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Self-organised Criticality

Systems exhibiting self-organised
criticality (SOC) approach criticality
without external tuning of parameters.

Widespread examples from earthquake
models to interfaces moving through
media.

Understanding has wide ranging
implications across many areas.
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Absorbing Phase Transitions

We examined the behaviour of the
Manna sandpile model in the
fixed-energy ensemble.

In the fixed-energy ensemble the system
no longer approaches criticality by itself.

An absorbing phase transition occurs at
the critical value of the control parameter.

This establishes a connection between
SOC and phase transitions.
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The Manna Model

Particles sit on a 1d Lattice with periodic
boundary conditions.

Sites are either active or inactive.

zx > 1⇒ site x is active.

Updates occur in parallel and in discrete
time.

Particles from active sites are
redistributed to neighbouring sites
picked with uniform probability.

The Manna model is a stochastic
sandpile model.
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Field Theoretic Description

In the Manna model there are two fields to consider

The activity density ρ(x, t).

The particle density φ(x, t) (conserved).

Conjectured Langevin equations1

∂ρ

∂t
= −rρ− bρ2 +∇2ρ+ σ

√
ρ · η(x, t) + ωρ · φ,

∂φ

∂t
= D∇2ρ.

Note the similarity to the Directed Percolation (DP) Langevin
equation highlighted in blue.

1Munõz et al (1998) PRL 81(25):5676-5679
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DP and Manna Universality Classes

Directed Percolation includes models such as the contact
process and Domany-Kinzel Automaton.

Recently conjectured that the Linear Interface Model and
Manna classes may be equivalent1.

Currently much debate about the nature of the DP and
Manna classes and whether they are in fact distinct.

1Bonachela et al (2007) PRL 98(155702)
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DP and Manna Universality Classes

If the DP and Manna classes are distinct, what places a model in
one or the other?

There are no extra symmetries in the Manna model over the
contact process.

There is coupling of ρ to a conserved background field φ.

Coupling is encapsulated in the Langevin equations.

Is the coupling enough to move models to a different universality
class?

D. Barker Manna & DP



Contact Process

Well studied model in epidemiology which models infection
spreading from person to person.

Local infection density is analogous to activity density ρ in the
Manna model.

Infected persons become healed with rate ω( ) = 1.

Healthy persons become infected with rate
ω( ) = (nλ)/(2d).

λ is the control parameter, n the number of infected
neighbours and d the spacial dimension.
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Modified Contact Process

We constructed a variant of the contact process where the
activity ρ was coupled to a conserved background field φ.

From Manna Langevin equations we construct φ:

φ =

∫ t

0
∇2ρ(x , τ) dτ

To emulate the coupling term ωρ · φ we modify the control
parameter λ:

λ→ λ′(x, t) = λ+ ωφ(x, t)

If this variant is now in the Manna class we would expect to see
the same scaling behaviour of various quantities as in the Manna
model.
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Measureables

Both natural and constructed measures are of interest.

The level of activity

ρ̄(t) =
NA(t)

L
.

The relative excess of particles

Sx(t) =

∫ x

0
φ(y , t) dy − x φ̄.

We are interested in the quantities and their variances at
criticality.

D. Barker Manna & DP



Results

We began by measuring the scaling exponents of the Manna
model for Sx(t) and ρ̄.

Scaling Relations

VAR(Sx(t)) ∼ tα

ρ̄ ∼ tδ

VAR(Sx(t)) ∼ ∆φβ

ρ̄ ∼ ∆φγ

Simulations run using natural initial conditions, lattice size of
16,384, and averaged over 1000 realisations give the following
values

α = 0.208(2), β = 1.055(5) ' 1

δ = −0.176(3), γ = 0.333(7) ' 1/3
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Scaling Exponents
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Finite Size Scaling

Scaling with system size was
measured.

ρ = Lν ρ̃(L−z t)

Data collapse is obtained for
the correct critical exponents

ν = −0.32

z = 1.64.

The saturation variance of Sx

scales with system size as

VAR(Sx(∞)) ∼ L0.60(1)
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Varying Coupling Strength

Quantities were measured for the modified contact process with
varying coupling strength ω.

Coupling shifts the critical point so the system is now
sub-critical.
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Recovering Criticality

Coupling shifts the critical point therefore we

Fix coupling strength ω = 0.01

Vary λ to find new critical point

Best marker is the saturation activity level ρ̄(∞).

Despite simple scheme this requires massive compuational effort.

Near the new critical point time to reach stationarity
increases.

This makes an accurate location of λc(ω = 0.01) tough.
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Recovering Criticality

Numerics show the critical point is in the interval
λc ∈ (3.07848, 3.12848).

This is not good enough to identify the Universality class by
scaling exponents.
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Correlations

Spacial correlations might shed some insight.

Autocorrelation for φ in the Manna model can be understood from
microscopic rules of the model.

Autocorrelation of φ looks vastly different for the two models.
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Summary

Measured Scaling Exponents and Finite Size Scaling for the
Manna model.

Constructed a variant of the contact process with activity
coupled to a conserved background field.

Found interesting behaviour but could not identify a new
universality class.

Further investigation needed into varying coupling strength
and more precise location of critical point.
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Thanks

Prof. Haye Hinrichsen

Dr. Stefan Großkinsky

DTC Staff

... and finally, thank you for listening.
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