
STATISTICAL MECHANICS OF COMPLEX SYSTEMS – SOLUTIONS 2010

1. (a) The thermodynamic limit of a system is the limit of infinite size (eg. infinite number of
particles). {2}
In the thermodynamic limit the fluctuating quantities of statistical mechanics become
definite values, corresponding to thermodynamics. {2}
[Bookwork]

(b) Suppose Xi are independent, identically distributed random variables with finite mean
and finite variance: 〈Xi〉 = µ, and Var(Xi) = σ2, and we will consider the sum of n
of these random variables. Then according to the central limit theorem

(X1 + . . . + Xn)− nµ√
nσ

D−→ N (0, 1)

whereN (0, 1) is the standard normal (Gaussian) distribution (zero mean, unit variance);
and the convergence is in distribution (implying convergence of the cumulative distribu-
tion function, not the probability distribution function). {4}
[Bookwork]

(c) (i) Denote the linear progress of the ant in one second as X1. Then X1 is 0 with
probability 1

2 , 1 with probability 1
2 ·

7
8 , and −3 with probability 1

2 ·
1
8 . Then:

〈X1〉 =
1
2
· 7
8
− 1

2
· 1
8
· 3 =

1
4

cm {2}

〈X2
1 〉 =

1
2
· 7
8

+
1
2
· 1
8
· 9 = 1 cm2

Var(X1) = 〈X2
1 〉 − 〈X1〉2 =

15
16

cm2 {2}

(ii)
〈X3600〉 = 3600〈X1〉 = 900 cm {1}

The distribution of X3600 will be approximately normal (Gaussian) {1}
with mean 900 cm and variance σ2

3600 = 3600 ·Var(X1) = 3375 cm2 ≈ (58 cm)2

{2}
(iii) Since 7 m = 〈X3600〉 − 3.4σ3600, it is very likely that the ant reaches the top of the

hill. {2}
[Unseen]

(d) (i) Suppose X1 and X2 belong to a family of distributions. If their linear combination
also belongs to this family (up to an additive constant), then this family is called
stable distribution. Using notation: whenever X1 ∼ Fam(θ1) and X2 ∼ Fam(θ2)
implies aX1 + bX2 ∼ Fam(θ3) + c, then Fam is stable. {3}

(ii) standard (Gaussian) distribution:

f(x) =
1√
2πσ

exp
(x− x0)2

2σ2

Cauchy (Lorentz) distribution:

f(x) =
1

πγ

(
1 +

(
x−x0

γ

)2
)

1



Levy distribution:

f(x) =
√

c

2π

e−c/2x

x3/2

{2} for each, with maximum of {4}
[Bookwork]
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2. (a) (i) A granular pile with slope less than the angle of repose (θr) is generally stable {1},
while if its slope is larger than the maximum angle of stability (θmax) than it is
mechanically unstable {1}. Between the two angle it is either stable or unstable,
based on its history. {1}
θr < θmax. {1}
[Bookwork]

(ii) The side facing wind is mechanically stable, 0 < α < θr. The other side regularly
undergoes avalanches, so we can definitely say θr ≤ β ≤ θmax. (Actually β ≈ θr.)

{3}
[Unseen]

(b) (i) Granular segregation is the phenomenon when an non-homogeneous granular mix-
ture separates into regions of different composition when subjected to shaking or
flow. {3}

(ii) Either:
A horizontally shaken tray is loaded with roughly one monolayer of the mixture of
bronze spheres and poppy seeds. While the particles have roughly the same size,
due to different mass and surface properties they have different coupling to the tray.
During the course of shaking, alternating stripes composed of bronze particles and
poppy seeds are formed, which are perpendicular to the direction of shaking. The
stripes coarsen in time.
or:
A container, filled with water and a mixture of equal size glass and bronze spheres,
is subject to vertical shaking. During the coarse of shaking, regions composed of
purely glass and purely bronze are formed. Eventually only two layers are formed,
paradoxically the heavier bronze particles end up in the top layer, while glass par-
ticles in the bottom layer.
{3} for either case.

(iii) One possible driving mechanism is “differential acceleration”: two types of par-
ticles, initially mixed, is subject so some condition which makes the two types
oscillate with at different amplitude. In a mixed state nearby particles oscillate with
different amplitude, there are lots of collisions, so in an abstract phase space the
system is “scattered out” from these states. However, when it encounters a segre-
gated state, nearby particles move together, reducing the number of collisions, so
there states are relatively stable. {2}

[Bookwork]

(c) (i) Edwards’ ensemble is the ensemble of static granular packing satisfying mechani-
cal equilibrium (both in bulk and an the boundaries). {2}
[Bookwork]

(ii) partition function:

Z(X) =
∑

i

exp
(
− Vi

kEX

)
{2}

probability of state i:

pi =
1

Z(X)
exp

(
− Vi

kEX

)
{2}

[Bookwork]
(iii) The lowest possible volume, corresponding to X = 0, is Vmin = Nv0. {2}
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The highest possible volume achievable in equilibrium state of an Edwards’ ensem-
ble is when all single-particle states have equal probability:
Vmax = N(v0 + v1 + v2)/3; the corresponding compactivity is X = ∞. {2}
[Bookwork/Unseen]
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3. (a) (i) The Legendre transform of f(x) is defined as f∗(p) = maxx(px− f(x)). {2}
If f(x) is differentiable, then the above maximum is achieved when p(x) = df/dx
(the differential evaluated at x). Taking its inverse function x(p), the Legendre
transform becomes f∗(p) = px(p)− f(x(p)). {2}
[Bookwork]

(ii) Since the Legendre transform of the Legendre transform gives back the original
function: f∗∗(x) = f(x), the Legendre transform is its own inverse. {2}
[Bookwork]

(iii) p = dx4/dx = 4x3, so x(p) = (p/4)1/3. {2}
Then

f∗(p) = px(p)− (x(p))4 = 3
(p

4

)4/3
{2}

[Unseen]

(b) (i) λ1, . . . , λm are the Lagrange multipliers corresponding to the constraints, fk are
the constraint functions, which are evaluated at the ith state of the random variable,
xi. There are m constraints, and the random variable has n states. {2}

(ii) The probability of the ith state:

pi =
1
Z

exp

(
−

m∑
k=1

λkfk(xi)

)
{1}

The maximum value of the information entropy (the information entropy evaluated
at these probabilities):

S(F1, . . . , Fm) ≡ Hmax = −
n∑

i=1

pi ln pi = −
n∑

i=1

pi

(
− ln Z −

m∑
k=1

λkfk(xi)

)

= lnZ
n∑

i=1

pi︸ ︷︷ ︸
1

+
m∑

k=1

λm

n∑
i=1

pifk(xi)︸ ︷︷ ︸
〈fk(X)〉=Fk

= lnZ(λ1, . . . , λm) +
m∑

k=1

λkFk {3}

Using the definition in 3(a)(i) above, S and− ln Z are (multidimensional) Legendre
transforms of each other.

(iii)

〈fk(X)〉 =
n∑

i=1

pifk(xi) =
n∑

i=1

1
Z

fk(xi) exp

(
−

m∑
k=1

λkfk(xi)

)
{1}

=
n∑

i=1

1
Z

−∂

∂λk
exp

(
−

m∑
k=1

λkfk(xi)

)
= − 1

Z

∂Z

∂λk
= −∂ ln Z

∂λk
{2}

(iv) Taking the second derivative of − ln Z, and changing the order of differentiation:

∂〈fk(X)〉
∂λj

= − ∂2 ln Z

∂λj∂λk
= − ∂2 ln Z

∂λk∂λj
=

∂〈fj(X)〉
∂λk

{2}
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(v)
Var(A) = 〈[A− 〈A〉]2〉 = 〈A2〉 − 〈A〉2 {1}

Var(fj(X)) = 〈fj(X)2〉 − 〈fj(X)〉2

=
1
Z

∂2Z

∂λ2
j

−
(

1
Z

∂Z

∂λj

)2

=
∂2 ln Z

∂λ2
j

{2}

Since the variance is an average of a square, it is non-negative, so the second deriva-
tive of ln Z is non-negative. Therefore ln Z is convex function, so its Legendre
transform is well defined. {1}

[Bookwork]
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