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Stochastic Models of Complex Systems

Hand-out 2
Poisson process, random sequential update, exponentials

Let X ~ Poi(\) be a Poisson random variable with intensity A\ > 0, i.e.

)\lc
P(X =k) = ge*A for all k € Ny .

We have E(X) = A, Var(X) = )\ and the probability generating function of X is

Therefore, if X; ~ Poi();),i =1,...,n are independent Poisson, then the sum is also Poisson,

S=>"Xi~Poi(\ +...4+ ).

i=1
For a € [0, 1], an c-thinning « o X of an integer random variable X € Ny is defined as

X
aoX =Y 7, with Z,~ Be(e) € {0,1} iid Bernoulli .
k=1

For Poisson variables we have
X ~ Poi(\), a €]0,1] = aoX ~ Poi(al).

This follows directly from computing the generating function

o

Gaox(s) = E(ezkle Zk) — Z

n=0

)\’I’L
n!

e E(s7)" = Gx(Gz(s)) = Xt

where we have used Gz(s) =1 —a+as=1+a(s —1).

A Poisson process N = (N; : t > 0) ~ PP()\) with rate A\ > 0 is a Markov chain with independent
stationary increments, and N; ~ Poi(At) for all t > 0. We know from lectures that the holding times
of the chain are independent Fxp(\) variables with mean 1/A. The above properties for Poisson
random variables imply the following for processes:

e Adding Poisson processes.
Let N* ~ PP()\;) be independent Poisson processes, and define their sum M = (M, : t > 0)
via My := N} + ...+ Nj* forall t > 0. Then M ~ PP(A\; + ...+ ),) is a Poisson process.

e Thinning.
An a-thinning o o N of a Poisson process N ~ PP(\) is defined via (v o N); = v o Ny for
all t > 0, i.e. independently keep jumps with probability a.. Then « o N ~ PP(a\) is again a
Poisson process.
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Random sequential update.

The properties of Poisson processes can be used to

set up an efficient sampling algorithm for stochas-

tic particle systems, often called random sequen-

tial update (an adaption of the ’Gillespie algo-

rithm’). Here we focus on a system with state

space S = {0, 1} with lattice A and flip dynam-

ics, for example the contact process (see picture).

To resolve the full dynamics on site € A, the sampling rate should be r, = max,cg c(n,n")
determined by the fastest process. From the graphical construction the independent PPs on each site
add up, and the next possible event in the whole system happens at rate R = > _, r,. By the
thinning property, the probability that it happens on site z is given by p, = r,/R. This leads to the
following algorithm to construct a sample path for the particle system:

Pick g from the initial distribution and set ¢ = 0. Then repeat iteratively:

(1) update the time counter by t+ = Exp(R),
(2) pick a site z with probability p,,
(3) update (flip) site « with probability c(n, ") /ry.

For example, for the contact process on A = {1, ..., L} with periodic boundary conditions and rates
c(n,n”) =n(z) + A(1 = n(2)) (n(z — 1) + n(z + 1))
we have r;, = r = max{1, 2\}, and thus p, = 1/L choosing sites uniformly and R = rL.

For particle hopping like in exclusion processes an analogous construction works with the extra step
of choosing a target site between (2) and (3).

Simplified time counter.
Since R = O(L) is of order of the system size, the increments 7; ~ Exp(R) of the time counter are
of order 1/L. By the scaling property aExp(3) ~ Exp(/3/a) of exponential rv’s (check!), we have

1
7i ~ Exp(R) ~ = 7; withnormalized 7; ~ Exzp(l) .

To simulate up to a time 7" = O(1) we therefore need of order RT' = O(L) sampling increments ;.
The time counter of the simulation is then

t—ZTl— Zn T+ O(L 1/2)—>T as L — oo

by the law of large numbers. So if we just replace the increments 7; by their mean 1/R, i.e. use

(1)’ update the time counter by t+ = 1/R
instead of the computationally more expensive (1), the error in ¢ is of order L~1/2 by the central limit
theorem. This is often negligible for large L unless one is interested in very precise time statistics.
Further related properties of exponentials.
Let 71, 79, . . . be a sequence of independent Fxp(\;) rv’s. Then

o min{7y,..., 7} ~ Exp(A1 + ...+ A,) (related to the sum of Poisson processes),

e If \; = X are identical, and N ~ Geo(p) is an independent geometric rv with mean 1/p, then

Z T; ~ Exp(pA) (related to the marginal waiting time on a site x) .
i=1

This can be proved by direct computation (P(min7; > t) = [[,P(r; > t)) and using generat-
ing/characteristic functions, respectively (try it!).



