Motility of active fluid drops on surfaces

Diana Khoromskaia & Gareth P. Alexander

CoSyDy Meeting Phase Transitions and Scale Invariance in Biology Imperial College London 28th September 2015

Active fluids confined to drops

Active fluids confined to droplets exhibit many biomimetic behaviours:

complex large-scale flows

[H. Wioland et al., PRL 2013]

self-driven motility

Active surface nematic drives water droplet motility
50µm bar

[T. Sanchez et al., Nature 2012]

How does activity interact with geometrical confinement to create these behaviours, which are not seen in bulk active systems?

Active fluid drops on substrates

[K. Keren et al., Nat. Cell Biol. 2009]

[E. Tjhung et al., Nat. Comm. 2015]

For a three-dimensional active drop on a planar substrate so far only symmetrical spreading and stationary shapes have been investigated [Joanny and Ramaswamy, J. Fluid. Mech. 2012].

We study theoretically how such drops can become motile as a result of imposed orientation profiles with topological defects, and how the shape of the drop and friction at the substrate affect motility.

Model of a drop on a surface

The orientation field satisfies tangential anchoring at both bounding surfaces

$${f S}({f x}) \propto egin{pmatrix} hP_x\ hP_y\ z(P_x\partial_xh+P_y\partial_yh) \end{pmatrix}$$

Activity drives large-scale flows in the drop through active stress tensor

$$\sigma^a_{ij} = -\sigma_0 \left(S_i S_j - rac{\delta_{ij}}{3}
ight)$$

The flow of active fluid is given by the Stokes equation and obeys continuity:

$$egin{aligned} -
abla p + \mu \Delta \mathbf{u} +
abla \cdot \sigma^a &= 0 \
abla \cdot \mathbf{u} &= 0 \end{aligned}$$

Thin film approximation

Assuming a thin droplet, we can expand the equations in a small parameter $\varepsilon = \frac{h_0}{L}$

$$\partial_z^2 {f u}_ot =
abla_ot p - {f f}^a_ot, \ 0 = \partial_z p$$

• to retain effects of activity we scale $p, \sigma_0 \sim rac{1}{arepsilon}$

• surface tension is neglected, since otherwise $\gamma \sim rac{1}{arepsilon^3}$

• boundary conditions: $\partial_z \mathbf{u}_{\perp}\big|_{z=h} = \mathbf{0}$

$$\mathbf{u}_{ot}(z=0)=-\xi\partial_z\mathbf{u}_{ot}\Bigert_{z=0}$$

Solution for the flow field

The horizontal and vertical flow components, \mathbf{u}_{\perp} and w, are mainly determined by the effective active force \mathbf{f}^a_{\perp}

$$egin{aligned} \mathbf{u}_{\perp} &= -\left(rac{z^2}{2} + h(\xi-z)
ight)\mathbf{f}^a_{\perp} \ &w &= rac{z^3}{6}\,
abla_{\perp}\cdot\mathbf{f}^a_{\perp} - \left(rac{z^2}{2} - \xi z
ight)
abla_{\perp}\cdot(h\mathbf{f}^a_{\perp}) \end{aligned}$$

splay shape bend

Example: aster defect

Diana Khoromskaia

Example: vortex defect

Diana Khoromskaia

Motility of the drop

As a measure for the motion of the drop we use the centre-of-mass velocity in the x-direction

$$v_{
m cm} = rac{1}{V_0} \int_{
m drop} u \, {
m d} V$$

Diana Khoromskaia

Effect of surface friction on motility

top view

The friction-dependent prefactor determines the amount of rotation in the flow: rolling vs. sliding

$$\mathbf{u}_{ot} = -igg(rac{z^2}{2} + h(\xi-z)igg) \mathbf{f}_{ot}^a$$
 changes sign if $\ \xi < rac{h}{2}$

Stationary shapes

For an axisymmetric drop with an aster defect we calculate the stationary shape profile analytically from

$$\partial_t h = -
abla_ot \, \mathbf{u}_ot \, \mathrm{d} z igg) = \sigma_0 \, rac{1}{r} \, \partial_r \Big(igg(iggl\{ -rac{h}{3} iggr) h \partial_r (rh) \Big)$$

Shape deformations

For an asymmetric profile, e.g. aster or vortex defect placed at the boundary, we can look at the deviation $\Delta h = \partial_t h|_{t=t_0} \Delta t$ from the spherical cap after a small time step Δt

Conclusion and outlook

Conclusion

- In the scope of a thin film approximation, we derived exact expressions for the flow field in a drop of active fluid driven by a given polarisation profile
- We identified two key requirements for self-propulsion of an active drop on a planar substrate: asymmetrically bent or splayed orientation field, e.g. induced by a topological defect in the interior of the drop, and sufficient surface friction provided by the substrate

Outlook

- Investigate how micro-patterned substrates could induce drop motion
- Study active flows and shape deformations induced by topological defects on a thin spherical shell of active liquid crystal

Thank you for your attention!

I thank my supervisor Gareth P. Alexander for help and guidance.

D. Khoromskaia and G. P. Alexander, *Motility of active fluid drops on surfaces*. [arXiv:1508.05242] (accepted for publication in Phys. Rev. E (2015))

Engineering and Physical Sciences Research Council

D.Khoromskaia@warwick.ac.uk

🚱 warwick.ac.uk/dianakhoromskaia

Diana Khoromskaia