STATISTICAL MECHANICS OF COMPLEX SYSTEMS — SOLUTIONS 2010

1.

(@) All entropy formulae below have an arbitrary multiplicative constasetting the units,

(b)

(€)

or alternatively an arbitrary base of the logarithm.
joint information entropy:

- sz’j log pi; {2}
i?j
conditional information entropies:
bi

H(X|Y) = Zp] H(X|Y =vy;) pr log ” {2}
H(Y|X) Zp(X)H (Y|X =) = pr log p” 2}

mutual information: D;
me log 7U) {2}

J
[Bookwork]

Three independent relations:
H(X[Y)=H(X,Y) - H(Y)
H(Y[X) = H(X,Y) - H(X)
I(X;Y)=H(X)+H(Y)-H(X,)Y)
any set of independent relations woft2} per equation.
[Bookwork]

Using notation{e, o} for even, odd (fo’) and{p, n} for prime, non-prime (foit),
the joint probabilitiesp., = 1/6, pe, = 1/3, pop = 1/3, pon = 1/6. Using bits as
units (usinglog,), the joint entropy:

1 1 1 1 1 1 1 1
1 2 1
= 31080+ glogy 3 =log, 34 4 {1}
~In3 1 ,
~ 1.92 bi
= 1o + = 3 92 bit
One way to calculate the mutual information is to realise fhat= p, = 1/2, so
H(V) = —23log, 3 = 1 bit, similarly H(W) = 1 bit. {1
Then
I(ViW) = H(V) + H(W) — H(V, W)
1 5
—1+1—(log23+3)—3—log23 {2}
~ (0.08 bit

Alternatively, one can apply the formula in 1(a).
[Unseen]



(d) (i) False. They don't even have the same units (eg. bit ¥} bit {2}
A numerical counterexample (using bits as units)XiindY” are independent coin
tossesH(X)=H(Y)=1, HX,Y)=2#1-1.

(i) False. It can be easily shown that(X, X) = H(X) (eg. by applying the defini-
tion). ThenH (X |X) = H(X, X) — H(X) = 0, so any nontrivialX is counterex-

ample. {2}
(i) True. I(X;X) = H(X)+ H(X) - H(X,X) = H(X). {2}
[Unseen]



2. (a) Interface width:

w(L,t):\/<(h(x,t)—l_z(t))2>x where  h(t) = (h(z,t))s {1}

[Bookwork]

(b) (i) earlytimes, t <ty: w(L,t)~1t? S: growth exponent {2}
late times, ¢t > tyx:  w(L,t) ~wsa(L) ~ L* «: roughness exponent{2}
crossover time: ty ~ L? z: dynamic exponent {2}

[Bookwork]
(i) Family-Vicsek scaling relation:
t uf ifu<1
w(L,t) ~ LOf | — wy~< 2
(1) f<Lz> fw) {const if u>1 {2}
Fort < L* W(L,t) ~ L% - (t/L*)? ~ 18 (usingz = a/3)
Fort > L*: W(L,t) ~ L - const~ L. {1}
[Bookwork]
(iii) To recovert® for smallt, we needy(u) = const foru > 1 (assumingB > 0) to
make it independent af, which setsA = 3. {1}
To obtainL® for larget, we needy(u) = u® for u < 1. {2}
Then for larget, L® ~ w ~ tPLt=B, This givesB = 3/a = 1/z. {2}
In summary:
L u® if u<1
L.t)~t? ~ ’
ik~ <t1/z> 9(u) {const if u>1

[Unseen]

(¢) () Random deposition model: the interface grows on a discretisedratédbby ac-
creting squares (hypercubes in general dimension). The cubes alodve random
substrate positions, and simply increase the height of the colum at that positio
[Bookwork] {2}

(i) SupposeN cubes are grown on a substrate madeéainits. (In one dimension
S = L, in two dimensionsS = L? etc.) The growth above a given substrate
location can be considered as the sumM\of.i.d Bernoulli processes, each grows
unit height Ah = 1) with probabilityp = 1/S and does not growXh = 0)
with probability 1 — p. The expectationAh) = p = 1/5, and the variance
Var(Ah) = ((Ah)2) — (AR)2 = p(1 — p) = (S — 1)/52, since((Ah)%) = p

{3}
The Central Limit Theorem says that the sumM\dfsuch processes has mear=
N(Ah) = N/S, and variance
((h — B)?) = NVar(Ah) = N% = w? 2
which equals to the square of the interface width. Now fix the substrateSsilfe
time is measured a¥ (maybe with some proportionality constant, eg= N/S;
this does not change the scaling exponent), then

w~ VN ~Vt

usingw ~ t°, this gives3 = 1/2. {1}
[Unseen]



(iii) o
5 = F 4 n(x,t)

Wheren has zero mean and is delta correlated:

(n(z,t)) =0
(n(x,t)n(a’,t")) =2D6(x — 2")o(t — )

{2}
[Bookwork]



3.

(@)

(b)

The laws of thermodynamics (credlit} for each):

(0) There exist a relation between thermodynamic systems. This relation i$ ttedle
modynamic equilibrium, and it is transitive (equivalence relation):
if A~ BandB ~ C, thenA ~ C.
Here A, B andC label different systems. For example in thermal equilibrium this
means a transitive relation between the temperatures of the three systems.

(1) Energy conservation: the total energy of an isolated system is fixed.
Thus if during some process a system absorbs h&atas well as workAW =
—p AV + ... is made on it, then its energy changeshlf = AQ + AW.

(2) In an isolated system the entropy does not decrease.
Thus if during some process a system absorbs héatthen its entropy changes
by AS = AQ/T + ASinternal > AQ/T.

(3) The entropy at absolute zero temperature is zero (or can be et zer

[Bookwork]

() Free energies are the Legendre transforms of the energy. {2}
(i) The free energy of a system does not increase, so at stable eiguilithis minimal.
{2}

An example: (canonical ensemble:) a system is kept at fixed tempefatuhile
undergoing some change.

Its change in energyAE = AQ.

Its change in entropyAS = AQ/T + ASinternal > AQ/T

The relevant free energy is the Helmholtz free enetyyf’) = E — T'S.

The change in Helmholtz free energkA = AE —T'AS < 0. {3}
AQ  >AQ

(iii) The probability of a macroscopic state (sum of Boltzmann factors) caxpeessed
by a single Boltzmann factor, in which the energy is replaced by the apatefree

energy. {1}
Example: in a grand canonical ensemble the probabilities multiplieg: by

oo o0
== Z e~ B(Ei—pNi) _ Z PN ZefﬁEj;N — Z e~ BA(T;N)—puN) {21
i N=0 P N=0

~————
state with sameéVv

[Bookwork]



(c) () The partition function:

1 o0 o0 o0 oo
Z:hz/oodm/oody/oodpx/oodpy

2 2
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(i) Average energy:

_8an_ 0 1 _g

(E) =

. 2 mng .
(iii) Each quadratic half-degree of freedom (e;é;; or 57 )contrlbute%l-cBT to the

average energy. {2}
In this case we have 4 such quadratic contributions, leadigg o= 2kpT. {1}

[Unseen]in this form, though harmonic oscillator was covered in lecture.



