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Active tluids confined to drops

Active fluids confined to droplets exhibit many biomimetic behaviours:

complex large-scale flows self-driven motility

Active surface nematic
drives water droplet motility

50um bar

[H. Wioland et al., PRL 2013] [T. Sanchez et al., Nature 2012]

How does activity interact with geometrical confinement to create
these behaviours, which are not seen in bulk active systems?
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Active fluid drops on substrates
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K. Keren et al., Nat. Cell Biol. 2009] [E. Tjhung et al., Nat. Comm. 2015]

For a three-dimensional active drop on a planar substrate so far only
symmetrical spreading and stationary shapes have been investigated
[Joanny and Ramaswamy, J. Fluid. Mech. 2012].

We study theoretically how such drops can become motile as a result of
imposed orientation profiles with topological defects, and how the shape
of the drop and friction at the substrate affect motility.
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Model of a drop on a surface

The orientation field satisfies tangential
anchoring at both bounding surfaces

hP,
S(x) o hP,
2(P,0;h + P,0,h)

Activity drives large-scale flows in the
drop through active stress tensor

. 0ij
Uij — —0) SZS] — ?

The flow of active fluid is given by the
Stokes equation and obeys continuity:

—Vp+ pAu+V -0 =0
V-u=0
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Thin film approximation

Assuming a thin droplet, we can expand the equations in a small parameter ¢ = TO

ou, =V, p-—f7,
Ozazp

1
* to retain effects of activity we scale p,00 ~ -
1
e surface tension is neglected, since otherwise 7y ~ =
* boundary conditions: O.ui|,_, =0

UJ_(Z — 0) — _£8ZUJ_
z=0
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Solution for the flow field

The horizontal and vertical flow components, u; and w,
are mainly determined by the effective active force f¢
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Example: aster defect

u, = op §+h(§—z) (P(VL-P+%P.VJL) +M)
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vortex defect

Example
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Motility of the drop

defect position
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As a measure for the motion of the drop we use
the centre-of-mass velocity in the x-direction

1
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Uem —
Vb drop
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Effect of surface friction on motility

top view

The friction-dependent prefactor
determines the amount of rotation
in the flow: rolling vs. sliding

slip length

2

uL=—<%+h(€—Z)>fﬁ
R/_/
h

changes sign if &€ < 5
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Stationary shapes

For an axisymmetric drop with an aster defect we
calculate the stationary shape protile analytically from

h w 10
8th = —VJ_ . /UJ_dZ = 0 %a,« ((f — g)h@r(rh)) N S
0
1.41 | | | | | | | -
1.2, ___hf=0.5

=
I
| —
w o
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Shape deformations

For an asymmetric profile, e.q. aster or vortex defect placed at
the boundary, we can look at the deviation Ah = d;h|,_, At
from the spherical cap after a small time step At
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Conclusion and outlook

Conclusion

* [nthe scope of a thin film approximation, we derived exact expressions for
the flow field in a drop of active fluid driven by a given polarisation profile

 We identified two key requirements for self-propulsion of an active drop on
a planar substrate: asymmetrically bent or splayed orientation field, e.qg.
induced by a topological defect in the interior of the drop, and sufficient
surface friction provided by the substrate

Outlook
* |nvestigate how micro-patterned substrates could induce drop motion
e Study active flows and shape deformations

induced by topological defects on a thin
spherical shell of active liquid crystal
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