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Abstract

During yeast-cell division, Hsp104-associated aggregates are distributed unequally be-
tween the daugher and the mother cell. Only around three out of ten daugher cells
end up having at least one Hsp104 protein after cell division is complete (reference [4]).
Although evidence shows that aggregates are dragged away from the bud by the actin
cytoscheleton formed in the actin nucleation centers (reference [4]), the exact mechanism
causing this asymmetry is yet unknown. In this project different reasons that may ex-
plain the abnormal inhertitance of damaged proteins were studied. As a starting point,
it was assumed that the aggregates undergo a random walk when not encountering ob-
stacles or being subject to the different forces that may hold them inside the mother cell.
For this, two-dimensional and three-dimensional simulations were performed of protein
aggregates diffusing inside a yeast cell, of protein aggregates diffusing inside a yeast cell
with a vacuole and of protein aggregates diffusing inside a yeast cell with both a vacuole
and our interpretation of the actin cables’ influence in the Hsp104 aggregates’ movement.
One aim was to study the nature and the source of the experimentaly observed anoma-
lous diffusion. In every simulation, the probability of at least one aggregate being present
in the daughter after cell division is over was computed in order to verify wether our
data agreed with the experimental observations. Our results suggest that the irregular
distribution of the Hsp104 aggregates happens due to two effects: the special geometry
of the dividing yeast cell in which the aggregates diffuse, and aggregate attachment to
actin cables.
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1
Introduction

A
ging in unicellular organisms such as yeast cells is strongly associated
with cellular division. Cell division in yeast cells gives rise to an “aging” and
an “inmortal” lineage. The “aging” lineage consists of an old mother cell with
a decreased survival rate, while the “inmortal” one of a new, healthy daughter

cell with a longer life span and full replicative potential. Figures 1.1a) and 1.1b) show
the relationship between the survival rate of yeast cells and the number of divisions
they undergo, and the comparison between the mean life span of the mother and the
daugher cells after budding. Recent observations [4] show that the difference in the av-
erage endurance between the two outcomes of yeast cell division is highly connected to
the asymmetrical distribution of Hsp-104-associated protein aggregates between them.
This is, since oxidized proteins such as Hsp-104-associated aggregates affect the fitness
and maintenance of yeast cells. In fact, observations show that, although the average
number of Hsp-104-associated aggregates in regular yeast cells is 15, only one of every
three daughter cells inherits at least one of them ([4]).

The exact mechanism that causes the assymetry in the inheritance of Hsp-104-
associated aggregates remains unclear. Hence, in the last couple of years, a number
of studies such as the ones in [4], [13], and [11] present hypotheses that may explain why
the aggregates are kept inside the mother cell.

Recent observations suggest that the actin cytoscheleton of the yeast cells transports,
via cable flow, the Hsp-104-associated aggregates towards the mother cell. It seems that,
the actin cables (filaments that contribute to the establishment of cell polarity), created
in the actin nucleation centers located in the tip of the daughter cell and the neck con-
necting it to the mother (see figure 1.2), carry the damaged proteins away from the bud
as they elongate. It is then considered possible that, due to a chemical reaction between
the actin and the Hsp-104-associated protein molecules, the Hsp-104-associated protein
aggregates adhere to the actin filaments and therefore move along with them as they
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CHAPTER 1. INTRODUCTION

a) b)

Figure 1.1: a) Relationship between the survival rate and the number of cell divisions in
yeast cells. Image taken from [7]. b) Mean life span of the mother and daughter cells. Image
taken from [4].

Figure 1.2: Image of the actin cytoscheleton. Image taken from [7].

grow.

The previous hypothesis, however, is not the only one that has been put forward
when studying the asymmetrical distribution of damaged proteins. More recently, it was
stated that the reason for the Hsp-104-associated protein aggregates to remain inside the
mother cell during yeast cell division is likely to be a consequence of both, slow diffusion
of the aggregates and the complex geometry in which they lie [13]. Allegedly, when
using particle tracking techniques to observe the dynamics of the aggregates, the results
suggest that these undergo an unbiased random walk during cell-cycle stages such as
cell division. Consequently, aging in yeast cells could be a result of a purely stochastic
process.
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CHAPTER 1. INTRODUCTION

As a response to this last approach, an explanation of both the anomalous diffusion of
the aggregates and the unbalanced distribution of them between the bud and the mother
cell, was presented in [11]. The authors of [11] state that the confinment of the Hsp104-
associated aggregates to the organellar surfaces inside yeast cells justifies their observed
dynamics and their inability to travel inside the daughter cell during yeast cell division.
The authors of [11] observed slow-diffusive behavior of the protein aggregates is actually
a result of constrained diffusion alog the surfaces of organelles such as the vacuole and
the IPOD. Hence, instead of being a pure random process, aging is also dependant on the
chemical attractions between the organelles’ surface and the Hsp104-associated protein
aggregates.

The following project is a compilation of the results I obtained when studying, with
the aid of numerical simulations, how persuasive some of the previously introduced
theories are.
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2
Model

T
o investigate the dynamics of Hsp-104-associated protein aggregates in bud-
ding yeast cells, as in most of the research arising in the field of experimental
sciences, the first interaction with the unclear aspects of the aggregates’ behav-
ior must be done via direct experimental observation. This approach, however,

may be insufficient since properties such as the system’s complexity ( its parts interact
in complicated ways), or the system’s size when dealing with macro and microscopical
scales, may become obstacles to the comprehension of it. In such cases, numerical ap-
proaches become a helpful tool as they can simplify the elusive nature of the system
by capturing what seem to be its essential characteristics. In the following sections I
will explain in detail both the experimental observations and the numerical simulations
important for studying the source of the asymmetry in the Hsp104-associated protein-
aggregate distribution during yeast cell division.

2.1 Experiments

The analysis of the dynamics of Hsp-104-associated protein aggregates in yeast cells us-
ing modern methods such as particle tracking, show that, unlike regular proteins which
diffuse freely, these aggregates are distributed asymmetrically between the daugther and
the mother cell during cytokinesis [13]. In fact, most of the aggregates are retained
in the mother cell throughout the entire cell division process; only around 30% of the
newborn yeast cells inherit one or more damaged protein aggregate [4]. Thus, a number
of experimental approaches have aimed to understand, if not the absolut reason for such
unequal distribution, the aspects that may or not influence it.

One of the most approved hypotheses that arose on this matter, states that the
abnormal distribution of damaged-protein-aggregates depends upon on both the actin
cytoskeleton as well as the concentrations of compounds in the cytoplasm. In fact, re-
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cent observations ([4]) have shown that sirtuin or Sir2p (protein fundamental for cellular
regulation in yeast) has a substantial role in both the levels of damaged proteins and
their distribution. In fact, mutated yeast cells without Sir2p, showed not only a higher
concentration of damaged proteins but a more symmetrical distribution during cytoken-
esis. This was seen when measuring the concentration of damaged proteins in yeast cells
lacking both fob1 (DNA replication fork-blocking protein) and Sir2p proteins. In this
case, yeast cells were injected with Hsp104p as well as hydrogen peroxide. Hsp104 p,
upon a heat shock, accumulates around the aggregates of damaged proteins and glows,
making it posible to visualize the aggregates. On the other hand, hydrogen peroxide
induces protein aggregation. In the first case (cells lacking fob1), the asymmetry of
Hsp-104-associated aggregates during yeast budding remained, while in the second (cells
lacking fob1 and Sir2p) the amount of damaged protein aggregates found in the bud was
twice as much as under regular circumstances. Additionally, as in regular cytokinesis,
the non-oxidated proteins showed no particular unequall distribution. Thus, evidence
suggests that sirtuin is a crucial element in the distribution of damaged protein aggre-
gates but not in the behavior of all proteins per se.
Another observation made from the same experiment was that damaged, oxidated pro-
teins not only affect negatively the fitness of yeast cells, but shorten their mean life span
as well. Indeed, yeast cells with lower levels of Sir2p and a larger number of damaged
protein aggregates exhibited a shorter life span than those in natural conditions.
Additionally, in the same study [4], the effect of the actin-cytoskeleton on the distribution
of damaged proteins was verified experimentally. The formation of the actin-cytoskeleton
was supressed with Latrunculin-A (Lat-A), which binds to the actin molecules impeding
them to form the actin filaments. As a matter of fact, Lat-A obliterated completely
the segregation of Hsp104-associated proteins in yeast budding. Hence, at first sight,
just as sirtuin, the actin cytoskeleton has a strong correlation with the odd behavior of
Hsp104-associated protein aggregates during cytokinesis.

The previously described analysis is, however, only one of the possible explanations
for the observed dynamics of the damaged-protein aggregates during yeast-cell division.
In a recent investigation ([13]), damaged protein aggregates were observed in live yeast
cells. They were observed with the use of Hsp104-GFP after the cells were somitted to
a 30 minute heat shock at 42◦C. When the yeast cells were at a 30◦C, they were imaged
in 3D and 2D confocal movies. According to them, there is no evidence of aggregate
movement from the bud to the mother cell to happend with more regularity than that
in the opposite direction. Instead, particles appear to undergo an unbiased random
walk with a small amount of confinement (30% of subdiffusion). To show this, the
mean squared displacement of the damaged protein aggregates was averaged over 1068
aggregate trajectories, and was compared to numerical simmulations of superdiffusion,
diffusion and subdifussion. The results are shown in [13]. The experimentally observed
mean-square-displacement agrees with that of subdiffusion, that is, behaves as〈

r2
〉

= 4Dατ
α, α < 1 (2.1)
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where τ is time and Dα is the diffusion constant. This however, is not the expected
behavior since, at least at short time scales, superdiffusion (α > 1) would occur when
the aggregates are actively transported by actin filaments. To verify that the cells ob-
served in the experiment had not randomly mutated in such a way to comprimise the
dynamics of damaged protein aggregates, the results were compared with those acquired
in previous experiments. The trayectories, seen in the other movies, showed to be of the
same kind of the measured ones in the experiment.

In response to the experiments conducted in [13]., Spokoini et al [11], in their most
recent work, made and analysed movies of both protein aggregates and cell organelles
such as the IPOD and the vacuole. The movies showed that the dynamics of protein
aggregates in budding yeast cells which, as it was said, was classified as subdiffusion,
was, apparently, diffusion on the surface of organelles instead. Hence, the dynamics of
HSp104 associated aggregates was most likely to be non entirely random.

Th results summrized above show that in the study of the asymmetrical distribution
of damaged proteins, a number of questions yet remain elusive. The matters that are yet
unsolved, remain unclear, or are unconvincing are summarized in the following questions.

• Is the asymmetrical inheritance of damaged protein aggregates in yeast cells de-
pendant influenced by sticking to the actin cytoskeleton?

• Are the damaged protein aggregates undergoing diffusion or anomalous diffusion?

The main question is the following.

• Which mechanism retains the damaged protein aggregates inside the mother cell
during yeast cytokinesis?

As the results of the experiments show, despite the fact that such questions have
been directly addressed in experiments such as the those in [13], [11], and [4] the con-
clusions remain ambiguos. For example, though the asymmetric inheritance of damaged
proteins appears to depend on the actin filaments [4], the measurement of the mean-
square-displacement of them shows no evidence of any biased transport [13]. Hence, in
order to address the questions listed above, other mechanisms or approaches can result
helfulp in solving the persistent uncertainties. For instance, real time three-dimensional
tracking of protein aggregates would make it possible to distinguish wether particles are
undergoing anomalous diffusion or just diffusion along the surface of the cells organelles.
On the other hand, a more detailed visualization of both the actin cytoskeleton and the
Hsp104-associated aggregates would probably show if there exists or not a correlation
between them.
In this project we used numerical simulations to address the questions listed above. Sim-
ulations are advantageus as they can isolate the influence that different parts have on a
particular complex system ’s behavior. This way, by capturing the essential characteris-
tics of a model questions as the one in this project can be studied. This, as simulations

6



2.2. DIFFUSION CHAPTER 2. MODEL

may quantitatively answer how each of the potential mechanisms of aggregate retention
influences the asymmetry in their distribution. More explicitly, I used numerical simula-
tions to study how two empirically measured quantities behave in a model incorporating
the characteristics that, according to the above publications ([13], [4]), may serve as
explanations for the asymmetrical inheritance of Hsp104-associated aggregates during
yeast-budding. The measurements are the mean-square-displacement of the aggregates’
and the probability of a newborn yeast cell having at least one damaged protein at the
end of the cell division process.

2.2 Diffusion

To model the dynamics of the damaged protein aggregates in yeast cells, it was assummed
that they diffuse in the cytoplasm. The reason for this assumption, is that experimental
observations in microbiology show that proteins and other biologically important aggre-
gates undergo random walks when present in living cells. In the following sub-section the
basic principles of diffusion are introduced. Then, the simulations of aggregate diffusion
are explained in detail.

2.2.1 Basic Principles of Diffusion (reference [1])

Consider a particle undergoing a random walk in a one spatial dimension, starting at
the origin. In every time step of length δt the particle moves, either to the left or to
the right, a distance of δx. If the probability of moving to the right is equal to that of
moving to the left then the probability Q(x,t) of a particle being in position x after t
units of time satisfies the so called ‘diffusion equation’

∂Q

∂t
= D

∂2Q

∂x2
. (2.2)

where D = δx2

2δt is the ‘diffusion constant’. This equation is known as the Diffusion
Equation, its solution is

Q(x,t) =
1√

4πDt
exp

(
−x2

4Dt

)
. Q(0,0) = 1. (2.3)

Now, consider the transformation to dimensionless variables x∗ = x√
4Dt

, t∗ = ct. Let

Q∗(x∗,t∗) = Q(x,t) Then, the dimensionless form of the law of diffusion can be derived
using chain rule,

∂Q∗

∂t∗
=

1

c

D

4Dt

∂2Q∗

(∂x∗)2

For convenience we let c = 1
4t to get

∂Q∗

∂t∗
=

∂2Q∗

(∂x∗)2
(2.4)
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The quantity that characterises dynamics in diffusion processes is the mean-square-
displacement (MSD)

〈
x2(t)

〉
as function of time. Calculating it yields

〈
x2(t)

〉
=

∫ ∞
−∞

x2Q(x,t)dx = 2Dt. (2.5)

which is known as the Law of Diffusion.
Generalizing to d ≥ 1 dimensions, if r(t) denotes the Euclidean distance between the
initial position of the particle and the position at time t then, considering that the
movement in different dimensions is independent,

〈
r2(t)

〉
=

〈∑
i≤d

x2i

〉
=
∑
i≤d

〈
x2i
〉

= 2dDt. (2.6)

‘Anomalous diffusion’ by contrast corresponds to the case where〈
r2(t)

〉
= 2dDαt

α. (2.7)

with α < 1 (subdiffusion) of α > 1 (superdiffusion).

2.2.2 Two-Dimensional Simulations of Diffusion

It is often assumed that protein aggregates undergo a random walk in the cytoplasm.
In this case, their dynamics can be studied in terms of a diffusion process. However,
diffusion in cells is obstructed by mobile and inmobile obstacles such as the cell walls
and the organelles. Hence, the observed mean-square-displacement of the aggregates is
unlikely to behave as that observed in regular diffusion of particles as introduced in the
previous section. If, moreover, the aggregates are transported by the cytoskeleton, the
probabilities of moving in different directions are unequal. This means that, instead
of regular diffusion, the damaged proteins’ dynamics would likely resemble anomalous
diffusion or directed motion.

As it is explained in detail below, the simulations for this project aim to resemble
the observed dynamics of damaged protein aggregates by modelling their diffusion and
possibly subdiffusion (in the standard way). Likewise, constraints as the finite size of the
domain (mother and daughter cell), the presence of the vacuole (biggest organelle inside
the yeast cell), the finite size of the protein aggregates, and the moving boundary of the
growing daughter cell are implemented in the two-dimensional and three-dimensional
programs. This is done in order to appreciate the influence each one of them has on the
mean-square-displacement of the aggregates and to compare to the experimental data
available in the figures in [13]. Furthermore, every simulation calculates the probability
of the daughter cell having at least one aggregate after cytokinesis is complete to verify
if the selected mechanism, besides affecting the aggregates’ mean-square-displacement
in the desired way, is succesful in generating the asymmetry in the distribution of them
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(a) (b)

(c)

Figure 2.1: (a,b)Trajectories of a particle undergoing a random walk and starting on the
origin of the x-y plane. (c) Trajectory of a particle undergoing a random walk inside a circle
of radius 1 µ m. In both cases, the diffusion constant D was taken to be 0.0005µm2/sec
and the time step δt was set to 5sec.

between the bud and the mother cell.
The programming language used for the simulations is MATLAB.

As a first step, simulations of a random walk of a particle in the two-dimensional
space and inside a circle were ran. In either case, the particle, initially at the origin,
and currently in position (x,y) was moved every time step of size δt to the position
(x + χ1,y + χ2) where χ1,χ2 are independent Gaussian-distributed random variables
with mean 0 and standard deviation

√
2Dδt. The diffusion constant D was taken to

be 0.0005µm2/sec and δt was taken to be 5 seconds. If however, in the case where the
particle was confined to diffuse inside the circle, it meant to move ouside the circle’s
boundary, then the particle bounced back with its angle of incidence equal to its angle
of reflection as shown in figure 2.2(a). Examples of the trajectories of the particle in
different simulations of both programs are shown in figure 2.1.

So far we have only considered an abstract representation of the random walk of ag-
gregates inside yeast cells, where they are represented as nondimensional particles and
the cells as perfect circles. Hence, in order to make the program more accurate, the
particle was replaced by a disc which represented the aggregate and it’s finite size. The
boundary conditions were adapted in such a way that the distance between the center of
the disk (aggregate) and the origin would never be larger than rc − ra where rc denotes

9
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(a) (b)

Figure 2.2: (a) Boundary conditions of a particle diffusing inside a circle. Here l1 + l2
equals the magnitud of the particle’s movement. (b) Boundary conditions in the simulation
of a protein aggregate diffusing inside a yeast cell.

the radius of the cell and ra the radius of the aggregate. Thus, the center of the aggre-
gate would behave as the non-dimensional particle considered in the previous program
with the difference that the space constraint was no longer a circle with radius 1 µm
but a circle with radius rc − ra. For clarity see figure 2.2(b). Additionally, the aggre-
gate’s center was initiated randomly in a point (x0,y0) inside the circle representating
the yeast mother cell. For this x0 and y0 were taken as x0 = (rc − ra)

√
β cos(α) and

y0 = (rc − ra)
√
β sin(α) with β and α random numbers in the intervals [0,1) and [0,2π)

respectively.

Next, to simulate yeast cytokinesis, the aggregates were allowed to diffuse inside
another circle connected to the original one by a neck as it is shown in figure 2.3. This
new circle is a representation of the daughter cell. Constraints such as the expanding
boundaries of the daughter cell and the vacuole (a circular region inside the mother
cell in which the aggregates are not allowed to diffuse) were added both separately and
combined (figure 2.4) to study their effect in the aggregates’ mean-square-displacement.
Recall that the general aim was to seek concordance with the measurements in the
experiments performed in [13]. The boundary conditions at the vacuole’s surface were
identical as those at the cell walls (angle of incidence equal to the angle of reflection). The
simulations of budding were also adapted, with and without the constraints, to model
subdiffusion of the aggregates. In this case, as done in [13] 30% of the aggregates were
not allowed to go further than 0.5µm away from their initial positions. The parameter
values that were used for the programs -taken from the experiments performed in [13],
[4], and the experimental observations - are listed below.

• Mother’s diameter = 5 µm.

• Daughter’s diameter = 3.8 µm (At the end of the division process).

• Aggregate’s diameter = 0.12 µm.

10
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Figure 2.3: 0.12 µ m diamater aggregate undergoing a random walk inside a 5 µ m cell
and 4.5 µ m bud connected by a 1.35 µ m neck.

• Vacuole’s diameter = 2.55 µm.

• Neck’s length = 1.25-1.35 µm.

• Amount of particles in a cell= Gaussian number with mean µ = 15 and variance
σ2 = 9.

• Diffusion Constant D= 0.0005 µm/s2, 0.0008 µm/s2, 0.001 µm/s2.

• The neck is open during 100 min.

In accordance with the the observations done in [4] showing an existing dependence
of the Hsp104-associated aggregates’ movement on the actin cytoskeleton, the model
was added with an interpretation of how the actin filaments could affect the dynamics
of damaged proteins. In this case, if the aggregates were at a distance ds of the bound-
aries and in the region where their center’s projection to the ‘x′ axis lied between the
projections to the ‘x′ axis of the mother’s and the daughter’s centers (figure 2.5), the
following happened. With a probability Ps and for an exponentially distributed time
Ts (with parameter λs), the aggregates walk was altered according to the two ways ex-
plained below. In the first one, the proteins would remain still. In the second one, in
case of adhesion to the actin filaments while inside the daughter, the aggregate would
be transported in direction of the mother cell with a rate vs through the region with
actin-filament presence.

11
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Figure 2.4: 0.12 µ m diamater aggregates undergoing a random walk inside a 5 µ m cell
(with a 2.55 µ m vacuole) and a growing bud connected by a 1.35 µ m neck.

Figure 2.5: Region in the simulated yeast cells where the aggregates’ movement is affected
by the actin cytoskeleton.
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2.2.3 Three-Dimensional Simulations of Diffusion

The three-dimensional simulations of the dynamics of Hsp104-associated aggregates were
done as an extention to the two-dimensional ones. The motivation for them was based
on our intuition that the probability of a daughter cell having at least one aggregate
after yeast cytokinesis could depend on the dimensionality of the model. Also, as it
will be seen in the following section, in the case of confined diffusion, the mean-square-
displacement’s relation to the dimension of the model is not linear.

The three-dimensional programs written for this project model budding yeast cells
in a very similar way as those in the previous section. The parameter values remained
constant and the aggregates were initialized randomly inside a sphere (representing the
mother cell) and were allowed to diffuse inside both it and another sphere (the daughter)
connected by a neck. Every time step δt of duration 5 seconds, the aggregates moved
from a position (x,y,z) to a position (x+χ1, y+χ2, z+χ3) were χ1, χ2, and χ3 are gaus-
sian numbers with mean 0 and variance

√
2Dδt. The boundary conditions were adapted

to their three-dimensional equivalent with the remaining condition that the angle of
incidence is equal to the angle of reflection. Constraints such as the vacuole (another
sphere inside the mother cell blocking the aggregates movement) and the growing daugh-
ter were added progressively to study their effect on the mean-square-displacement of
the aggregates and the probability of the daughter cell to inherite at least one damaged
protein. Figure 2.6 shows a picture of the geometry in which the aggregates diffuse in the
three-dimensional simulations. Additionally, as in the two-dimensional simulations, the
programs were altered so that the aggregates undergo subdiffusion instead of a regular
random walk. For it, once more, 30% of the aggregates were not allowed to go further
than 0.5 µm of their initial position.

13
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Figure 2.6: Instant picture of the simulation where the aggregates undergo a random walk
inside a 5 µ m diameter yeast cell (with a vacuole) and a growing daughter cell. Both
represented by a sphere.
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3
Results

I
n the previous chapter, the simulations designed to model the motility of Hsp104-
associated aggregates were described. Their purpose: finding the possible expla-
nations of both the abnormality in the mean-square-displacement of the damaged
proteins and their asymmetric distribution during yeast cytokinesis. Recall that

in [13] the mean-square-displacement of damaged proteins during cell cytokinesis was
measured. The results, when averaging over more than 1,000 trayectories are shown in
the figures in [13]. Also, the experiments performed by [4] show that only 30% of the
newborn yeast cells inherit at least one damaged protein. These two measurements will
be the guidance when considering if the simulations are succesful or not as models of the
behavior of Hsp104-associated aggregates during yeast budding.

3.1 Random Walk in x-y Plane

The mean-square-displacement of an aggregate undergoing a random walk in the x− y
plane should be equal, when averaged over many trials, to 4Dt where D is the diffusion
constant. For D = 0.0005 µm2/sec the mean-square-displacement from the simulations,
as a function of time t, is shown in figure 3.1.

3.2 Diffusion Inside a Circle

The diffusion equation in polar coordinates r,θ is computed in Appendix A. It has the
form

∂Q

∂t
= D

(
∂2Q

∂r2
+

1

r

∂Q

∂r
+

1

r2
∂2

∂θ2

)
. (3.1)

In this case, since we are no longer considering a model with only one particle, Q no
longer denotes the probability of a particle to be in position (r,θ) after a time t but the
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Figure 3.1: Plot and log-log plot of the mean-square-displacement
〈
r(t)2

〉
of simulated a

particle undergoing a random walk in the x−y plane together with the function f(t) = 4Dt.
Results averaged over 20,00 simulations.

concentration of the particles at the point (r,θ). The correspondance however, between
the two concepts expressed by the function Q is enough to maintain the same notation
for both of them.

In [10], the exact expressions of the solution of the diffusion equation in a circle of
radius a and the mean-square-displacement of a particle initiated randomly and diffusing
inside of it are shown. If Ji(x) denotes the i-th Bessel function of the first kind, β′ns are
the zeros of J ′1(x) and a, as explained, is the radius of the circle, then,

〈
r2(t)

〉
= a2

(
1− 8

∑
n

exp

(
−β2nDt
a2

)
1

β2n − 1

J2
0 (βn)

J2
1 (βn)

)
. (3.2)

As it is seen in the log-log plot in figure 3.3 at short time scales the mean-square-
displacement resembles that of regular unconstrained diffusion. At longer time scales,
however, it bends until it fixes around a constant value (the radius of giration squared
of the geometry of confinement).

Figures 3.3 and 3.4 show the relation between the analytical solution to the mean-
square-displacement found in equation 3.2 and the numerical one measured in the sim-
ulations. The first one corresponds to a particle diffusing inside a circle of radius 0.0005
µ m, and the second one of an aggregate, represented by a disc with radius 0.06 µ m,
undergoing diffusion inside a cell of radius 2.5 µ m. In both cases the difference between
both approaches is almost indistinguishable.
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Figure 3.2: Plot and log-log plot of the mean-square-displacement (in of µ m2) as a function
of time (in seconds) for a particular simulation of a particle undergoing a random walk inside
a circle of radius 1 µ m with the diffusion constant D equal to 0.0005 µ m2/sec and the
time step δt equal to 5 seconds.

Figure 3.3: Plot and log-log plot of the mean-square displacement as a function of a non-
dimensional particle diffusing inside a circle of radius a = 1 µ m. Results averaged over
10,000 simulations. The blue line corresponds to the mean-square-displacement received in
the simulation, the dashed line corresponds to the analytical solution to the mean-square-
displacement shown in equation 3.2, and the green one to the expect behavior in the case of
diffusion with no constraints. .

3.3 Diffusion Inside an Annulus

The yeast cell with vacuole, projected into a two-dimensional plane, can be numerically
modeled as an annular-shaped region. Thus, the diffusion equation’s solution in an an-
nulus with inner radius a and outer radius b should provide an analytical guidance to
how the two- dimensional mean-square-displacement of the aggregates in the simula-
tions, should generally behave. In this case the boundary conditions should be taken as
Q(a,θ,t) = Q(b,θ,t) = 0. The solution to the diffusion equation inside the annulus (See
Appendix A), with the initial distribution taken to be a uniform, is derived using the
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Figure 3.4: Plot and log-log plot of the mean-square-displacement as a function of time
of the aggregates with radius ra = 0.06 µ m diffusing inside a cell of radius rc = 5 µ m.
Results averaged over 10,000 simulations. The blue line corresponds to the mean-square dis-
placement received in the simulation, the dashed line corresponds to the analytical solution
to the mean-square-displacement shown in equation 3.2, and the green one to the expect
behavior in the case of diffusion with no constraints.

procedures suggested in [3]. It is

Q(r,t) =
π2

2

∞∑
i=1

αiJ0(aαi)

J2
0 (aαi)− J2

0 (bαi)
exp(−Dα2

i t)U0(rαi)

∫ b

a
rf(r)U0(rαi)dr (3.3)

Notice that the solution has no dependence on the angle. This happens as a result of the
initial conditions. As in the appendix, the mean-square-displacement can be computed
as 〈

r2(t)
〉

= C(1− exp(−2βDt))

where C and β are constants. In fact, C is the radius of giration squared as explained
in [10]. Figure 3.5 shows the results for the mean-square-displacement in the case of
diffusion inside a yeast cell with a vacuole (represented by an annulus).

3.4 Simulations of Hsp104-Associated Aggregate Diffusion
in yeast cytokinesis

In this section I will describe the results of the two-dimensional and three-dimensional
programs simulating regular diffusion of Hsp104-associated aggregates during yeast bud-
ding with and without constraints such as the vacuole and the growing bud. In the
two-dimensional case where the mother cell and the bud are both represented by two
fixed circles (no vacuole and no growing daughter) the probability P , averaged over 5,000
iterations, of a daughter cell having at least one protein aggregate after yeast cytokinesis
is complete is 0.834. On the other hand, In the case of a growing bud and no vacuole
P is 0.8154. Finally, when the mother had a vacuole and the daughter grows, P rises
to 0.8724. On the other hand, for the three-dimensional models the values of P , in the
same order, are 0.682, 0.647, and 0.791. These probabilities are considerably higher than
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Figure 3.5: Plot of the mean-square-displacement as a function of time of the aggregates
with radius ra = 0.06 µm diffusing inside a cell of radius rc = 5 µm with vacuole of radius
rc = 2.55 µ m. Results averaged over 10,000 simulations. The blue line corresponds to the
mean-square-displacement obtained in the simulation, the dashed line corresponds to the
analytical solution to the mean-square-displacement shown in equation 3.3, and the green
one to the expect behavior in the case of diffusion with no constraints.

those observed experimentally (around 0.3 as stated in [4]), thus, the program simulating
only diffusion of aggregates can not be considered succesful as a model of the dynamics
of the damaged proteins during yeast cytokinesis.

3.5 Remake of Simulations in [13]

In the previous chapter the approach done in [13] was described. In summary, the mean-
square-displacement of the protein aggregates during yeast cytokinesis was measured
and compared to simulations of diffusion and subdiffusion of protein aggregates during
yeast budding. The simulations perfomed in [13] have the following structure. 80,000
aggregates are initiated randomly in a sphere (a circle in the two-dimensional case) joined
to another one by a neck. The positions of the aggregates are updated in the exact
same way as in the simulations done for this project, described in detail in the previous
chapter. Also, the boundary conditions are taken to be same. The main differences
however, between the simulations in [13] and the ones performed here, are that, first,
the simulations done in [13] model diffusion with traps (a fraction of the aggregates are
not allowed to go further than a previously set distance) instead of regular confined
diffusion. Likewise, the simulations done for this project incorporate the vacuole as
an additional contraint. Finally, their simulation aims only to study the mean-square-
displacement and the concentration of the aggregates while the ones done here measure
the above introduced probability P as well. To study if the approach in the article is
convincing or not, simulations with the same structure as those in [13], were ran for this
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(a)

Figure 3.6: (a) 5µ m cell and 4.5 µ m bud connected by a bud as in the simulations
performed by [13].

project. The main difference however, is that the probability P of a daughter cell having
at least one damaged proteins after yeast cell division is complete, is also measured in
my programs.

3.5.1 Two-dimensional simulations

As introduced above, in this project the two-dimensional simulations of aggregate subd-
iffusion done in [13], were repeated in order to study how P behaved under the conditions
imposed by the authors of the document. In the simulations done here, as in the ones
from the article, the diffusion constant D was taken to be 0.0005 µ m2/sec and the
mother’s and daughter’s diameters were taken to be 5µ m and 4.5µ m. In [13] the ag-
gregates walk is classified as subdiffusion. To simulate this process, the approach done
both here and in [13] is the following: 30% of the aggregates were not allowed to travel
further away than 0.5µ m from their initial positions. Figure 3.6 shows an image of
the region in which the aggregates diffuse or subdiffuse in the simulations done in this
project it should be compared with the images of the ones perfomed in [13].

The mean-square-displacement as a function of time calculated in the simulations
can be seen in figure 3.7.

To verify if the simulations done in [13] were reliable, the previous program, of which
the structure had been copied from the article, was altered in such a way that it could
measure P . Also, two other constraints; the vacoule and the growing-bud, were added.
When the bud size was fixed and the cell had no vacuole P was 0.686, in the case of a
growing bud P was 0.67943, and when the daughter cell had a vacuole and the bud grew
P was 0.7558. The mean-square-displacement as a function of time, in each separate
case, is shown in figure 3.8.
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Figure 3.7: Plot and log-log plot of our mean-square-displacement as a function of t when
remaking the simulations done in [13] in two-dimensions

3.5.2 Three-dimensional simulations

To verify that the difference between the probability P measured in the previous sim-
ulations and the one observed in the experiments in [4] was not entirely due to the
dimensionality of the simulated model, 3-d simulations of the same characteristics were
done. In this case (under the same parameter values as in the two-dimensional model),
the values of P were: 0.4391 for the case where the bud size was fixed, 0.3981 when the
bud grew and the mother cell had no vacuole, and 0.4218 when the cell had a vacuole
and the bud grew. The mean-square-displacement from the simulations corresponding
to the first case is shown in figure 3.9.

3.6 Simulations of Hsp104-ssociated aggregate diffusion in
yeast cytokinesis in the presence of actin citoskeleton

The results of the probability P on a daughter cell having at least one damaged protein-
aggregate after yeast cell division is complete are shown in Appendix B. Recall that in
this program if the aggregates undergo a random walk in the region shown in figure 2.5
their movement would be altered with a probability Ps for an exponentially distributed
time Ts with mean 1

λs
. For this particular program the values of ds, Ps, λs were varied

yielding more than 60 possible arragements, each of them having a distinct value of
P and different behaviors of the mean-square-displacement. For some choices of the
three parameters the results matched the experimentally observed. However, the model
remains two arbitrary and unrealistic to be considered an appropiate model of yeast
cytokinesis.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: (a,b)(c,d)(e,f) Plot and log-log plot of the mean-square-displacement as a
function of time of simulated aggregates undergoing diffusion with traps (a fraction of the
aggregates are not allowed to travel more than set distance) in a model where the bud size
is fixed, the bud is growing and where the bud is growing and the mother cell has a vacuole.
Results averaged over 10,000 repetitions.
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Figure 3.9: Plot and log-log plot of the mean-square-displacement as a function of t when
remaking the simulations done in [13] in three-dimensions.

3.7 Comparison to Experiments

The results obtained in both the two-dimensional and the three-dimensional simulations
performed for this project can be compared to the experimental observations in two
different ways. The first one consists of comparing the likeliness of yeast daughter cells
to inherit at least one damaged protein aggregate after yeast cell division is complete
(what we called before P ). The observations of living yeast cells show that this value is
approximately 0.3 which is considerably lower than that obtained in the simulations of
diffusion and subdiffusion of aggregates in both three and two dimensions. The lowest
value obtained in this simulations was 0.3981 in the three-dimensional model where the
aggregates undergo subdiffusion and the bud is continuously growing.
On the other hand, when comparing both the mean-square-displacement obtained in
the simulations modelling regular diffusion and the one mesured empirically in [13] the
result was the following. Generally, simulated values of the mean-square-displacement
rose faster, as t increased. In the case of simulated subdiffusion or diffusion with traps,
the mean-square-displacement of the aggregates resembled that shown in the results of
[13] considerably more. Figure 3.10 shows the mean-square-displacement from the three-
dimensional simulations of subdiffusion with and without the vacuole constraint. These
pictures must be compared to those in [13]. As it can be seen, specially in the case of
the simulations of diffusion with traps inside a yeast cell with a vacuole, the behaviors
of both the experimentally observed (in [13]) and simulated mean-square-displacement
is almost identical from 0 to 5 minutes. Results beyond that time threshold are not
shown in [13], making it impossible to verify if the simulated mean-square-displacement
continues to resemble that seen in live-yeast cells.

As it will be later explained in the conclusions, the results obtained from the three-
dimensional simulations of aggregate subdiffusion inside a yeast cell with a vacuole (the
most reliable simulation), can be analyzed in two different ways. Though it models the
mean-square-displacement in a very succesfully way, it fails to segregate the aggregates
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(a) (b)

Figure 3.10: (a) Plot of the mean-square-displacement as a function of t when remaking the
simulations done in [13] in three-dimensions. Results averaged over 2,000 simulations. (b)
Plot of the mean-square-displacement as a function of time t when remaking the simulations
perfomed in [13]. with the vacuole in the mother cell as additional constraint for the diffusion
of the aggregates. Results averaged over 2,000 simulations.

asymmetry as in live yeast-cytokinesis. Hence, It would then be precipitated to proclaim
the model as a reliable explanation to the asymmetrical inheritance of Hsp104-associated
aggregates as it was done in [13]. The difference in the simulated and the measured
values most likely exhibits a miscomprehension of the dynamics of the aggregates (the
aggregates might not be undergoing an unbiased random walk) or an inaccuracy in the
experiments.
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4
Conclusion

I
n this section, the simulations and their results will be analyzed in detail. Based
on how much the results resemble those observed in the experiments, the models
will be considered either reliable or not as posible representations of the dynamics
of Hsp104-associated aggregates during yeast cytokinesis. Recall that the simula-

tions modelled diffusion and subdiffusion (slow diffusion) of damaged protein aggregates
during yeast budding. Subdiffusion was modeled as in [13]. The simulations measured
the mean-square-displacement of the aggregates as a function of time and the probability
P of a daughter cell to have at least one of the aggregates after cell division was over
(100 minutes). The probability P and the mean-square-displacement had been measured
empirically in [4] and [13]. The results showed that P was approximately 0.3 and the
behavior of the mean-square-displacement as a function of time is shown in the figures
in [13].

The simulations perfomed in [13], aimed to clasify the dynamics of Hsp104-associated
aggregates during yeast cytokinesis. In this article it is concluded that the experimentally
measured mean-square-displacement agrees with that of a simulated model of subdiffu-
sion in which the aggregates are initiated inside a sphere that is connected to another
one by a neck. Additionally, it is verified that, under these conditions, in the simulation
the concentration levels on each of the spheres is different throughout the entire process.
To decide wether or not the simulations in [13] are trustworthy, the same simulations
were repeated in this project. As an additional attribute, they were altered in such a way
that they could measure P (as defined above). In the results obtained (figures 3.10(a)
and (c)) one can notice that the mean-square-displacement obtained from the program
which copied the structure of that in [13] is not exactly the same as that observed exper-
imentally in the same article. Notice that the mean-square-displacement obtained from
my simulations after 5 minutes is above 0.6 µ m2, while the one from the experiments
in [13] lies between 0.5 µ m2 and 0.6 µ m2. This difference is dimished, though, when
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considering the vacuole inside the mother cell as a part of the program (figures 3.10(a)
and (b)). However, this is not the only incosistency with the simulations copying the
structure of those in [13]. Regardless of the presence of the vacuole in the model, P was
always above 0.4; a value considerably higher than the one measured when observing
living yeast cells. The two aspects exposed above question the veracity of either the
simulations or the experiments conducted in [13]. Hence, the conclusion from the article
-that aging in yeast cells is purely stochastical- should also be revised.

Another aspect worth analyzing more deeply is if, unike other substances in the cy-
toplasm, the damaged protein aggregates do not diffuse. In the results chapter it was
seen that the different values of P , when protein aggregates were undergoing regular
diffusion and subdiffusion, were always too high in comparison to those observed in the
laboratory investigations. Also, the mean-square-displacement as a function of time ob-
tained from the simulations rose faster, in almost all cases, than the one measured in
[13]. Thus, the “benfing off” of the mean-square-displacement measured in living yeast
cells is unlikely to happen uniquely as a consequence of the geometry of the system.
Hence, as it is done in [11], one must ask himself if proteins actually diffuse inside yeast
cells or are moving with a different behavior. In case damaged protein aggregates are
in fact undergoing diffusion in the cytoplasm then there must be, in accordance to the
simulations, either more constraints to their movement or a mechanism impeding them
to pass to the daughter cell (actin cytoskeleton). On the other hand, if the proteins are
not undergoing diffusion, one must redo the simulations incorporating the new charac-
teristics of the system in seek of concordance with the experimental measurements.

Continuing the previous analysis, a mechanism that could be worth studying more
deeply is the dependance of the aggregates movement in the actincytosketon. Although
the simulations done for this project were too arbitrary in the selection of parameters (ds,
λs, Ps) there were many configurations that gave very accurate results. This indicates
the strong potential of this hypothesis. For these simulations to become more reliable,
the mean-square-displacement must be approximated again as a function of time as done
in [13] with the certainty however that the measurements are not being biased by the
methods used in the experiments. Also, some characteristics of the actin-transport (the
velocity, the probability of it happening, and the regions in which it is evident) must
be approximated in order to build a realistic model. Simulations, as mentioned before,
may help to verify if a plausible explanation for the given problem can be considered as
reliable or not.

Finally, to conclude this text, the open questions, serving as suggestions to what
should be done next, will be exposed. In the first place, the mechanism causing the
asymmetry of the aggregates yet remains elusive. As mentioned before, if the geometry
and slow diffusion (subdiffusion) of the damaged protein aggregates are unlikely to cause
it, then what is? Is the hypothesis formulating Hsp104-associated aggregate transport
by the actin cytoskeleton consistent with the experimental observations? If so, how can
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this be modeled in an effective and appropiate way? Can the model done for this project
serve as starting point?
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A
Diffusion in Confined Spaces

I
n this section we will derive the diffusion equation in polar coordinates and then
solve it in an annular-shaped region with inner radius a and outer radius b.

A.1 Diffusion Equation in Polar Coordinates

Let Q(t,x,y) denote the concentration at a point (x,y) at time t. The diffusion equation
in two dimensions has the form

∂Q

∂t
= D(∆Q) (A.1)

where,

∆Q =
∂2Q

∂x2
+
∂2Q

∂y2

is the laplacian of the function Q. In the following lines we will derive the laplacian in
polar coordinates.
Let x = r cos θ, y = r sin θ. Notice that

∂Q

∂r
=
∂Q

∂x

∂x

∂r
+
∂Q

∂y

∂y

∂r
= cos θ

∂Q

∂x
+ sin θ

∂Q

∂y

∂Q

∂θ
=
∂Q

∂x

∂x

∂θ
+
∂Q

∂y

∂y

∂θ
= −r sin θ

∂Q

∂x
+ r cos θ

∂Q

∂y
.

Solving this system for ∂Q
∂x and ∂Q

∂y yields

∂Q

∂x
= cos θ

∂Q

∂r
− sin θ

r

∂Q

∂θ

∂Q

∂y
= sin θ

∂Q

∂r
+

cos θ

r

∂Q

∂θ
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Let F := ∂Q
∂x and G := ∂Q

∂x . Since we made no assumption on the particular form of Q
we have that F and G also satisfy

∂F

∂x
= cos θ

∂F

∂r
− sin θ

r

∂F

∂θ

∂G

∂y
= sin θ

∂G

∂r
+

cos θ

r

∂G

∂θ

Hence,

∂2Q

∂x2
+
∂2Q

∂y2
=
∂F

∂x
+
∂G

∂y
= cos θ

∂F

∂r
− sin θ

r

∂F

∂θ
+ sin θ

∂G

∂r
+

cos θ

r

∂G

∂θ
. (A.2)

We then just need to find the partial derivatives of F and G with respecto to r and θ.

∂F

∂r
= cos θ

∂2Q

∂r2
− sin θ

r

∂2Q

∂r∂θ
+

sin θ

r2
∂Q

∂θ
,

∂G

∂r
= sin θ

∂2Q

∂r2
+

cos θ

r

∂2Q

∂r∂θ
− cos θ

r2
∂Q

∂θ
,

∂F

∂θ
= cos θ

∂2Q

∂θ∂r
− sin θ

∂Q

∂r
− sin θ

r

∂2Q

∂θ2
− cos θ

r

∂Q

∂θ

∂G

∂θ
= sin θ

∂2Q

∂θ∂r
+ cos θ

∂Q

∂r
+

cos θ

r

∂2Q

∂θ2
− sin θ

r

∂Q

∂θ

Substituting this values in equation A.2 we get

∆Q =
∂2Q

∂r2
+

1

r

∂Q

∂r
+

1

r2
∂2Q

∂θ2
(A.3)

A.2 Diffusion in the Annulus

The diffusion equation in an annulus with inner radius a and outer radius b can be
written as

∂Q

∂t
= D

(
∂2Q

∂r2
+

1

r

∂Q

∂r
+

1

r2
∂2Q

∂θ2

)
(A.4)

with a < r < b, and Q(a,θ,t) = Q(b,θ,t) = 0 ∀t, ∀θ. however, since the initial conditions
formulate that the concentration is uniform at time t = 0 we have that ∂Q

∂θ = 0. Hence,
we can simplify the diffusion equation to

∂Q

∂t
= D

(
∂2Q

∂r2
+

1

r

∂Q

∂r

)
(A.5)

Lets assume that Q(r,t) = R(r)T (t). We can transform the diffusion equation to

RT ′ = D(TR′′ + r−1TR′) (A.6)
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Separating the terms dependant on the two variables one gets

T ′

T
= D

(
R′′

R
+

1

r

R′

R

)
Since T has no dependance on r and R has no dependance on t. This equation must be
equal to a constant −α2. Thus, we get two new equations

T ′

DT
= −α2 (A.7)

R′′ +
1

r
R′ + α2R = 0 (A.8)

The first differential equation is separable and can be solved as T (t) = exp(−Dα2t). The
second one, on the other hand is Bessel’s function of degree zero. Its solution, taking
into account the constraints introduced above, is found in [3] and has the form

U0(αr) = J0(αr)Y0(αb)− J0(αb)Y0(αr) (A.9)

where J0, Y0 are the bessel functions of the first and second kind and α is a root of the
equation

J0(αa)Y0(αb)− J0(αb)Y0(αa) = 0. (A.10)

This means that Q can be written as

Q(r,t) =
∑
i

AiU0(αir) exp(−Dα2
i t) (A.11)

Let f(r) be the initial distribution. We have then that

f(r) = Q(r,0) =
∞∑
i

AiU0(αir)

The coefficients Ai are found to be [3]

Ai =
π2α2

i

2

J0(aαi)

J2
0 (aαi)− J0(bα1)

∫ b

a
rf(r)U0(rαn)dr.

Which means that our solution is

Q(r,t) =
π2

2

∞∑
i=1

αiJ0(aαi)

J2
0 (aαi)− J2

0 (bαi)
exp(−Dα2

i t)U0(rαi)×
∫ b

a
rf(r)U0(rαi)dr

Recall that the mean square displacement
〈
r2(t)

〉
is defined as〈

r2(t)
〉

=

∫ ∞
−∞

r2Q(r,t)dr

This integral is approximated to be ([6])〈
r2(t)

〉
= C(1− exp(−2βDt)) (A.12)

where C and β are constants.
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B
Results from Simulations with the
Possibility for the Aggregates to
Attach to the Actin Filaments

A
s explained in the results chapter, for the program simulating diffusion
of protein aggregates with the possibility for them to get trapped in the actin
filaments, many simulations were ran using distinct choices for the three pa-
rameters ds, λs, and Ps. In this appendix we will show the different values of

P resulting from each simulation.

Table B.1: Values of the probability P of an aggregate ending in the bud after 100 minutes
for different Ps, λs when averaging over 2,000 simulations. In this case ds = 0µm, i.e the
aggregates only attach to the boundary, and there is NO displacement of them by the cables.

Ps λ−1s =∞
1 0.5195

0.75 0.531

0.5 0.569

0.25 0.63
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APPENDIX B. RESULTS FROM SIMULATIONS WITH THE POSSIBILITY FOR
THE AGGREGATES TO ATTACH TO THE ACTIN FILAMENTS

Table B.2: Values of the probability P of an aggregate ending in the bud after 100 minutes
for different Ps and λs when averaging over 2,000 simulations. In this case ds = 0µm, i.e the
aggregates only attach to the boundary, and if the aggregates get attached in the daughter
cell then they are always dragged towards the mother cell by the actin filaments.

Ps λ−1s =∞ λ−1s =75 min λ−1s =50 min λ−1s =25 min

1 0.0105 0.156 0.245 0.4965

0.75 0.014 0.172 0.2875 0.5495

0.5 0.0505 0.2255 0.328 0.606

0.25 0.06 0.3345 0.455 0.675

Table B.3: Values of the probability P of an aggregate ending in the bud after 100 minutes
for different Ps and λs when averaging over 2,000 simulations. In this case ds = 0.3µm and
there is NO displacement of them by the cables.

Ps λ−1s =∞ λ−1s =75 min λ−1s =50 min λ−1s =25 min

1 0.186 0.2904 0.46167 0.615

0.75 0.224 0.312 0.498 0.65

0.5 0.2581 0.372 0.539 0.72

0.25 0.29921 0.4289 0.6016 0.798

Table B.4: Values of the probability P of an aggregate ending in the bud after 100 minutes
for different Ps and λs when averaging over 2,000 simulations. In this case ds = 0.3µm, and
if the aggregates get attached in the daughter cell then they are always dragged towards the
mother cell by the actin filaments.

Ps λ−1s =∞ λ−1s =75 min λ−1s =50 min λ−1s =25 min

1 0.0056 0.021 0.06 0.0982

0.75 0.0082 0.0423 0.0621 0.1801

0.5 0.015 0.08 0.1174 0.275

0.25 0.0189 0.104 0.1673 0.364

34


	Introduction
	Model
	Experiments
	Diffusion
	Basic Principles of Diffusion (reference berg)
	Two-Dimensional Simulations of Diffusion
	Three-Dimensional Simulations of Diffusion


	Results
	Random Walk in x-y Plane
	Diffusion Inside a Circle
	Diffusion Inside an Annulus
	Simulations of Hsp104-Associated Aggregate Diffusion in yeast cytokinesis
	Remake of Simulations in zhou
	Two-dimensional simulations
	Three-dimensional simulations

	Simulations of Hsp104-ssociated aggregate diffusion in yeast cytokinesis in the presence of actin citoskeleton
	Comparison to Experiments

	Conclusion
	 Bibliography
	Diffusion in Confined Spaces
	Diffusion Equation in Polar Coordinates
	Diffusion in the Annulus

	Results from Simulations with the Possibility for the Aggregates to Attach to the Actin Filaments

