
STATISTICAL MECHANICS OF COMPLEX SYSTEMS – SOLUTIONS 2010

1. (a) All entropy formulae below have an arbitrary multiplicative constantK setting the units,
or alternatively an arbitrary base of the logarithm.
joint information entropy:

H(X,Y ) = −
∑

i,j

pij log pij {2}

conditional information entropies:

H(X|Y ) =
∑

j

p
(Y )
j H(X|Y = yj) = −

∑

i,j

pij log
pij

p
(Y )
j

{2}

H(Y |X) =
∑

i

p
(X)
i H(Y |X = xi) = −

∑

i,j

pij log
pij

p
(X)
i

{2}

mutual information:
I(X;Y ) =

∑

i,j

pij log
pij

p
(X)
i p

(Y )
j

{2}

[Bookwork]

(b) Three independent relations:

H(X|Y ) = H(X,Y )−H(Y )

H(Y |X) = H(X,Y )−H(X)

I(X;Y ) = H(X) +H(Y )−H(X,Y )

any set of independent relations worth{2} per equation.
[Bookwork]

(c) Using notation{e, o} for even, odd (forV ) and{p, n} for prime, non-prime (forW ),
the joint probabilities:pep = 1/6, pen = 1/3, pop = 1/3, pon = 1/6. Using bits as
units (usinglog2), the joint entropy:

H(V,W ) = −
(
1

6
log2

1

6
+

1

3
log2

1

3
+

1

3
log2

1

3
+

1

6
log2

1

6

)

{1}

=
1

3
log2 6 +

2

3
log2 3 = log2 3 +

1

3
{1}

=
ln 3

ln 2
+

1

3
≈ 1.92 bit

One way to calculate the mutual information is to realise thatpe = po = 1/2, so
H(V ) = −21

2 log2
1
2 = 1 bit, similarlyH(W ) = 1 bit. {1}

Then

I(V ;W ) = H(V ) +H(W )−H(V,W )

= 1 + 1−
(

log2 3 +
1

3

)

=
5

3
− log2 3 {2}

≈ 0.08 bit

Alternatively, one can apply the formula in 1(a).
[Unseen]
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(d) (i) False. They don’t even have the same units (eg. bit vs bit2) ! {2}
A numerical counterexample (using bits as units): ifX andY are independent coin
tosses,H(X) = H(Y ) = 1, H(X,Y ) = 2 6= 1 · 1.

(ii) False. It can be easily shown thatH(X,X) = H(X) (eg. by applying the defini-
tion). ThenH(X|X) = H(X,X)−H(X) = 0, so any nontrivialX is counterex-
ample. {2}

(iii) True. I(X;X) = H(X) +H(X)−H(X,X) = H(X). {2}
[Unseen]
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2. (a) Interface width:

w(L, t) =

√
〈(

h(x, t)− h̄(t)
)2
〉

x
where h̄(t) = 〈h(x, t)〉x {1}

[Bookwork]

(b) (i) early times, t � t×: w(L, t) ∼ tβ β: growth exponent {2}
late times, t � t×: w(L, t) ∼ wsat(L) ∼ Lα α: roughness exponent{2}
crossover time: t× ∼ Lz z: dynamic exponent {2}

[Bookwork]
(ii) Family-Vicsek scaling relation:

w(L, t) ∼ Lαf

(
t

Lz

)

f(u) ∼
{

uβ , if u � 1

const, if u � 1
{2}

For t � Lz: W (L, t) ∼ Lα · (t/Lz)β ∼ tβ (usingz = α/β)
For t � Lz: W (L, t) ∼ Lα · const∼ Lα. {1}
[Bookwork]

(iii) To recovertβ for small t, we needg(u) = const foru � 1 (assumingB > 0) to
make it independent ofL, which setsA = β. {1}
To obtainLα for larget, we needg(u) = uα for u � 1. {2}
Then for larget, Lα ∼ w ∼ tβLαt−Bα. This givesB = β/α = 1/z. {2}
In summary:

w(L, t) ∼ tβg

(
L

t1/z

)

g(u) ∼
{

uα, if u � 1

const, if u � 1

[Unseen]

(c) (i) Random deposition model: the interface grows on a discretised substrate by ac-
creting squares (hypercubes in general dimension). The cubes arrive above random
substrate positions, and simply increase the height of the colum at that position.
[Bookwork] {2}

(ii) SupposeN cubes are grown on a substrate made ofS units. (In one dimension
S = L, in two dimensionsS = L2 etc.) The growth above a given substrate
location can be considered as the sum ofN i.i.d Bernoulli processes, each grows
unit height (∆h = 1) with probability p = 1/S and does not grow (∆h = 0)
with probability 1 − p. The expectation〈∆h〉 = p = 1/S, and the variance
Var(∆h) = 〈(∆h)2〉 − 〈∆h〉2 = p(1 − p) = (S − 1)/S2, since〈(∆h)2〉 = p

{3}
The Central Limit Theorem says that the sum ofN such processes has meanh̄ =
N〈∆h〉 = N/S, and variance

〈
(h− h̄)2

〉
= NVar(∆h) = N

S − 1

S2
= w2 {2}

which equals to the square of the interface width. Now fix the substrate sizeS. If
time is measured asN (maybe with some proportionality constant, eg.t = N/S;
this does not change the scaling exponent), then

w ∼
√
N ∼

√
t

usingw ∼ tβ, this givesβ = 1/2. {1}
[Unseen]
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(iii)
∂h

∂t
= F + η(x, t)

Whereη has zero mean and is delta correlated:

〈η(x, t)〉 = 0

〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′)

{2}
[Bookwork]
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3. (a) The laws of thermodynamics (credit{1} for each):

(0) There exist a relation between thermodynamic systems. This relation is called ther-
modynamic equilibrium, and it is transitive (equivalence relation):
if A ∼ B andB ∼ C, thenA ∼ C.
HereA, B andC label different systems. For example in thermal equilibrium this
means a transitive relation between the temperatures of the three systems.

(1) Energy conservation: the total energy of an isolated system is fixed.
Thus if during some process a system absorbs heat∆Q, as well as work∆W =
−p∆V + . . . is made on it, then its energy changes by∆E = ∆Q+∆W .

(2) In an isolated system the entropy does not decrease.
Thus if during some process a system absorbs heat∆Q, then its entropy changes
by∆S = ∆Q/T +∆Sinternal≥ ∆Q/T .

(3) The entropy at absolute zero temperature is zero (or can be set zero).

[Bookwork]

(b) (i) Free energies are the Legendre transforms of the energy. {2}
(ii) The free energy of a system does not increase, so at stable equilibrium it is minimal.

{2}
An example: (canonical ensemble:) a system is kept at fixed temperatureT while
undergoing some change.
Its change in energy:∆E = ∆Q.
Its change in entropy:∆S = ∆Q/T +∆Sinternal≥ ∆Q/T
The relevant free energy is the Helmholtz free energy:A(T ) = E − T S.
The change in Helmholtz free energy:∆A = ∆E

︸︷︷︸

∆Q

−T ∆S
︸ ︷︷ ︸

≥∆Q

≤ 0. {3}

(iii) The probability of a macroscopic state (sum of Boltzmann factors) can beexpressed
by a single Boltzmann factor, in which the energy is replaced by the appropriate free
energy. {1}
Example: in a grand canonical ensemble the probabilities multiplied byΞ:

Ξ =
∑

i

e−β(Ei−µNi) =
∞∑

N=0

eβµN
∑

j

e−βEj;N

︸ ︷︷ ︸

state with sameN

=
∞∑

N=0

e−β(A(T ;N)−µN) {2}

[Bookwork]

5



(c) (i) The partition function:

Z =
1

h2

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dpx

∫ ∞

−∞

dpy

× exp

[

−β

(

p2x
2m

+
p2y
2m

+
mg

2`
(x2 + y2)

)]

{2}

=
1

h2

∫ ∞

−∞

dx e−βmg

2`
x2

︸ ︷︷ ︸
√

2π`
βmg

∫ ∞

−∞

dy e−βmg

2`
y2

×
∫ ∞

−∞

dpx e−β 1
2m

p2x

︸ ︷︷ ︸
√

2πm
β

∫ ∞

−∞

dpy e−β 1
2m

p2y

=
`

h̄2gβ2
{3}

(ii) Average energy:

〈E〉 = −∂ lnZ

∂β
= − ∂

∂β
ln

1

β2
=

2

β
= 2kBT {3}

(iii) Each quadratic half-degree of freedom (eg.
p2x
2m

or
mgx2

2`
) contributes12kBT to the

average energy. {2}
In this case we have 4 such quadratic contributions, leading to〈E〉 = 2kBT . {1}

[Unseen]in this form, though harmonic oscillator was covered in lecture.
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