ensemble.

The work is motivated by a long-standing debate about the nature of the transition in this model.
In particular a possible relation to the universality class of Directed Percolation (DP).

1.1 The Manna Model

In the Manna model particles sit on the sites i of a lattice Λ. The number of particles on a particular
site i is zi ∈ Z+. We divide the sites into two classes: inactive and active. If zi < 2 the site i is inactive,

1



The Manna Model
1. Initialise temporary lattice: for all sites i set z′i(t) = zi(t).
2a. For all sites i if zi(t) ≥ 2 go to step 2b.
2b. Set z′i(t) = z′i(t)− zi(t).

Pick a new site j = i± 1 with probability 0.5, increment z′j(t)→ z′j(t) + 1.
Repeat zi(t) times.

3. Copy temporary lattice into actual lattice: for all sites i set zi(t+ 1) = z′i(t).

Table 1: Algorithm for simulating the Manna model on a computer.

Figure 1: The update scheme for an active site in the Manna sand-pile model. In (a) the active site is
updated leading to the configuration (b) in which a new site has become active. This is just one of three
possible outcomes of the update rule for this configuration.

otherwise it is active. The update of the lattice only affects active sites, which it does by redistributing
all of the particles on the active site to its nearest neighbours with equal probability for each particle.
For example in 1-d updating an active site with zi = 2 leads to both particles being shifted to either
i−1 or i+ 1 with probability 0.25 and one to both i+ 1 and i−1 with probability 0.5. It is this inherent
stochasticity in the update rule that leads to the Manna model being called a stochastic sandpile model.
All active sites are updated in parallel with the algorithm shown in Table 1. Naturally this update can
lead to previously inactive sites becoming active as shown schematically in Figure 1

In this investigation we restrict ourselves to one spacial dimension and time, the (1+1)-d case and
impose periodic boundary conditions on the lattice Λ. Thus we are working in the fixed-energy ensemble
instead of the self-organised criticality (SOC) ensemble which has attracted much attention previously .
It is conjectured that Directed Percolation models and the Manna model belong to distinct universality
classes [12, 13]: the DP and Manna or C-DP respectively. This is supported by numerical evidence
[14–16]. The Langevin equation for the DP universality class is

∂ρ

∂t
= −rρ− bρ2 +∇2ρ+ σ

√
ρ · η(x, t). (1)

Where ρ = ρ(x, t) is the activity density and η(x, t) is a noise term. In the Manna model we must
consider two fields: the density of particles and the density of active sites. According to conjecture by
Muñoz et al [17] this leads to a slight modification of the DP Langevin equation yielding the coupled
stochastic partial differential equations

∂ρ

∂t
= −rρ− bρ2 +∇2ρ+ σ

√
ρ · η(x, t) + ωρ · φ, (2)

∂φ

∂t
= D∇2ρ. (3)

Where ρ = ρ(x, t) is again the density of active sites, η(x, t) is a white noise term and φ = φ(x, t) is
the density of particles. Equation (1) is modified by a linear coupling of the active site density ρ to the
particle density φ to become equation (2). This coupling captures the fact sites only become active in
the discrete case when zi ≥ 2 and equation (3) encapsulates the fact that particles can only move by
being redistributed from an active site.
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1.2 Interface Models

It is possible to map sandpile models to models of interfaces moving through random quenched media
and indeed much work on sandpiles also considers these interface models. Understanding such systems
is important since it has applications in many areas of technology. One particular example is that of a
magnetic domain wall moving through a material, a system clearly of importance for storage technologies.

In these models each point on the lattice has a height Hx(t) which represents the penetration of an
interface through a medium. The interface is pulled with some force F . The phase transition seen in the
fixed-energy ensemble sandpiles manifests itself as a ‘depinning transition’ in the interface models. A
depinning transition occurs at a critical pulling force Fc, at which point the interface becomes unstuck
and is able to move through the medium. In the magnetic domain example mentioned previously the
role of F is played by an external magnetic field. The dynamics of such ‘linear interface models’ (LIM)
are governed by the quenched Edwards-Wilkinson (qEW) equation

∂H

∂t
= ∇2H + F + η(x, t), (4)

where η(x, t) is a white noise. The height of the interface H = H(x, t) can be mapped to the sandpile
as counting how many times a particular site has toppled, that is

H(x, t) =
∫ t

0

ρ(x, s)ds. (5)

The exact nature of the noise terms in the mapped interface model depend on the sandpile model
considered. For instance the BTW and Manna models have different noise terms in (4). For a fuller
discussion of the mapping see [18], [19] and [1].

The existence of such mappings means that any progress in understanding sandpiles has direct im-
plications for the comprehension of these interface models. Indeed recent work by Bonachela et al [3]
suggests that contrary to previous numerical studies [4] the Manna and LIM universality classes are
equivalent.

2 Observables

In the Manna model particles are not evenly spread along the lattice. If they were the system would be
in an absorbing state (unless φ̄ > 1). So a natural question to ask it how are the particles distributed
on the lattice? One measure we can use to quantify this is the excess or deficit of particles to the left of
a point relative to the average density. Mathematically we write this as

S(x, t) =
∫ x

0

φ(y, t)dy − xφ̄, (6)

where

φ̄ =
1
L

∫ L

0

φ(y, t)dy. (7)

Equations (6) and (7) are general for continuous systems. However our model in fact lives on a discrete
1-d lattice of length L. For this case we can write φ̄ = N

L where N is the number of particles. S(x, t)
becomes

Sx(t) =

(
x∑
i=1

zi(t)

)
− xN

L
. (8)

Note that the number of particles on site x, zx(t) directly represents φ(x, t). Of particular note is the
behaviour of the variance of Sx(t).

Care must be taken if we wish to compare the distribution of Sx(t) from many different realisations.
The reason for this is that the values of Sx(t) clearly depend on which lattice site we define to be ‘zero’.
Since we are using periodic boundary conditions the choice is completely arbitrary but this choice can
affect the values of Sx, as illustrated in Figure 2. The two density profiles shown (φ and φ′) are equivalent
under periodic boundary conditions but by arbitrarily defining a zero point we have affected Sx. Since
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Figure 2: Because equation 6 defines a zero point, two systems which are equivalent under periodic
boundary conditions (left) can lead to different values of Sx(t) (right) so care must be taken when combining
measurements from various realisations.

The Contact Process
1. Pick a random site i.
2a. If si(t) = 1 then set si(t+ 1) to zero with probability 1/(1 + λ).
2b. Else count the number of neighbours that have value 1, call this n.

Set si(t+ 1) to one with probability nλ/(2(1 + λ)).
3. Increment time by ∆t = 1/L(1 + λ).

Table 2: Algorithm for simulating the contact process on a computer.

this choice will not affect the variance of S for an individual realisation we can average the measurements
of VAR(Sx) as usual. However if we wish to look at the distribution of the S across many realisations
we must take care to subtract the mean of S for each realisation before combining the values.

Another important observable is the average density of active sites ρ̄. We can write this in a similar
form to φ̄,

ρ̄(t) =
1
L

∫ L

0

ρ(y, t)dy. (9)

In our discrete system this integral just equates to counting the number of active sites NA(t) so again
we have a nice simple form ρ̄(t) = NA(t)

L .

3 Moving from Directed Percolation to Manna

According to the literature the Manna model belongs to a different universality class to Directed Perco-
lation (DP) models such as the Domany-Kinsel automaton [20, 21]. A natural question to ask is then,
what are the salient differences between models in the two classes and is it possible to move DP models
into the Manna universality class?

The Manna Langevin equations (2) and (3) encode the coupling between the density of particles φ
and the active sites ρ. In DP no such coupling exists, however we can try to artificially impose it. For a
concrete example let us consider the contact process.

The contact process is a continuous time model where the sites on a lattice take the values either 1
or 0. If a site i has value si(t) = 1 it is set to 0 with rate ω(1 → 0) = 1, otherwise the site is set to 1
with rate ω(0 → 1) = (nλ)/(2d) where n is the number of neighbouring sites which have value 1. We
restrict d the spacial dimension to 1 because in that case we expect the differences between the DP and
Manna classes to be most pronounced.

The control parameter for this model is λ. There is a critical value λc above which the process
survives ad infinitum and below (and at) which the process will eventually die out and reach the unique
absorbing state of all zeros. Like the phase transition shown by the Manna model this is an absorbing
phase transition. Since this is a continuous time model we can simulate it using random sequential
updates, specifically using the algorithm in Table 2.
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Now we have defined the model we can try and impose a coupling similar to that in equations (2)
and (3) by introducing a modified control parameter λ → λ + εφ. In the standard contact process we
have only ρ but from (3) we can write

φ(x, t) = D

∫ t

0

∇2ρ(x, s)ds. (10)

We can approximate ∇2ρ for our discrete model by using the discrete Laplacian

∇2ρ ' ρ(x− 1, t)− 2ρ(x, t) + ρ(x+ 1, t),

which provides a way to calculate φ for the contact process. We can also calculate the same quantities
such as S(x, t). By substituting equation (10) into (6) we get

S(x, t) = D

∫ x

0

∫ t

0

∇2ρ(y, s)ds dy − xφ̄. (11)

In the contact process we do not have particles in the same sense as the Manna model. Thus we can no
longer write φ̄ = N

L but instead we can calculate this quantity by using equation (7). Combining all of
these gives

S(x, t) = D

∫ x

0

∫ t

0

∇2ρ(y, s)ds dy − xD

L

∫ L

0

∫ t

0

∇2ρ(y, s)ds dy, (12)

which when converted to the discrete case becomes

Sx(t) 'D

(
x∑
y=1

t∑
s=1

ρy−1(s)− 2ρy(s) + ρy+1(s)

)

− xD

L

(
L∑
y=1

t∑
s=1

ρy−1(s)− 2ρy(s) + ρy+1(s)

)
. (13)

Since we are working with periodic boundary conditions we can identify ρ0(t) = ρL(t) and ρL+1(t) = ρ1(t)
which means the second term in (13) is identically zero. Additionally in the Manna model D = d−1 [18]
so here where d = 1 this disappears from the equations and we are left with the simplified estimate

Sx(t) '
x∑
y=1

t∑
s=1

ρy−1(s)− 2ρy(s) + ρy+1(s). (14)

The fact that the second term in (13) is identically zero for all times is important since it means that
our constructed φx is a conserved field as it is in the fixed-energy ensemble Manna model. Writing Sx in
this form opens another interpretation as to what it represents. The discrete Laplacian at site x is equal
to the current flow of particles at x, see (3). By integrating this over time we are measuring the balance
of inflow and outflow of particles to and from site x. Thus we can also interpret Sx to be the balance of
flow from the left of x to the right against flow to the right of x to the left.

Universality classes are defined by the behaviour of their models at criticality thus if this coupling
does move the model from the DP to the Manna universality class we would expect to see the same
scaling behaviour as for the Manna model.

4 Results

4.1 Scaling

We began by simulating the Manna model at the critical density of φ̄c = 0.8924 and observing the scaling
properties of the variance of the particle density fluctuations, VAR(S) = σ2

S and density of active sites
ρ. These quantities are expected to scale with power law behaviour, i.e.

σ2
S ∼ tα, σ2

S ∼ ∆φβ ,

ρ ∼ tδ, ρ ∼ ∆φγ ,
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Figure 3: An example run of the Manna model in the super-critical phase with φ̄ = 0.9. Empty sites are
shown in white, sites with a single particle in grey and active sites in green. Note that active sites may have
more than two particles.

Figure 4: (left) The variance of S against time for several densities averaged over 1000 realisations. We
can see that only at the critical density does it obey a power law. (right) Fitting a power law yields an
exponent of α = 0.208(2).

where t is the time and ∆φ = |φ̄c − φ̄| is the distance from criticality.
For simulations of this kind the initial conditions are of importance [14]. To set up the initial

conditions two steps were followed. Firstly the system was set up into a regular absorbing state, i.e.
all particles distributed evenly so that no sites are active. Then a short diffusion is allowed to take
place whereby on average each particle is allowed to jump to one of its neighbouring sites, activating the
system. Such initial conditions are called ‘natural initial conditions’.

Natural initial conditions are used because they reduce transitory behaviour and give cleaner results
for the scaling exponents. Since we are close to an absorbing state the correlations which exist in
the natural initial conditions are more representative of the real system than distributing the particles
randomly [22]. An example system above criticality is shown in Figure 3.

It is clear from Figure 4 that the variance σ2
S obeys a power law increasing in time with exponent

α = 0.208(2). In addition we observed that σ2
S scales linearly with the distance above the critical point

∆φ. This is somewhat surprising as it means the scaling exponent β in this case is unity.
The scaling properties of the density of active sites ρ̄ = NA/L was also measured. For scaling with

time we find a scaling exponent of δ = −0.176(3) and for scaling with ∆φ we find an exponent of
γ = 0.333(7) ' 1/3. The fits for these are shown in Figure 6.

4.2 Finite Size Scaling

Next the behaviour under scaling of the system size at criticality was measured. System sizes ranging
from L = 16 = 24 to L = 16384 = 214 were simulated. Given this data it is possible to make use of the
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Figure 5: The variance of S against the distance from criticality averaged over 1000 realisations. We can
see that the scaling is linear which implies β = 1.

Figure 6: (left) The average density of active sites versus time scales with exponent δ = −0.176(3). (right)
The average density of active sites versus the distance from criticality scales with exponent 0.333(7). Both
plots were averaged over 103 realisations.

finite size scaling ansatz. This states that there exists a so called ‘scaling function’ whose behaviour is
independent of L but not of the critical exponents. Mathematically we write the ansatz as

ρ = Lν ρ̃(L−zt), (15)

where ρ̃(·) is the scaling function. This means that if ρL−ν is plotted against L−zt we will see the data
from all system sizes collapse onto one curve, if and only if we choose the correct critical exponents ν
and z.

It was found that data collapse occurred for the density of active sites ρ when the following rescaling
was used: ρ/L−0.32 versus t/L1.64. For the variance of particle excess σ2

S we found that rescaling σ2
S/L

0.43

versus t/L1.95 causes the peaks to collapse. These collapses are shown in Figure 7.
Additionally if we examine the saturation variance σ2

S(∞) as a function of system size L we find a
clear power law σ2

S(∞) ∼ L0.60(1) as shown in Figure 8. Naturally by changing the scaling exponent for
σ2
S to 0.60 we obtain the data collapse with coincident saturation variances (not shown), that is a scaling

of σ2
S/L

0.60 versus t/L1.95.

4.3 Density Fluctuations

The next quantity which was examined was the distribution of the excess of particles compared to its
mean Sx. Figure 9 shows the distribution of Sx at criticality for a lattice size of L = 16384. Fitting a
Gaussian curve to this distribution results in a reasonable fit but there is clear discrepancy at the peak
and in the mid tails. A much better fit can be obtained by fitting a distribution of the form

f(x) ∝ exp

[
−
(
|x− µ|
σ

)d]
. (16)
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Figure 7: (left) Data collapse of the density of active sites against time. We can see that the scaling of
ρ/L−0.32 and t/L1.64 leads to a good collapse. (right) With the variance of S we can either collapse the
peaks of the curves or the saturation variance. Scaling as σ2

S/L
0.43 versus t/L1.95 yields a collapse where

the peaks coincide nicely.

Figure 8: The saturation variance, when plotted against system size, follows a power law with exponent
0.60(1).

This equation is a trivial extension of the stretched exponential distribution [23] from [0,∞) to the whole
real line. Unfortunately for such a distribution the normalisation constant and CDF must be computed
numerically or using a series expansion. Despite this limitation the stretched exponential can take on
large range of shapes which make it quite versatile. It can be seen by simple rearrangement of equation
(16) that

ln[− ln[f(x)]] ∝ d ln |x− µ|. (17)

Using this equation if we plot ln[− ln[f(x)]] against ln |x − µ| the data should form a straight line with
gradient d. Indeed this is what we see in Figure 9 with d = 1.67(1). Additionally we can fit equation
(16) as it is to the raw data which yields a slightly different value of d = 1.617(1). The data used to
produce this distribution were taken from 1000 realisations with L = 16384 meaning in total there were
some 16384000 measurements of Sx.

4.4 Measured Correlations

Next we measured the autocorrelation of both Sx and φx, they are shown in Figure 10. For Sx we
can see that there are long range correlations spanning the whole system. In contrast φx the density
of particles has much shorter range correlation of around 5 lattice sites. The autocorrelation of φx is
initially negative and then returns to zero. This is consistent with what one would expect based on the
nature of the Manna model and the Langevin equation (3).

The negative correlation indicates that if there are particles located at x then there are likely to be
less on the surrounding lattice sites, and conversely if x is empty then there are likely to be particles
close by. This is because the particles can only move from active sites so if a site has particles it has
received them from a previously active site. According to the redistribution rules (see Table 1) updating
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Figure 9: (left) Plotting ln[− ln(f)] against ln |x−µ| allows us to see that the fluctuations are not entirely
Gaussian. If this were a Normal distribution the gradient of the slope would be identically 2 (shown
in red) and instead here it is 1.68(1) (shown in green). (right) Fitting an equation of the form f(x) ∝
exp(−(|x − µ|/σ)d) with µ,σ and d as free parameters yields a value of d = 1.617(1). Note the two values
should coincide which is not the case, suggesting that the values for d should be taken with considerations.
However both show that there is some non-Gaussianity.

Figure 10: (left) The autocorrelation of Sx against the lag as a fraction of the system size, averaged over
1000 realisations. We can see it exhibits long range correlations. (right) The autocorrelation of φx averaged
over 1000 realisations. Initially the correlation is negative before returning to zero after ∼ 5 lattice sites.

an active site removes all the particles from this site so the number of particles will likely be less than
surrounding sites to which it loses its particles, and by reciprocity if x is empty then the surrounding
sites will have more particles since they have just been redistributed from x.

4.5 The Effect of Correlations

The Manna model has non-trivial, albeit short range, correlations in φ. To find a simpler example and
observe the effect of strong correlations on the fluctuations S we used the method described in §3 and
applied it to a process which displays very strong correlations in both space and time: the Sierpiński
gasket.

The implementation of this was a cellular automaton with an exclusive-or (XOR) update rule, i.e.
000 → 0, 100 → 1, 001 → 1, 101 → 0. With this update rule we have to be careful about choosing
the system size. It is not uncommon to use a system size which is a power of two, indeed for most of
this investigation a system size of L = 16384 = 214 has been used. However, in this specific case this
causes problems since the process rapidly annihilates itself if L = 2n. This is illustrated in Figure 11.
To combat this a system size of L = 16382 was used instead.

When the XOR process is run for 5×104 iterations and averaged over 500 realisations the distribution
of our calculated fluctuations S is highly non-Gaussian. Fitting a function of the form of equation (16)
leads to a value of d = 4.92(5) and σ = 1326(2), see Figure 11. This lends support to the idea that
spatio-temporal correlations lead to non-Gaussianity in the distribution of S.

While the Sierpiński gasket XOR process provides a nice illustration of the effect of correlations on
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Figure 11: (left) The XOR process simulated with the same initial conditions with two different system
sizes, L = 256 and L = 254. In the former case the process rapidly ceases while in the latter it continues
ad-infinitum. The Sierpiński gasket like structure is also clearly visable. (right) Estimating the ‘excess of
particles’ S for the XOR process leads to a highly non-Gaussian distribution with d = 4.92(5).

Sx it is clearly unrealistic when compared to our system. Attempts were made to generate sequences
of numbers with different autocorrelation functions. By making use of some basic properties of Fourier
transforms it is possible to create sequences of numbers which have theoretically any arbitrary autocor-
relation. The autocorrelation of a series is given by

R(τ) = 〈f(t)f(t+ τ)〉 =
∫ +∞

−∞
f(t)f(t+ τ) dt = f(t) ∗ f(t), (18)

where ∗ denotes convolution. By the Convolution Theorem a multiplication in Fourier space is equal to
a convolution in real space so if we write f̃(ω) = FT[f(t)] we obtain

R(τ) = FT−1[f̃(ω) · f̃(ω)],

⇒ FT[R(τ)] = f̃(ω) · f̃(ω),

⇒ f̃(ω) = FT[R(τ)]1/2. (19)

Using equation (19) we can write the power spectrum

S(ω) = f̃(ω) · f̃∗(ω) = (FT[R(τ)]1/2) · (FT[R(τ)]1/2)∗. (20)

Now we have the power spectral density S(ω) in terms of the autocorrelation R(τ), we can use this to
generate a series which has any desired autocorrelation. In order to turn S(ω) into a series f(t) we
simply use the equation

f(t) =
∫ +∞

−∞
S(ω) sin[ωt+ φ(ω)] dω. (21)

On its own S(ω) is not enough to reconstruct a signal since it contains no information about the phase
of the signal but this is no issue here. By choosing φ(ω) ∼ U [0, 2π) we obtain what we desire: a sequence
of seemingly random numbers that have the appropriate autocorrelation.

Equations (20) and (21) can be trivially converted to the discrete case. Attempts to utilise this
method to generate signals suffered from the inherent limitation of finite sampling range. However the
results (not shown) did display qualitative differences between signals with no correlation and signals
exhibiting long range spatial correlations.

4.6 Coupling to a Conserved Field

As detailed in §1.1 the conjectured Langevin equations (2) and (3) couple the two fields φ and ρ together.
Therefore we considered them separately in our simulation of the contact process and by applying the
coupling detailed in §3 attempted to emulate the coupling present in the Manna model.
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Figure 12: (left) The variance of our estimate for S against time for various coupling strengths (inset) The
variance of particle density φ vs time for the same coupling strengths. (right) The number of active sites as
a function of time for various coupling strengths ranging from 0 to 0.02.

Figure 13: (left) The variance of S against time plotted for a range of λs (inset) the variance of calculated
particle density φ for the same times and range of λ. (right) The number of active sites NA as a function of
time for a various values of λ.

We measured the behaviour of the usual quantities VAR(S) and ρ. For all coupling strengths ε
examined VAR(S) initially follows a clear power law however with the coupling switched on it soon
saturates and reaches a steady value. The reason for this is clearly seen if we instead look at the number
of active sites NA in Figure 12. We find that for higher ε the activity dies away sooner. Since Sx is
effectively an integration over time of the discrete Laplacian at site x if the activity ceases then Sx will
remain unchanging. The fact that increasing coupling strength ceases the activity sooner implies that it
shifts the critical point so that we are now below criticality.

For zero coupling we do not observe a cessation of activity during the course of these simulations
since we are at criticality. This however does not mean that it will not occur. Theoretically exactly at
the critical point λc activity will eventually cease [24]. Unfortunately the computation times required
for these simulations simply prohibited running them for longer.

This indication that by introducing the coupling we have shifted the critical point prompted us to
fix ε = 0.01 and instead vary λ to try and find the new critical point λc(ε). λ was varied from λ = 3.25
which is just below the original critical point to λ = 3.95 which is well above. The results are shown
in Figure 13. The value of λ has a pronounced affect on the number of active sites NA. As one would
expect increasing λ leads to more sites being active. For all of the values of λ shown here the activity
continues. After some initial transitory behaviour the activity settles a constant level. The saturation
activity level NA(∞) follows a power law against λ with exponent 0.24(1) and λ offset of 3.314(7), that
is

NA ∼ |λ− 3.314(7)|0.24(1). (22)

The behaviour of VAR(φ) seems to be largely unaffected by varying ε and for all values of λ simulated
for VAR(S) we saw a departure from power law scaling.
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5 Discussion

5.1 Correlations and Non-Gaussian Fluctuations

Let begin us by considering the completely uncorrelated case and what the distribution of S is. By
completely uncorrelated we mean that φ(x) ∼ η(x) where η(x) is a white noise. Thus

S(x) =
∫ x

0

η(y) dy = Bx, (23)

since the integral of white noise is a Brownian motion. For a Brownian motion Bx we know Bx ∼ N(0, x)
with N(0, σ2) indicating a normal distribution with mean 0 and variance of σ2. Thus we have for each x
that S(x) ∼ N(0, x). Therefore näıvely disregarding correlations within sample paths the distribution of
S across all sites x is the sum of many normal distributions. It is important to note that the distribution
of S being a sum of Gaussian PDFs is different to S itself being the sum of many normally distributed
random variables.1 So we write

S ∼
L∑
x=1

N(0, x), (24)

which in terms of the PDF is

f(S) =
1

L
√

2π

L∑
x=1

1
x

exp
(
−S

2

2x

)
. (25)

The factor 1/L ensures f(S) is normalised. This formula does not generalise so easily to the continuous
case.

The distribution (25) shows perfect agreement with the numerical results of S calculated by taking
φ to be a sequence of iid random variables ∼ N(0, 1). The resulting curve is highly non-Gaussian which
can be seen intuitively by noticing that by adding many Gaussian PDFs with linearly increasing variance
we are adding more and more to the tails of the distribution.

We neglected subtracting the mean of Sx(ω) for each sample path ω in the preceding discussion.
Including this makes things much more complicated analytically but it should be considered since from
simulations it appears to significantly affect the shape of the resulting distribution. However the previous
serves to show that it is possible that at least some of the non-Gaussianity is a consequence of the
structure of Sx itself. While this provides a nice illustration it is not the whole story, our results for the
XOR process show that by giving φ strong spacio-temporal correlations the distribution of S becomes
significantly more non-Gaussian than the case where φ is simply white noise.

Our measurements of the autocorrelation of φ (Figure 10) shows that the correlations in φ do exist
but that they are relatively short lived. The previous means, unfortunately, that if these short range
correlations do have some effect on the excess of particles it would be extremely difficult to detect with
numerical simulations.

It is worth noting that while these inherent correlations in S make it difficult to consider the distribu-
tion of S across multiple realisations they are really the reason for using S instead of looking at φ itself.
Examining φx only tells us about the site x, it provides no information about the density of particles
around x. Measures such as S are capable of indicating whether the particles are spread evenly across
the lattice, bunched together or something in between.

5.2 Universality Classes, Coupling and Feedback

The Manna and Directed Percolation (DP) universality classes, while distinct classes, clearly have sim-
ilarities. As evidenced by the similarity of the Langevin equations and the apparent coincidence of the
critical exponents [19]. Therefore it seems natural that by introducing a coupling of the form detailed
in §3 one might to be able to take a DP model such as the contact process and move it into the Manna
universality class.

The extensive numerical simulations run throughout the course of this project show that introducing
this coupling has a significant impact on the behaviour of the activity within the contact process. Initial

1In fact each realisation Sx is a sum of many normally distributed random variables, which is why each Sx is itself
normally distributed.
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simulations with varying coupling strength ε showed that increasing ε while keeping the control parameter
λ at the uncoupled critical value λc = 3.297848 caused the system’s activity to die out sooner. This can
be seen in the departure from power law behaviour for the variances of both S and φ and more explicitly
in the behaviour of the number of active sites NA, which drops to zero earlier and earlier for higher ε.
The fact that the activity does drop to zero clearly implies that we are now in the sub-critical regime.
Thus it appears the coupling has shifted the critical point away from the uncoupled value.

We sought to locate the new critical point by increasing λ and examining the behaviour of σ2
S and σ2

φ

while keeping ε fixed at 0.01. As one would expect increasing λ causes the process to reach a stationary
state with a higher level of activity. The final number of active sites follows a power law

NA ∼ |λ− λ0|κ, (26)

where λ0 = 3.314(7) and κ = 0.24(1). According to this power law the stationary activity level becomes
zero at λ = 3.314 indicating the location of the critical point. Note however that the λ0 is very close to
the previous value of λc and forcing λ0 = λc gives only a slightly worse fit in terms of the value of R2,
being 0.9998 and 0.9977 respectively. Simulations run close to 3.314 indicate that the phase transition
lies in the interval λc ∈ (3.07848, 3.12848) for ε = 0.01. Unfortunately the length of time the simulations
take to run prevented a more precise location of the critical point within the course of this investigation.
For the smallest supercritical value of λ simulated the power law scaling of VAR(S) and ρ̄ is not clear
enough to determine in which universality class the model lies.

There are several conspicuous differences between the Manna model and the Contact Process which at
first sight might appear to render them too different for the coupling to work. The two most conspicuous
being discrete time versus continuous, and uniqueness of the absorbing state.

The Manna model is a discrete time process whereas the Contact Process is continuous time. This
however is a property of the model and says nothing about the universality class. There exist discrete
time models which are in the DP universality class, such as the Domany-Kinsel automaton. Plus one can
easily envisage a continuous time version of the Manna model updated with random sequential updates
rather than the parallel update of Table 1.

The Manna model has infinitely many absorbing states (for L = ∞) whereas the Contact Process
has only one. Again there exist models in the DP class which have infinitely many absorbing states, for
example the Pair Contact Process [20]. In addition this is a somewhat misleading interpretation. In the
Manna model there are infinitely many states of φ which are absorbing. From the perspective of the
activity ρ they are all the same, namely identically zero on the whole lattice. This is the same as in the
contact process where the unique absorbing state is ρ = 0 for the whole lattice. In our coupled variant
the estimated φ can also be in infinitely many states with ρ = 0 everywhere.

Thus we have reason to believe that these differences are not enough to affect which universality class
our constructed model belongs to.

Additionally the effect of the coupling λ→ λ+ εφx should make the behaviour of ρ more similar to ρ
in the Manna model. To see this consider the fact that φx is the time integral of the discrete Laplacian
of ρ at site x. Thus if the site x is active and its neighbours are not then φ at the neighbouring sites will
increase steadily increasing the probability that they become active. At the same time φ at x will be
decreasing since φ is a conserved quantity which means that if site x becomes deactivated it will be less
likely to be reactivated. In this fashion the coupling promotes the spreading of ρ but not its survival.
This is much like ρ in the Manna model. When a site ρ is active it is updated so that it is no longer
active and the particles distributed to its neighbours. This in turn makes the neighbouring sites more
likely to be active and hence ρ spreads from a previously active site.

6 Conclusion

We first investigated the scaling properties of the conserved Manna model and found that the distribution
of the corresponding interface variable S (see equation (8)) was mildly non-Gaussian. Examining a toy
model in the shape of the XOR process shows that non-trivial correlations can have a large effect on
the distribution of S. Unfortunately in the case of the Manna model it is hard to detect whether this
non-Gaussianity is due to the spacio-temporal correlations which exist or the structure of Sx itself.

Next we constructed a variant of the contact process whereby the activity field ρ was coupled to a
conserved background field φ and vice versa. The values of the conserved field φ depend on the values of

13



ρ up to the current time, clearly coupling φ to ρ. Then the control parameter was modified λ→ λ+ εφ
thereby coupling ρ to φ analogously to the coupling present in the Manna model. It was then argued
that apparent differences between the contact process and the Manna model should be superficial and
would not affect the universal behaviour.

Despite introducing this coupling and arguing that it should cause ρ to behave like in the Manna
model evidence that the new model had been moved to the Manna universality class was not found on
the basis of the observables studied herein. Furthermore, solid evidence of criticality in the form of power
law scaling of VAR(S) and ρ̄ could not be identified. Examining the persistence of activity in the system
as a function of λ places the critical point in the interval λc ∈ (3.07848, 3.12848) for ε = 0.01. Further
work is required to tighten these bounds and to determine if indeed the coupling is strong enough to
have moved the system into the Manna class.
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