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Abstract

Signalling in the nervous system depends on rapid changes inthe potential difference across the nerve cell membranes. These
signals are mainly controlled by voltage gated ion channels, which present stochastic transitions between two possibilities: open
or closed. The main objective of this project was to investigate how variation in the density of stochastic ion channels influences
the cell response. For this purpose, we considered a simple model of a cell, which consists of a single dendritic branch. Adiscrete
number of voltage gated active channels forNa+, andK+ were distributed along the cell structure, reflecting the fact that the density
of the channels varies between closer and farther sections of the dendrite with respect to the soma. As it is well established, Markov
chains provide realistic models for numerous stochastic processes, therefore each type of channel was modelled using aspecific
Markov chain model. Using the simplest model in this class: amodel with either an open or closed state, we show that it is possible
to find stochastic transitions in voltage along the dendriteunder simulated biological parameters.

Keywords: Gating ion channels, Gillespie’s method, Hodgkin Huxley model.

1. Introduction

The structure of a neuron can be resolved into three different
sections: (i) The soma or cell body is the where the nucleus is
located and the cellular machinery integrates all of the inputs
of the cell to generate output; (ii) The axon conducts electrical
impulses away from the soma to different neurons and other
parts of the body, like muscles and glands; (iii) The dendrite
is involved in receiving and integrating thousands of synaptic
inputs that come from other cells, as well as in determining the
extent to which an action potential is produced [Kandel et al.
(2012)]. These have a highly complex branching structure and
despite being discovered over a century ago, dendrites were
not thoroughly studied until the early 1950s. Although it was
believed that dendrites could generate active responses, much
of the early work on dendritic modelling was focused on the
passive properties of the cell membrane. The active response
of dendrites was initially supported by dendritic recordings
from cerebellar Purkinje and hippocampal pyramidal neurons
and later from other types of cells [Masukawa et al. (1983)].

In general, neurons perform nonlinear operations that
bringing gain amplification and positive feedback [Koch et al.
(1999)]. Therefore, intrinsic random fluctuations, due to small
biochemical and electrochemical changes can significantly
change the whole cell response. Furthermore, many neuronal
structures are very small and due to discrete signalling of some
molecules, the whole structure can be affected, i.e. molecules
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as voltage gated ion channels or neurotransmitters are in-
variably subject to thermodynamic fluctuations [Dayan et al.
(1983)]. For this reason, their behaviour will have a stochastic
component which may dramatically affect the general cell
behaviour. Particularly, voltage gated ion channels that selec-
tively conduct specific ions, generate stochastic responses in
the dendritic membrane. These channels demonstrate stochas-
tic transitions between the open and closed states, and changes
in the membrane potential can also influence the probabilityof
a closed channel to open [Fall et al. (2002)]. Most models of
electric activity in neurons consider the collective behaviour
of a large population of ion channels continuously distributed
through the cell membrane, taking into account deterministic
changes in macroscopic conductances.
However evidence suggests that stochastic transitions between
the states of single ion channels might also have a significant
influence in neuronal computations [Strassberg et al. (1993)].
Recent work by Cannon et. al. started to address the functional
consequences of stochastic gating of ion channels in neurons of
different morphologies. To study how the dendritic morphol-
ogy might influence the neuronal response, the same density
of ion channels for each cell type was considered. Cannon
et. al. challenge deterministic methods by showing that
when hippocampal CA1 pyramidal neuron ion channels gate
deterministically, the probability of dendritic spikes iseither
zero or one. Whereas using stochastic methods, this probability
can vary between zero and one. Fig. 1 illustrates the work of
Cannon et. al, panel (A) shows the positions of the recording
electrodes along the CA1 pyramidal neuron, panel (B) presents
examples of action potentials1 using both deterministic and

1The action potential (AP) is the fundamental signal used forcommunica-



Figure 1: (A) Morphology of the simulated CA1 pyramidal neuron, illustrating positions of recording electrodes placedon the soma (grey), apical (blue) and basal
(red) dendrites. (B) Examples of membrane potential responses of deterministic (red trace) and stochastic (black traces) versions of the model that describes the
distributed synaptic input. Letter “D” and grey bars indicate the times of action potentials highlighted in subsequentpanels. (C) Probability of somatic spike firing
in 10 ms duration bins for the deterministic (red) and stochastic (black) versions of the model. (D) Examples of deterministic responses (right) and representative
stochastic responses (left), for different regions in the pyramidal neuron. Figure taken from Cannon et al. (2010):“Stochastic Ion Channel Gating in Dendritic
Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes”

stochastic models, panel (C) shows that for stochastic methods,
the probability of dendritic spike varies between zero and one.
Finally, panel (D) presents the responses of different regions of
the neuron using both deterministic and stochastic methods.

In the present work just the stochastic representation of ga-
ting ion channels was considered, following sections will de-
scribe this representation in more detail.

2. Methods

2.1. Ion channels

Signalling in the brain depends on the ability of nerve cells
to respond to small stimuli by producing rapid changes in
the membranes potential2. Ion channels are transmembrane
proteins that form pores in the lipid cell membrane, facilitating
the entrance or exit of ions into or out of the cell [Hille et al.
(2001)]. Each cell type selects its own set of ion channels
to suit its own purposes, as in the case of excitable cells,
they demonstrate to be mainly permeable to sodium (Na+),
potassium (K+), chloride (Cl−) and calcium (Ca2+). Therefore,
the response of nerve cells to some stimuli is dependent on the
movement of these ions (across the membrane). Nowadays,
more than 100 different types of ion channel are known,
each one having distinct responses to change in membrane
potential, for example the soma of CA1 pyramidal neuron
membrane predominantly expresses the big conductance type
of K+ channels [Yuan et al. (2005)]. However, the value of
the membrane potential can vary for different structures (e.g.
neuronal and cardiac cells) and along the dendrites and axons,
due to the non homogenous distribution of channels along the

tion within the brains neural networks.
2Membrane potential is defined as the electrical potential difference between

the interior and the exterior of the cell.

cell, this can affect the neuronal response i. e. the amplitude of
the action potential.

By nature of their electrostatic and chemical properties, not
all the ions have the same size, for exampleK+ ions are larger
than Na+ ions, this allows ion channels and pumps on cell
membranes to be selective between different types of ions. In
fact each type of channel allows only one or a few types of ions
to pass i.e. if the ion channel is permeable to two type of ions,
the channel will actively pump or passively allow one of the
two ions to pass, while blocking the other [Hille et al. (2001)].

2.2. Voltage gated ion channels

Around the cell there are different kinds of ion channel,
some are permanently open allowing the ions to move from
both sides of the membrane. Others are activated by changes
in the membrane potential allowing a fast interchange of ions
between the inside and outside. This type of ion channel is
called a voltage gated ion channel and they play an important
role in cells of the nervous system [Kandel et al. (2012)].

It has been proposed that voltage gated channels are made
of three basic parts: the voltage sensor, the pore or conduct-
ing pathway and the gate. During many years it has been as-
sumed that conformational change modifies the shape of the
channel proteins forming a small cavity used by the ions to
cross through the membrane. Fig. 2-(a) represents a channel
whose conformational proteins are modified in order to make
the transition from a closed to an open state. The gating chan-
nels model proposes a voltage-sensing mechanism that consists
of the movement of charged particles (that belong to the chan-
nel structure) within the membrane allowing the conformational
change in the channel. This sensing mechanisms are known as
gating particles [Sterrat et al. (2011)].
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Figure 2: a) Representation of a hypothetical channel protein with two stable
states: a closed state and an open state. While changing conformation between
these states, the channel passes through a transition state. In each state, the
gating charges (in blue) have a different position in the electric field. b) Rep-
resentation of the channel as a Markov scheme. The transition state does not
feature in the scheme. The opening rate is given byα and the closing rate isβ.
Figure taken from Sterrat et al. (2011):Principles of Computational Modelling
in Neuroscience.

2.3. Modelling channel gating as a Markov process

One way to describe the membrane excitability is to model
conductance changes in terms of populations of ion channels,
where each ion channel is modelled as an individual stochas-
tic process [Strassberg et al. (1993)]. The stochastic gating
of a single ion channel can be modelled as a continuous time
Markov process3. The kinetic scheme for an ion channel with
two states4, one closed(C) and the other open(O), where the
parameterα is theC → O rate andβ is theO → C rate (both
with units of milli secondsms−1 ) is given by [Fall et al. (2002)]:

C (closed)
α
⇋
β

O (open), (1)

If x is define as a random variable (RV), with valuesx ǫ {C,O}.
The probability thatx takes one of these values at timet is
PO(t) = Prob[x = O, t] or PC(t) = Prob[x = C, t]; where
PO(t) + PC(t) = 1. If the channel is closed at time t, the proba-
bility that it will open by timet + ∆t is:

Prob[x = 0, t + ∆t | x = C, t] = α ∆t. (2)

This is a conditional probability. Therefore we need to multiply
by the probability that the channel is in stateC at timet

Prob[C→ O] = Prob[x = O, t + ∆t | x = C, t] PC(t) (3)

= α ∆t PC(t). (4)

In a similar wayProb[O→ C] can be found. Finally, the prob-
ability for a single ion channel to be open is:

dPO

dt
= α(1− PO) − β(PO) (5)

Notice that the first term describes the process of being in the
closed state and then moving to open, while the second term

3The consideration of a single ion channel corresponds to record a small
patch in the membrane

4Information about more complicated schemes are given in Dayan et al.
(1983) and in [Laing et al. (2010).

considers the event of being in the open state and then closing
the channel.

Some examples of this Markov process are shown in Fig. 3
(left hand side) assuming the ratesα and β as voltage inde-
pendent. The probability of being in a closed or open state are
plotted as function of time. By comparing open probabilities
and dwell times in the three simulations, it is possible to see
how transition probabilities inα andβ lead to distinct channel
kinetics. It can be observed from the left, middle and bottom
panels in Fig. 3 that while the relationship betweenα andβ is
the same, the increase in fluctuations is considerable.

The key elements in Eq.(5) are the rates which generally are
functions of the voltageα = α(V) andβ = β(V). The exact
dependence has been obtain from experimental data. However,
the general expression for these quantities can be obtain from
thermodynamic arguments. Transitions involve the movement
of an effective chargeqξα,β through the potentialV across the
membrane (ξα,β takes into account the amount of charge moved
and the distance travelled). In addition, transitions described
by the rates are likely to be limited by barriers requiring ther-
mal energy [Dayan et al. (1983)]. Therefore, the probability
that thermal fluctuations will provide enough energy to over-
come this energy barrier is proportional to the Boltzmann factor
exp(−qξαV/KB T). Assuming these statements, and consider-
ing some constantAα, the form ofα can be expected as:

α(V) = Aα exp(−qξαV/KB T) = Aα exp(−ξαV/VT), (6)

the expression forβ should similar with its respectiveAβ and
ξβ.

2.4. Gillespie’s method

Consider again a single two-state ion channel obeying the
transition-state diagram (1). The probability that a single chan-
nel opens at timet remains closed untilt + τ is [Fall et al.
(2002)]:

Prob(O, t + τ | O, t) = exp(−βτ), (7)

Where the open dwell timeτ0 of the channel is an exponen-
tially distributed random variable RV. As it can be noticed the
probability for a single channel to remain in its present state de-
creases exponentially with time. Therefore the corresponding
probability distribution is:

Prob(τ < τO ≤ τ + dτ) = βexp(−βτ). (8)

In this case, the analogous method to use a subroutine for simu-
lating an exponentially distributed RV, is to choose a uniformly
distributed RV “R” on the interval [0,1] with the relation:

τO =
l

k−
ln(R) with R on [0, 1] (9)

Fig. 3 (right hand side) shows examples of the two state model
using this method, for the case of four ion channels (N=4).
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Figure 3: Left hand side: Monte Carlo simulation of the two state ion channel (closed-opened) for different rates. From top to middle figure, the gain rate (α) is
increased three times, and from middle to bottom figure the gain and loss rate (β) are increased by factor of five. Right hand side: Gillespie simulation for N = 4
independent ion channels using the same rates applied for the Monte Carlo case.

Figure 4: Left hand side, diagram of the development of a multi compartmental model: a) the cell morphology, b) representation of the neuron by a set of connected
cylinders (the same geometrical figure is used to represent the soma and the branches), c) equivalent electrical circuitconsisting of interconnected RC circuits (the
only part of the neuron receiving current is the soma). Righthand side, circuit representation of the membrane: d) electrical circuit of a patch of membrane where
an electrode is inserted inside the membrane, and e) the Hudgkin-Huxley electrical circuit containing the contribution of the current coming from different gating
ion channels, the leak current, and the capacitive current.Figure taken from Sterrat et al. (2011):Principles of Computational Modelling in Neuroscience.
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As it can be noticed with smaller rates, top panel, the num-
ber of open channels can go easily from 4 to 0 or vice versa.
Furthermore, if the opening rate is increased the channels are
rarely going to be completely closed. However, by looking at
the bottom panel, if both rates are increased by three times,
most of the time the channels are completely open.

For this project, the Gillespie method was used for two rea-
sons: 1) it is much faster computationally than the Monte Carlo
method and 2) the stochastic properties of individual ion chan-
nel states can be treated as statistically independent and mem-
oryless RV and it is sufficient to track state occupancies for the
whole population of ion channels. Therefore it is possible for
the rates for all transitions to be determined within a single pop-
ulation of ion channels and to set how long the state of the pop-
ulation should persist.
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Figure 5: Voltage dependent gating functionsαK (V) andβK (V) of the Hodgkin
Huxley model.

2.5. Compartmental model

The morphology of a cell can be represented by simple
geometric figures such as spheres or cylinders. In the particular
case of neurons, the soma is commonly represented by a sphere
or cylinders, while dendrites and axons are represented as con-
nected cylinders with different diameter [Sterrat et al. (2011)].
In general, dendrites cannot be treated as isopotential structures
(which leads to axial current flowing along them), then in order
to account for this in the model a single dendrite has to be rep-
resented as the connection of multiple compartments. Fig. 4(a)
and (b) respectively show how the discretization of the neuron
can be performed, by presenting the cell morphology and the
structure of interconnected cylinders. The soma corresponds to
the wider cylinder and as long as we start moving away from it
the cylinders are thinner. Additionally, Fig. 4 (b) shows that a
single dendritic branch can be represented by connecting two
or more cylinders.
Therefore, in compartmental modelling, the election of the
size of the cylinders (being simulated in the dendritic treeof a
neuron) is an important parameter in the model, i.e. the length
l and a diameterd. For the case of a single compartment, this
is treated as an isopotential entity, where the connection be-
tween compartments is treated by applying the correspondent

boundary conditions. The basis of modelling the electrical
properties of a neuron is the resistorcapacitor electricalcircuit
(RC) consisting of a capacitor, leak resistor and a leak battery
electrical circuit, i.e. this simple case represents a passive
membrane. In order to calculate voltage changes in more than
just an isolated region of membrane, it should be considered
how the voltage spreads along the membrane. This can be
modelled with multiple connected RC circuits. Fig. 4 (c) shows
the diagram of a piece of neuron represented by a set of RC
circuits connected in parallel. For this specific representation,
the only part of the neuron receiving a applied current is the
soma, then the structure of the diagram for the branches is
equivalent.

Compartmental models are commonly used in computer sim-
ulations employing a finite number of compartments. It has
been suggested that a certain amount of errors come from the
inaccurate assumption of isopotential compartments [Sterrat et
al. (2011)]. In practice it can be noticed that reducing the size
of the used compartments reduces the amount of error but in-
creases the number of sections required to represent the biolog-
ical structure, consequently increasing the computational de-
mand for the simulation.

2.6. Hodgkin Huxley model
In 1963, Andrew Fielding Huxley and Alan Lloyd Hodgkin

proposed that changes in membrane permeability due to cer-
tain ions account for the observed changes in membrane volt-
age and that the potential tends to the Nernst potential5of the
ion to which the membrane was mainly permeable [Laing et al.
(2010)]. Using a voltage clamp6 Hodgkin and Huxley demon-
strated (1949) that bothNa+ andK+ ions make important con-
tributions to the ionic current during an action potential [Ster-
rat et al. (2011)], Fig. 4 (d) represents how using the voltage
clamp technique a electrode (which is injecting current inside
the membrane) is inserted inside the cell membrane and the cor-
responding RC circuit form by the electrode and the gating ion
channels ofNa+ andK+.
Based on this assumption, Hodgkin and Huxley proposed an
equivalent electrical circuit for a patch of nerve membranewith
a capacitive current and ionic currents from the flow ofNa+

(INa) and K+ (IK ) ions as well as a leak current (IL) (these
currents are described in the following subsections). Fig.4 (e)
represents the diagram of the membrane made by Hodgkin and
Huxley. Therefore to establish the differential equation satis-
fied by the voltageV, Kirchoff’s law of charge conservation is
applied to the circuit. This circuit can be described by

C
dV
dt
+ I ions = Iapp (10)

where
I ions = INa + IK + IL (11)

5Nernst potential is the equilibrium potential, where the electrical and os-
motic forces are balanced for a particular type of ion.

6The voltage clamp was introduced by Cole and Marmount and is used
in electrophysiology to measure ionic currents across cellmembranes at fixed
voltages.

5



Figure 6: Localization of clusters along the dendrite. A single compartment was mapped into a finite line where equally separated clusters where located. Each
cluster contains a differentNNa,i andNK,i number of ion channels.

with Iapp the current applied through experimental manipu-
lation andC the membrane capacitance.

The Hodgkin Huxley model also describes how the action
potential propagates along structures like axons and dendrites.
In a continuous cable model, the contribution due to the length
of the cable is the second derivative of the membrane potential
with respect to space. The equation that describes the behaviour
of voltage in a single compartment has the form of a model is
reaction diffusion equation:

∂V
∂t
= D
∂2V
∂x2
+

V − EL

τ
−

1
πa C

∑

i,n

δ(x− xn)I i,n(t), (12)

where 0≤ x ≤ L .The indexn is used for labelling different
positions along the cable andi index describes the contribution
of currents coming from different gating ion channels and the
diffusion term is given byD j whose expression depends on the
electrotonic space constantλ and in the membrane time con-
stantτ as

D j = λ
2
j /τ

where

λ j =

√

a jR/(4Ra) and τ = C R.

The magnitude of each type of ionic current is calculated from
the product of the ions driving force7 and the membrane con-
ductancegi for a specific ion:I i j = gi(V j−Ei) whereEi describes
the corresponding equilibrium potential. In particular

INa = gNa(V − ENa),

IK = gK(V − EK),

IL = ḡL(V − EL),

are used in this work.

7The driving force corresponds to the difference between the voltage applied
and the voltage at which there is no flow (Nernst potential)

2.7. Leakage current

The leakage current (leak current), is created by resting chan-
nels, which are permanently open, and they are responsible for
generating the resting membrane potential. In most kind of neu-
rons, resting channels are mainly permeable to chloride (Cl−)
ions and the remaining channels are permeable toK+ andNa+.
The current created by these channels has the capacity of per-
sist throughout changes in membrane potential as depolariza-
tion (increase in voltage).

2.8. Sodium current

The sodium resting potential is around 50 mV, and the ex-
tracellular concentration of sodium ions is greater than inside
the cell. For membranes of different cells, Na channels work as
pacemakers or contribute to creating the threshold potential that
underlies the decision to fire or not to fire [Sterrat et al. (2011)].
For this particular kind of ion channel, the voltage dependence
for the openingαNa and closingβNa rates are given by

αNa =
0.1(V + 40)

1− exp(−0.1(V + 40))
(13)

βNa = 4exp(−0.556(V + 65)) (14)

When current is injected in the cell it can increase the mem-
brane potential (which implies in the Hudgkin Huxley model to
add the contribution of a term related to positive current).When
this current drives the membrane potential up to−50 mV, the
αNa variable jumps from a value near to zero to almost one, this
causes a large flux ofNa+ ions to enter the membrane rapidly
raising the potential to around 50 mV (the sodium resting po-
tential) producing the large spike in voltage that characterizes
the action potential. The rise in membrane potential causesthe
Na+ conductance to inactivate, then the correspondentNa+ cur-
rent is shut off.

2.9. Potassium current

The potassium resting potential is around−77 mV and the
concentration ofK+ inside the cell is greater than the exter-
nal concentration and when the neuron tends to increase the
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Nomenclature Parameter Units

Diffusion coefficient D 2.5E4 µm2ms−1

Membrane time constant τ 3.3 ms
Membrane capacitance C 1 µFcm−2

Branch length L 100 µm
Branch diameter a 1 µm

Na reversal potential ENa 50 mV
K reversal potential EK -77 mV

Leak reversal potential EL -70 mV
Na conductance gNa 20 pS
K conductance gK 20 pS

Table 1: Parameter set used in the model of a single dendrite.

membrane voltage, potassium channels allow ions to exit the
cell in order to make the interior more negative and reestablish
the equilibrium potential (membrane potential) which in non-
exitable conditions is around−70 mV. Furthermore, when the
neuron is set at the threshold potential8 K+ channels control the
duration of the spikes keeping the lasting time short [Hilleet
al. (2001)]. In addition, these kinds of channel are capableof
terminating periods of intense activity and timing the intervals
between firing. The voltage dependance for the openingαK and
closingβK rates for this kind of channels are given by

αK =
0.01(V + 55)

1− exp(−0.1(V + 55))
(15)

βK = 0.125exp(−0.0125(V+ 65)) (16)

whereV is expressed in mV. Figure. 5, shows the exponential
decay ofβK = βK(V) and the exponential growαK = αK(V) as
the voltage is going close to zero.

2.10. Parameters

For the purpose of this work, a single compartment was
mapped into a finite line where equally separated clusters where
located. Each cluster contains a group ofNa+ and a group of
K+ gating ion channels modelled with Gillespie method. It
has been found that the average density ofNa+ channels along
dendrites is 60x108 channels percm2, and the average density
of K+ channels is 18x108. Therefore, corresponding with the
diameter and length of the compartment used, see (Table 1),
the number ofNa+ andK+ channels used was 6000 and 1800
respectively. These channels were randomly distributed along
the line that represents the compartment and then located into
the nearest cluster. Thereforexn in Eq. (12) corresponds to the
location of the different clusters. Fig. 6 shows how the clusters
where located into the dendrite.

Suppose thatN clusters where used, then the number of
groups of gating ion channels is 2N. According to Gillespie

8The threshold potential is the critical level to which the membrane potential
has been depolarized in order to initiate an action potential (it triggers the nerve
impulse). The common value of this potential is between−50 to 40 mV.

each group is going to change the number of open ion channels
(opening or closing a single one) in a timeτ j with j ǫ [1, 2 N].
However, the clusters are constrained to be in the cable, so they
can change their state independently from the neighbouring
clusters. In addition, the way in which these gating channels
are going to contribute to modify the total voltageV is given by
Eq. 12 (which is a partial differential equation (PDE)), and in
order to numerically solve this PDE the time step (dt) has to be
fixed. Therefore the time step give by Gillespie cannot be used
to evolve the diffusion equation. Nonetheless, through the use
of the Gillespie model, the minimum timedt′ in which an event
can happen (opening or closing one channel) can be known.
Hence, the PDE is evolve using a fixeddt wheredt < dt′, and
oncedt reaches the value ofdt′, the timesτ j are calculated. If
τ j ≤ dt′, the corresponding group of ion channels is going to
actualize to a new state.

The fact that in generaldt < dt′ comes from the fact that Eq.
(12) that has to be solved is a reaction diffusion equation. In
order to numerically solve these kind of equations, the Courant
Friedrichs Lewy (CFL) condition has to be taken into account.
The CFL condition is required for convergence when a hyper-
bolic partial differential equation is trying to be solved by the
method of finite differences Sauer et al. (2006) and involves a
relationship between the diffusion constantD, the time stepdt
and the spatial stepdx of the PDE

D
dt

(dx)2
<

1
2
. (17)

In addition the PDE was solved using a Runge-Kutta method of
order four (RK4). The convergence properties of a fourth order
method like RK4, are higher than those of orders 1 and 2 such
as the Euler and Trapezoid methods respectively. Convergence
here means, how fast the error of the ODE approximation at
time t goes to zero as the step sizedt goes to zero. Fourth order
implies that for every halving of the step size, the error drops
by approximately a factor of 24. Then the voltage in Eq. (12)
was discretized and calculated as

Vi+1 = Vi +
dt
6

(s1 + 2s2 + 2s3+ s4) (18)
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Figure 7: Voltage recordings of 500msmade for specific sections of a dendrite of length 100µm (1E − 4m). For this graphsgleak = 0.026cm2/S. Panel (a) shows
fluctuations in voltage due to the random transitions between open and close states of the gating ion channels. From (b-d)shift of the voltage membrane due to a
threshold voltage is reach that leads a fast increase on it. In black colour is presented the point of the injection current (0.0035E − 4m) away from the beginning of
the dendrite. In red colour is plotted the voltage associated with the nearest cluster to the current injection (0.0645E−4m), in blue colour is presented the voltage of
an intermediate cluster between the beginning and the middle point of the dendrite (0.3226E − 4m). Green colour corresponds to the middle section of the dendrite
(0.56E − 4m), and yellow colour represents one of the clusters almost atthe end of the cable (0.9355E − 4m).

Figure 8: Voltage recordings of 500msmade for specific sections of a dendrite of length 100µm (1E − 4m). For this graphsgleak = 0.0144m2/S. Panel (a) shows
fluctuations in voltage due to the random transitions between open and close states of the gating ion channels. From (b-d)shift of the voltage membrane due to a
threshold voltage is reach that leads a fast increase on it. In black colour is presented the point of the injection current (0.0035E − 4m) away from the beginning of
the dendrite. In red colour is plotted the voltage associated with the nearest cluster to the current injection (0.0645E−4m), in blue colour is presented the voltage of
an intermediate cluster between the beginning and the middle point of the dendrite (0.3226E − 4m). Green colour corresponds to the middle section of the dendrite
(0.56E − 4m), and yellow colour represents one of the clusters almost atthe end of the cable (0.9355E − 4m).
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and

s1 = f (ti ,Vi),

s2 = f (ti +
dt
2
,Vi +

h
2

s1),

s3 = f (ti +
dt
2
,Vi +

h
2

s2),

s4 = f (ti +
dt
2
,Vi + hs3),

where f (ti ,Vi) is the expression in the right hand side of Eq.
(12).

3. Results

A dendrite of 100µm of length and diameter 1µm was
modelled, locating on it thirty clusters. Each cluster contained
on average 200Na+ and 60K+ ion channels. At the beginning
of the dendrite a trend of nine identically square pulses of
current was applied. The amplitude of each pulse was 0.1nA
with a duration of 50msand a delay of 10ms. Recordings of
the activity of the neuron were made for 500ms.

Fig. 7 and Fig. 8 present the recordings made for specific
sections of the dendrite. For an easy description the longitude
of the dendrite (cable) is going to be considered as 1E − 4m
and the starting point of the dendrite is zero metres. Then the
longitude of the dendrite is measured from 0 to 1E − 4m. In
all the panels of these two figures, with black representing the
location of the point of the current injection, 0.0035E − 4m,
red represents the response of the nearest cluster of gating
ion channels located 0.0645E − 4m away from the begging of
the dendrite, purple, the response of a cluster relatively more
separated of the point of current injection 0.32E − 4m, green,
is the middle point of the dendrite 0.50E − 4m and orange
represents the activity of one of the clusters almost in the end
of the cable.

The initial condition for the (12) was a flat−70mV, and the
value ofgleak was 0.026cm2/S. In Fig. 7 (a) the fluctuations
on voltage the cable are presented. These fluctuations are
consequence of the current applied (the bigger fluctuations
appear in the times when the current is switched on) and the
stochastic gating of the ions contained in the clusters. Notice
that the spontaneous fluctuations in voltage can achieve values
nearing−50mV. What is also important to note is the visible
presence of diffusion in the voltage equation, as for the nearest
points to the injection current the voltage is slightly greater
than for points nearing the end of the dendrite. For the case
of Fig. 7 (b), for the same initial conditions that in Fig. 7
(a), a large fluctuation changed the whole set of plots in a
neighbourhood of−10mV, and for the rest of the time the
voltage never returns to a region close to the initial condition.
However small changes in voltage are still visible in the topof
the figure, but these fluctuations in the points of applied current
are smaller than the ones found in Fig. 7 (a). In addition, the

presence of the diffusion factor is still evident as for the points
near the beginning of the dendrite the square shape of the
voltage (due to the square pulse of current) is clearly visible,
but for points away from the injection current this square shape
is not clearly visible.

The presence of this shift in voltage can be found at any
time in the recording of the voltage (between 0 and 500ms).
Two more examples of this behaviour of the shift in voltage are
shown in Fig. 7 (c) and Fig. 7 (d). For the first one, the shift
appears after 200ms of being recording the voltage while in
the second one, the shift comes out just after 450ms. Notice
that in the time between zero and the time time just before the
shift, the bigger fluctuations that came along Fig. 7 (a) are also
appearing. In order to see the dependence of the voltage on the
dendrite as function of the number of clusters, we remove half
of them from the cable, maintaining in the remaining clusters
exactly the same number ofK+ andNa+ gating ion channels
as in Fig. 7. The simulation was run taking the same initial
conditions as in the previously described figure (initial voltage
−70mV andgleak = 0.026cm2/S). For this case, it was found
that the fluctuations in voltage are considerably smaller than
for the case of 30 clusters. As a consequence of this, the shift
in voltage is never found. In the other hand, diffusion is still
present and it seems to quickly reduce the current injected at
the beginning of the dendrite.

Considering the case of 15 clusters, we change the ini-
tial conditions, of the (12), taking now the value ofgleak as
0.0144cm2/S and maintaining the initial voltage in−70 mV,
the big fluctuations in voltage are found again Fig. 8 (a). In
addition the shift in voltage randomly appears again. Fig. 8
(b) presents the big change in voltage at the beginning of the
simulation. What is remarkable of this figure is that the ef-
fects of diffusion are greater, because for the blue line (position
0.32E − 4m in the cable), the current applied seems to almost
disappear. An effect that is clear at the end of the cable (yellow
line). Moreover, Fig. 8 (c) and Fig. 8 (d) show examples of the
big change in voltage for different times, the behaviour of dif-
fusion is same as the one describe for Fig. 8 (b). The effect of
the big change in voltage was seen for the particular parameters
describe in the previous section. For Fig. 7 and Fig. 8, we tried
to modified the characteristics of the pulse of current that was
applied, changing the delay or duration but always maintain-
ing the same amplitude9. The results, were the same that the
ones presented in Fig. 7 and Fig. 8, because the shift in voltage
appeared randomly in the points where current was applied.

9The amplitude was not changed, as it is known that a big pulse corresponds
with a faster opening of the gaiting channels.
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4. Discussion

The results shown in the last section clearly demonstrate the
stochastic behaviour of the gating ion channels. The particular
values ofgleakfor which a random shift in voltage occurs were
found by manually changing this parameter and looking at
the global behaviour. In addition, for this specific values of
gleak, the system seems to be describing an unstable point,
because if the value ofgleak is modified (increase or decrease)
the fluctuations rapidly disappear.

The fluctuations in voltage that appeared in Fig. 7 and Fig. 8
are due to stochastic opening and closing changes of the states
of the gating ion channels. When this fluctuations reach a
threshold value, the shift in voltage occurs. The value of this
threshold for all the figures shown in this work is around−45
mV. The fact that once the shift occurs the voltage never returns
to its initial value is mainly because after the shift occurs
current is still being applied.

For the two cases presented, using 30 and 15 clusters the re-
sults are mainly the same, the differences found were: 1) The
specific value ofgleak were the fluctuations and the shift in volt-
age occurs in a randomly way (all along the time of the voltage
recording) are not the same, and 2) the consequences of diffu-
sion are bigger for the case when 15 clusters were taking into
account10.

5. Conclusion

In this work we discussed the importance of stochastic
gating ion channels in nervous cells and show how this kind
of ion channels may be modelled as a Markov process. The
concept of gating ion channels was firstly introduced, together
with the description of a simple kinetic scheme of two states
for the channels: open and closed states. It was also shown how
the probability of being in either one of the two states can be
calculated. Finally, we present discussion on how Gillespie’s
method improves the numerical simulation over the traditional
Montecarlo simulation.

In addition, we show how the neurons can be discretized by
using geometrical figures and then model them as multiple con-
nected RC circuits. Furthermore, the Hudgkin Huxley model
was used in order to introduce the equation that describes
the propagation of the action potential along like-dendritic
structures. The circuit model of the dendrites and the typesof
currents that contribute to increase or decrease the membrane
potential was further treated.

Finally, we present some plots which show how the stochas-
tic behaviour of the ion channels affects the voltage in the mem-
brane; a proof of this is that subject to an applied current, the

10For more information about Markov process applied to gatingion channels
check: Kamran et al. (2006) and Schmandt et al. (2012).

ion channels generate fluctuations on the voltage membrane,
and because of this, it is shifted to a new voltage state with
a higher value. This shift, for specific biological parameters,
can randomly occur during the voltage recording along the ca-
ble. The effect of diffusion can also be appreciated. This effect
strongly suggests that the compartment should not be treated as
an isopotential entity, for the pulse injected in the beginning of
the dendrite is not entirely recovered at its final position.

Further Work

In this proyect gating ion channels were modelled by a spe-
cific Markov chain model, the simplest model in this class: two
transition states (open and closed). Most Markov chain mod-
els of ion channel gating are more complex than the two-state
model to include multiple closed and/or open states as well as
voltage-dependent transitions. Therefore we will intend to ac-
count for this.
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