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Colloids in nematic liquid crystals interact via the effects of the distortions they create in the
director field and the defects formed in response to their existence. Through these interactions,
they can chain together to form crystals controllable by external electromagnetic fields. Recent
experimental work has lead to the production of colloids in the shape of (p, q) torus knots. We
explore the far field effects of such colloids by calculating their dipole and quadrupole moments and
find that these have components related to the toroidal and knot geometry that are not present
in spherical colloids. Using these dipole and quadrupole moments, we calculate the interaction
potential of pairs of links to harmonic order valid at large distances. This lays the grounding for
future work considering the interactions of further types of knots, the structures that may be formed
from multiple knotted colloids, and what properties these structures possess and what possible uses
they may have in areas such as photonics.

I. INTRODUCTION

Knots have always held a place of beauty and fascina-
tion in human culture, featuring in the tapestries, mo-
saics, jewelry, stories, and illustrations of ancient civili-
sations throughout the world [1]. However, though knots
have often been the subject of casual mathematical and
scientific thought for centuries, serious quantitative work
in knot theory did not begin until the late 1800s [2].
Inspired by the vortex atom model of Lord Kelvin [3],
Tait began the first work on the classification of different
knots [4]. Since then, knot theory has been established
as a significant area of mathematics, and has found many
applications throughout science. In the last few decades
it has found use in areas such as particle physics [5, 6],
quantum computation [7], quantum field theory [8], and
the linking and writhing of DNA ribbons [9, 10].

Though knots of any kind are fascinating topological
objects, added layers of nontriviality can be found when
considering knotted fields. These have been studied in
the solutions of classical field theory models [11], the
knotting of vortex loops in fluids [12–14], and the knot-
ting of light beams and solutions to Maxwell’s equations
in electromagnetism [15–17]. One other area of physics
where the topology of the system holds great importance
and where knots have held great focus in recent years is
in liquid crystals.

The properties of nematic liquid crystals are controlled
by the defects that form within the material. It has
been found that these defects can be manipulated into
forming knots in various ways. For instance, by the
rewiring and entangling of disclination loops around mul-
tiple colloids [18–20]. Colloids themselves, when dis-
tributed within a liquid crystal, act like defects and form
further defects in response to the surface anchoring con-
ditions of the liquid crystal and the colloid. Knotted col-
loids have been created experimentally via two-photon
photopolymerisation, and have been shown to produce
further knotted defects within a liquid crystal dependent
on the boundary conditions [21] (see Fig. 1).

The topological properties of liquid crystals have al-

FIG. 1: Examples of knotted colloids from the work of
Martinez et al [21]. (3, 2) torus knots in panels a, c, and

d. (5, 3) torus knots in panels b and e.

lowed for the creation of novel metamaterials useful in
photonics. This can be achieved via the chaining of col-
loids within a liquid crystal caused by the defects sur-
rounding those colloids [22]. Self-assembling two- and
three-dimensional photonic crystals can be formed, con-
trollable by external electromagnetic fields [23–25].

Following on from this work, and the creation of knot-
ted colloids, we examine the far field interactions of knots
in nematic liquid crystals using analogies to multipole
moments in electrostatics similar to the work of Luben-
sky et al [22]. In doing so, we hope to lay the foundation
for the formation of interesting structures from knotted
colloids within liquid crystals and the exploration of their
uses in fields such as photonics.

In section II we provide a brief introduction to the de-
scription of defects in liquid crystals. In section III we
describe the type of knots we are considering, and how to
describe and parameterise them in mathematical terms.
In section IV we calculate the dipole and quadrupole mo-
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ments of the particular kind of knots we consider, and
then in section V we use these multipole moments to
calculate approximate far field interactions to harmonic
order between pairs of these knots. We then summarise
our results in section VI.

II. DEFECTS IN LIQUID CRYSTALS

Liquid crystals are formed from anisotopic molecules,
rod-like or disk-like in shape [26]. This anisotropic na-
ture allows liquid crystals to go through various other
phases when transitioning from isotropic liquid to fully
crystalline solid. The first of these phases is the nematic
phase, where the isotropic symmetry is broken resulting
in a non-zero average orientation (see Fig. 2). Further
phases include the smectic A, smectic C, and cholesteric
phases, as well as others, where further symmmetries are
broken.

n

a b

FIG. 2: Arrangement of molecules in isotropic (a) and
nematic (b) liquid crystals. The nematic liquid crystal

has a non-zero average orientation described by the
director field n, which is absent in the isotropic liquid

crystal.

We shall focus our work on the nematic phase. The
entire system of a nematic liquid crystal can be specified
by the director field n (r), a unit line field which specifies
the average orientation at any point r. The director field
is formed from a line field due to the indistinguishability
of a rod from itself when rotated by π. In other words,
n (r) is indistinguishable from −n (r).

The energy of the director field is determined by the
Frank free energy [26]

F =
1

2

∫
d3r

{
K1 (∇ · n)

2
+K2 (n · ∇ × n)

2

+K3 [n× (∇× n)]
2

−K24∇ · [n× (∇× n) + n (∇ · n)]
}
. (1)

Each term corresponds to different slowly varying spatial
distortions in the director field: the first is splay, the
second twist, the third bend, and the fourth saddle-splay.
The different Ki are the elastic constants associated with
each type of distortion.

What makes the nematic phase interesting is the for-
mation of both point and line defects marking disconti-
nuities in the director field. In two dimensions, we find

point defects that can be characterised by the winding
number, i.e. the number of times the director field ro-
tates by 2π when taking a circuit around the lone point
defect [27]. Due to the indistinguishability of π rotations
in the director field, the winding number can take on
both integer and half-integer values (see Fig. 3). This
can then be extended into three dimensions, where we
find point defect “hedgehogs” characterised by an integer
topological charge describing the winding of the director
field around a surface encompassing the lone defect, and
line defect disclinations with half-integer winding around
them at any point on the line. These disclinations either
stretch from surface to surface in the liquid crystal, or
form closed loops. Characterisation of these loops is more
complicated than that of a hedgehog [27]. Other such
difficulties also exist in the addition of hedgehogs, due
to the fact that a +1 charge hedgehog can be smoothly
deformed into a −1 charge hedgehog [22].

a b c

FIG. 3: Winding of the director field around point
defects in two dimensions with winding number +1 (a),

−1 (b), and +1/2 (c).

The immersion of colloids into a liquid crystal pro-
vides powerful and versatile means of creating and ma-
nipulating defects and other topological features in the
liquid crystal. The surface anchoring conditions of the
colloid enforce that the director field lies normal to the
colloid at its surface. For a spherical colloid, this leads
to the director pointing radially out at the colloidal sur-
face. For configurations where this is incompatible with
the far field director n0, i.e. when the far field director
is uniform, further defects close to the colloid appear.
This corresponds to a constraint of zero total topological
charge. These defects may take the form of either hyper-
bolic (−1 topological charge) point defects or disclination
loops with −1/2 winding at any point on the loop [22].
When such colloids are brought together in the liquid
crystal, the defects produced by them allow interactions
to occur leading to the chaining of the colloids, for in-
stance with the point defects falling inbetween them.

As knotted colloids can be created experimentally, it
is of interest to see what interactions occur when these,
rather than spherical colloids, are inserted into the mate-
rial. Due to the heavily nonlinear nature of the equations
involved, we must consider far field approximations like
Lubensky et al [22].
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III. KNOTS IN LIQUID CRYSTALS

Before we are able to consider far field effects, we need
a way to describe our knots. This has been provided by
the Milnor construction [28–30].

Consider two complex variables z1 and z2 constrained
by |z1|2 + |z2|2 = 1. A knot can then be described by
the simple polynomial f (z1, z2) = zp1 + (−iz2)

q
, since

the zeros of this polynomial lie on a (p, q) torus knot
(when p and q are coprime) or link (when otherwise)
in S3, see Fig. 4. Knots in R3 can then be obtained
by stereographic projection from S3. As a standard, we
choose the projection point z1 = 0, z2 = i, resulting in
the parameterisation of our knot in a cartesian coordinate
system of

x =
χ cos qt

1− σ sin (pt+ π/q)
(2)

y =
χ sin qt

1− σ sin (pt+ π/q)
(3)

z =
σ cos (pt+ π/q)

1− σ sin (pt+ π/q)
(4)

where χ = |z1| and σ = |z2| are related by χ2 + σ2 = 1
and χp − σq = 0. This parameterisation represents a
(p, q) torus knot oriented with its longitude in the x-
y plane, and with q-form winding about the longitude,
and p-form winding about the meridian, as t varies from
0 to 2π. The positive x axis in relation to t is found
where, for m ∈ {0, q − 1}, t = 2mπ/q. The negative x
axis is where t = (2m+ 1)π/q. The positive y axis is
where t = (4m+ 1)π/q. The negative y axis is where
t = (4m+ 3)π/q. Essentially, the x axis is where the
knot begins at t = 0. This knowledge will help us in
identifying the direction of any multipole moments.

FIG. 4: A (3, 2) torus knot, also known as the trefoil
knot.

Note that a different choice of projection point will
not affect any results, as it simply leads to rotations of
the knot, and switching of p and q. For example, the

projection point z1 = 1, z2 = 0 simply gives us a (q, p)
torus knot, i.e. with p-form winding about the longitude,
and q-form winding about the meridian. A (q, p) torus
knot is topologically identical to a (p, q) torus knot [31].

To describe the director field of a knotted liquid crys-
tal defect, we must somehow include winding about the
knot. This can be achieved using the argument of the
polynomial φ = arg (f (z1, z2)). This winds about the
zero line of the polynomial, as constant values of φ de-
scribe surfaces bounded in some way by the knot (see
Fig. 5). Therefore, one possible choice of director field is
n = (cos (φ/2) , 0, sin (φ/2)). The factor of −i in front of
z2 in f (z1, z2) ensures that φ goes to zero far from the
knot.

a b

FIG. 5: Constant φ surfaces bounded by a trefoil knot,
with φ = 0 (a) and φ = π (b).

With this toolkit, we can now consider the far field
effects of knots.

IV. MULTIPOLE MOMENTS OF KNOTS

We have some uniform far field director n0, and con-
strain our system such that n approaches n0 as r →∞.
In other words, we have zero total topological charge. At
large r, we therefore consider small deviations nµ in n
orthogonal to n0. Taking the one elastic constant limit,
the full nonlinear Frank free energy, equation (1), can be
replaced by the harmonic free energy

F =
1

2
K
∑
µ

∫
d3r (∇nµ)

2
(5)

which has Euler-Lagrange equation

∇2nµ = 0 . (6)

This is simply the Laplace equation, which at large r has
solutions that can be expanded as multipoles. Follow-
ing Lubensky et al [22], we can calculate these multi-
pole moments for knots, and then consider our knots as
approximate point-multipoles. The interactions of these
point-multipoles will then be valid at large distances.

As a possible director field is simply a planar field de-
pendent on φ, it would seem that the simplest method
to find these multipole moments would be to take them
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from the far field expansion of φ. However, this does not
work, as in this case our constraint in (6) reduces to

∇2φ = 0 , (7)

which is not satisfied.
Another simple method is to just make a direct analogy

to electrostatics, where multipole expansions are calcu-
lated as standard far field solutions for electric potentials
that satisfy Laplace’s equation. We must calculate mul-
tipole moments for a knotted charge, similar to Werner’s
work with currents in knotted wires [32] and Lubensky
et al [22].

From standard electrostatics [33], we have a scalar
function

Φ (r) =
1

4π

∫
dq (r′)

|r− r′|
. (8)

that forms the parts of nµ that capture the far field ef-
fects. dq (r′) is an increment of charge distribution repre-
senting the winding of the director field about an incre-
ment of the knotted curve. For a charge distribution that
is localised such that it is only non-vanishing inside some
finite sphere around some origin, (8) can be expanded.
In rectangular coordinates

Φ (r) =
1

4π

q
r

+
p · r
r3

+
1

2

∑
i,j

Cij
xixj
r5

+ . . .

 . (9)

Here, q is the charge distribution integrated over all
space. To ensure that we have zero total topological
charge, we require q = 0. The dipole moment is given by

p =

∫
r′ dq (r′) . (10)

The quadrupole moment is given by

Cij =

∫ (
3r′ir

′
j − r′2δij

)
dq (r′) (11)

where δij is the Kronecker delta. We will only consider
multipole moments up to the quadrupole moment.

From (2), (3), and (4), we find that the line element of
our knot is

dl =

√
σ2p2 + χ2q2

1− σ sin (pt+ π/q)
dt . (12)

We have some charge distribution over our knot λ (t),
such that dq (r′) = λ (t) dt, which, when integrated over
all space, totals to zero. The simplest situation that
achieves this is for a special kind of link, correspond-
ing to the case p = q. These links are q loops linked
together (see Fig. 6). To avoid the loops just overlying
each other, we rotate each loop 2π/q away from the oth-
ers. We can then attach to each loop some integer or
half-integer charge λk such that

q−1∑
k=0

λk = 0 . (13)

FIG. 6: A (2, 2) knot, also known as the Hopf link.
Note how one loop is rotated π away from the other.

Taking into account that p = q and therefore σ = χ =
1/
√

2, the dipole moment for a link is then

px =

q−1∑
k=0

λk√
2

∫ 2π

0

cos (qt)(
1− 1√

2
sin
(
qt+ π

q (2k + 1)
))2 dt

(14)

py =

q−1∑
k=0

λk√
2

∫ 2π

0

sin (qt)(
1− 1√

2
sin
(
qt+ π

q (2k + 1)
))2 dt

(15)

pz =

q−1∑
k=0

λk√
2

∫ 2π

0

cos
(
qt+ π

q (2k + 1)
)

(
1− 1√

2
sin
(
qt+ π

q (2k + 1)
))2 dt .

(16)

The integral in (16) can be very easily solved by substi-
tution, giving pz = 0. The integrals in (14) and (15) can
be combined into one integral as I = px + ipy. Making
the substitution z = exp (iqt), this can then be solved
using complex contour integration.

The actual dipole moment for a link is found to be

px = 2
√

2π

q−1∑
k=0

λk sin

(
π (2k + 1)

q

)
(17)

py = 2
√

2π

q−1∑
k=0

λk cos

(
π (2k + 1)

q

)
(18)

pz = 0 . (19)

Note that opposing charges must be applied to loops that
oppose each other in position in order to have a non-zero
dipole moment. For even q this corresponds to applying
opposing charges to the loops rotated π away from each
other. An example of a dipole for a Hopf link can be seen
in Fig. 7.

From (11), the various parts of the quadrupole mo-
ment tensor can be calculated, and, similar to the dipole
moment, all integrals involved can be computed using
substitution and complex contour integration.

In order to gain any meaningfulness from the resulting
tensor, we must write it in a certain way. The defining
geometry of our links is that they rest upon the outside
surface of a torus. A torus has a preferred axial direction,
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p

+1

-1

FIG. 7: The dipole for a Hopf link where opposing
charges have been assigned to each loop.

orthogonal to the plane which the longitude of the torus
sits in (see Fig. 8). We have labelled this direction as the
z axis starting at an origin that is situated at the centre
of the torus. The torus is invariant under rotations about
this direction, i.e. under the rotation subgroup SO (2).
As the link is a curve that just happens to sit upon the
torus, it is not invariant under this set of rotations. How-
ever, it is still natural to decompose the properties of the
link into components that transform independently un-
der these rotations.

FIG. 8: The geometry of the torus the knot lies on
lends itself to the natural splitting of properties into

components in the longitudinal plane and in the
preferred axial direction.

For the dipole tensor, this involves separating it into
one component consisting of a vector in the x-y plane
and one consisting of a scalar in the z direction. How-
ever, as pz = 0, this second component is zero, and we
need not consider it when looking at interactions. For the
quadrupole tensor, we separate it out into four compo-
nents. Two parts are associated with the preferred axial

direction. The first is an axial scalar part

As =
(

5ei2θk − i6
√

2eiθk − 3
)0 0 0

0 0 0
0 0 1

 (20)

where we have defined θk = π (2k + 1) /q. The second is
an axial vector part

Av =

 0 0 6 cos θk
0 0 −6 sin θk

6 cos θk −6 sin θk 0

 . (21)

Two more parts are associated with the plane orthogonal
to the preferred axial direction. The first is another scalar
part

Ps =
((

6
√

2− i
)
e−iθk + 15

)1 0 0
0 1 0
0 0 0

 . (22)

The final part is a 2-spin object

Psp =− 9 cos (2θk)

1 0 0
0 −1 0
0 0 0


+ 6 sin (2θk)

0 1 0
1 0 0
0 0 0

 . (23)

Note, by referring to an object as scalar, vector, or 2-spin,
we are referring to the fact that its components transform
under the rotations of SO (2) as a scalar, vector, or 2-spin
object.

The total quadrupole tensor is then

C =
π√
2

q−1∑
0

λk [As +Av + Ps + Psp] . (24)

This result provides interesting comparisons with the re-
sults of Lubensky et al [22]. For the quadrupole set up
of a disclination loop around a colloid, we find that the
axial vector and 2-spin parts of the quadrupole tensor
are equal to zero. As for a link these parts are non-zero,
we therefore find that further interactions occur for links
that do not occur for simple loops. These are worth look-
ing at in further detail.

As we have only looked at links, the question arises as
to how we would repeat this procedure with knots where
p and q are coprime. We would need some form of charge
distribution over the knot that totals to zero. One pos-
sible way is to separate the knot out in to two curves.
For instance, for a simple torus we can separate the sur-
face out in to two regions separated by a central line:
an inner region of negative charge, and an outer region
of equal and opposing positive charge. This can then
be approximated as two concentric circles of opposing
charge, separated by some small separation that tends
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FIG. 9: The basis formed from the tangent vector T,
the normal vector N, and the binormal vector B on a

curve X.

to zero whilst the product of the separation and abso-
lute charge value remains finite. This separation from
the central line is taken so as to maximise the difference
in curvature between the two circles.

As detailed in the review article by Kamien [34], if we
consider a curve X (s) dependent on the arc length s,
then the tangent vector to the curve, a unit vector, is
given by T (s) = ∂sX (s). From this, we can then define
an orthogonal basis of unit vectors that moves around
the curve, consisting of the tangent vector T (s), the unit
normal vector N (s), and the binormal vector B (s) (see
Fig. 9). These vectors are related to each other via the
Frenet-Serret equations

∂s

T (s)
N (s)
B (s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0

T (s)
N (s)
B (s)

 (25)

where κ (s) is the curvature and τ (s) is the torsion of
X (s). We can therefore consider a curve displaced from
X (s) by a small amount δ

Xδ (s) = X (s) + δ (cosαN (s) + sinαB (s)) (26)

that has curvature

κδ =

∣∣∣∣ dsdsδ
∣∣∣∣ ∣∣∣∣∂s( ∂sXδ (s)

|∂sXδ (s)|

)∣∣∣∣ (27)

where sδ is the arc length of the displaced curve. The
value of α required can then be found by maximising κδ
with respect to α. For the case of a circle, this is found
to be α = 0 orπ, giving the system of concentric circles
described. Further work could perform this procedure
for the knot parameterisation given in (2), (3), and (4),
leading to the calculation of further multipole moments.

V. FAR FIELD INTERACTIONS

Like when calculating the effect of the knot on the di-
rector field, the Euler-Lagrange equation for the interac-

tions are highly non-linear. Therefore, we must continue
considering far field approximations. We follow Luben-
sky et al [22] in taking interaction potentials from a con-
structed phenomenological free energy for two-link inter-
actions where we approximate our links as collections of
point-dipoles and point-quadrupoles interacting via pair-
wise interactions.

First, we note that we make the same assumption as
Lubensky et al [22] that the dipole tensor prefers to be
alligned with the far field director n0. Therefore, it is
beneficial to rewrite the dipole and quadrupole tensors in
a basis with one axis along the dipole moment. Written
in terms of our current x, y, z coordinates

eα =
1

ρq

q−1∑
l=0

sin (θl)
cos (θl)

0

 (28)

eβ =
1

ρq

q−1∑
l=0

− cos (θl)
sin (θl)

0

 (29)

eγ = ez =

0
0
1

 (30)

where θl = π (2l + 1) /q and

ρq =

(q−1∑
k=0

λk sin (θk)

)2

+

(
q−1∑
k=0

λk cos (θk)

)2
1/2

.

(31)
The dipole tensor is then

p̃ = 2
√

2πρqeα (32)

and the quadrupole tensor can be written as

C̃ =
π√
2

q−1∑
k=0

λk

[
Ãs + Ãv + P̃s + P̃sp

]
(33)

where the scalar parts remain the same, i.e. Ãs = As
and P̃s = Ps, the vector part is now

Ãv =
6

ρq

q−1∑
l=0

λl

 0 0 sin (θk + θl)
0 0 cos (θk + θl)

sin (θk + θl) cos (θk + θl) 0

 ,

(34)
and the 2-spin object is now

P̃sp =
3

2ρq

q−1∑
l=0

λl

[
(cos (2θk − 2θl)

+5 cos (2θk + 2θl))

1 0 0
0 −1 0
0 0 0


+ (sin (2θk − 2θl)

−5 sin (2θk + 2θl))

0 1 0
1 0 0
0 0 0

] . (35)
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We may now consider interactions. We consider a sys-
tem of dipoles and quadrupoles interacting via pairwise
interactions. The dipole- and quadrupole-moment densi-
ties are

P (r) =
∑
ε

p̃εδ (r− rε) (36)

Cij (r) =
∑
ε

C̃εijδ (r− rε) (37)

where rε is the position of particle ε. We can then con-
struct an effective free energy valid at length scales large
compared to the link dimensions in the same way as
Lubensky et al [22],

F = Fn + Fp + FC + Falign (38)

where Fn is the Frank free energy as given by (1), Fp
arises from interactions between P and n, with leading
contribution [22]

Fp = 4πK

∫
d3 [−P · n (∇ · n) + P · (n · ∇)n] , (39)

and Falign arises from the alignment of Cij and n

Falign = −D
∫
d3r Cij (r)ni (r)nj (r) . (40)

The leading order contribution to the interactions be-
tween Cij and n is

FC = 4πK

∫
d3r [(∇ · n)n · ∇ (niCijnj)

−∇ (niCijnj) · (n · ∇)n] . (41)

As we shall see, harmonic approximations of this contri-
bution will only include the component of the quadrupole
from the dipole direction C̃αα. Further terms that
Lubensky et al [22] did not consider could be included
that would lead to the inclusion of further parts of the
quadrupole tensor such as the axial vector part. Though
we do not consider them currently, these possible further
terms certainly warrant investigation.

We consider the free energy to harmonic order, where
as before we expand to leading order for a small distortion
nµ to the director field in the plane orthogonal to the far
field director field n0 = eα, where µ = β or γ. The full
effective free energy is then

F = K

∫
d3r

[
1

2
(∇nµ)

2 − 4πPα∂µnµ + 4π (∂αCαα) ∂µnµ

]
(42)

which has Euler-Lagrange equation

∇2nµ = 4π∂µ [Pα (r)− ∂αCαα (r)] (43)

giving

nµ (r) = −
∫
d3r′

1

|r− r′|
∂′µ
[
Pα (r′)− ∂′µCαα (r′)

]
.

(44)

Equation (43) determines to leading order at large dis-
tances the far field distortions created by a link, as de-
scribed by the effects of the dipole and quadrupole mo-
ments. By using (44) in (42), we can see the effective
link-link interactions resulting from this, which, to lead-
ing order, are pairwise in nature between the dipole and
quadrupole densities

F

4πK
=

1

2

∫
d3r d3r′ [Pα (r)VPP (r− r′)Pα (r′)

+ Cαα (r)VCC (r− r′)Cαα (r′)

+VPC (r− r′) (Cαα (r)Pα (r′)− Pα (r)Cαα (r′))] .
(45)

With angle ψ between the separation vector r and the
far field director n0, we find

VPP (r) = ∂µ∂µ
1

r
=

1

r3
(
1− 3 cos2 ψ

)
(46)

VCC (r) = −∂2z∂µ∂µ
1

r
=

1

r5
(
9− 90 cos2 ψ + 105 cos4 ψ

)
(47)

VPC (r) = ∂z∂µ∂µ
1

r
=

cosψ

r4
(
15 cos2 ψ − 9

)
. (48)

From putting (32) and (33) into (45), the interaction
energy between a q-link and a p-link separated by some
vector R is given by

U (R) = 4πK
[
8π2ρqρpVPP (R)

+
π2

2

q−1∑
k=0

p−1∑
l=0

λkλl

(
P̃ qs,αα + P̃ qsp,αα

)
×
(
P̃ ps,αα + P̃ psp,αα

)
VCC (R)

+ 2π2

[
ρp

q−1∑
k=0

λk

(
P̃ qs,αα + P̃ qsp,αα

)
−ρq

p−1∑
l=0

λl

(
P̃ ps,αα + P̃ psp,αα

)]
VPC (R)

]
. (49)

From this potential we can then calculate forces between
pairs of links in liquid crystals as a function of separation.
Unfortunately, it appears that P̃sp,αα = 0 for any link
with a non-zero dipole moment, which requires further
investigation. Therefore, we are unable to consider what
new interactions the 2-spin and axial vector parts of the
quadrupole tensor bring. Further investigations should
be made into what further quadrupole interaction terms
could be used to explore these new terms.

One of the simplest examples we can consider is that of
two Hopf links oriented with their dipole moments along
the α axis, with one positioned at some origin, and the
other a distance R away at position (R, 0, 0) (see Fig. 10).
From (35) and (22) in (49), taking the real part, and
differentiating, we can calculate the force between the
two Hopf links to be

|F|
4πK

= −192π2

R4
− 17040π2

R6
− 192π2

R5
. (50)
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The first term, the dominant one, comes from the dipole-
dipole interactions. The second from the quadrupole-
quadrupole interactions. The third from the dipole-
quadrupole interactions. We find that the force is entirely
attractive. There is no repulsive part.

+1

-1

eɑ

+1

-1

(R,0,0)

(0,0,0)

FIG. 10: Example configuration of two Hopf links
interacting.

VI. SUMMARY AND CONCLUSIONS

Colloids inserted in nematic liquid crystals lead to
the production of defects within the liquid crystal that
have been shown both experimentally and theoretically
to cause interactions to occur between the colloids. This
leads to the chaining of colloids into crystal formations

controllable by external electromagnetic fields that are
of use in areas such as photonics. Recent experimenta-
tion has lead to the production of colloids in the shape
of (p, q) torus knots.

In this article, we have combined this recent work in
looking at the interactions of (p, q) torus knots in a liquid
crystal setting. We have considered harmonic approxi-
mations of the interactions in the far field of torus knots
with p = q, otherwise known as links. We achieved this
by calculating both dipole and quadrupole moments for
general links. We found that these can be written in the
most informative way by considering the toroidal geom-
etry of the situation, thereby splitting the moments into
components associated with the longitudinal plane and
the preferred axial direction. The dipole moment only
has a longitudinal plane component. The quadrupole
moment has axial scalar and axial vector components, as
well as plane scalar and plane 2-spin components. The
values of each component depend on the type of link and
the distribution of charge to each loop in the link, i.e.
the winding of the director field around each individual
loop. The axial vector and plane 2-spin components of
the quadrupole moment are zero for colloidal systems
considered in the literature. Therefore, these parts have
the potential for supplying further interactions that do
not occur for simpler colloids.

We calculated pairwise interactions to harmonic order
between the dipole and quadrupole moments of multi-
ple links as per Lubensky et al [22]. For the simple ex-
ample of two Hopf links, we found that the interactions
are entirely attractive, and dominated by the dipole-
dipole term, suggesting that stable chaining does not oc-
cur for this configuration. The extra quadrupole terms
that we found do not appear within the interactions we
have considered. The axial vector part occurs in further
quadrupole terms that we did not consider, that may or
may not be able to be included. Our findings imply that
the dipole direction component of the 2-spin part is zero
for a link with non-zero dipole moment.

Our work lays the foundation for further work into the
interactions of knotted colloids. The most obvious work
that needs to be done is in finding configurations with
a non-zero 2-spin quadrupole component, and in find-
ing further quadrupole interaction terms that involve the
axial vector quadrupole component. On doing this, we
would then be able to understand the meaning of these
terms in the context of the interactions they cause. Mul-
tipole moments for (p, q) knots where p and q are coprime
could be calculated using the methodology we have built.
This will allow for the consideration of interactions of
these types of knots, leading to the consideration of the
situations found by Martinez et al [21], i.e. knotted col-
loids with surrounding knotted disclinations.

Overall, this should lead to the investigation of struc-
tures formed from multiple knotted colloids, their prop-
erties and how we can control them, and their uses in
modern materials science.
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[20] S. Čopar and S. Žumer, Phys. Rev. Lett. 106, 177801

(2011).

[21] A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan,
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