
Chapter 3

The Diffusion Equation

3.1 Forward Time Centred Space (FTCS) Scheme

In this chapter we shall focus on methods of solving the diffusion equation with source term:

∂v

∂t
= D

∂2v

∂x2
+ f(x, t), (3.1)

in the domain (x, t) ∈ [xL, xR] × [0, T). This is to be solved with initial data v(x, 0) = V (x) and
boundary conditions specified at x = xL and x = xR. We shall denote the size of the spatial domain
by L = vR − vL.
The similarity solutions which we constructed in Chap. 2 do not generalise to cases with a finite

domain, general initial condition or source term (even though they may exhibit behaviour which
is typical in an asymptotic sense). We need a more robust method. This leads us to the topic of
numerical PDE’s proper. We used finite difference approximations of derivatives to build numerical
algorithms capable of solving ODEs. We shall do the same here although life is complicated a bit by
the fact that we now have derivatives with respect to space and time.
Let us discretise space first, ignoring the source term in Eq. (3.1) for the time being. We divide the

spatial domain intoN−1 intervals of length∆x = L
N−1 usingN equally spaced points, xi = xL+i∆x.

With this definition, x0 = xL and xN−1 = xR. We create a vector, v(t) ∈ R
N from the values,

vi(t) = v(xi, t), of v(x, t) at the N grid points, xi:

v(t) = (v0(t), v1(t), . . . , vN−1(t)).

Eq. (3.1) tells us how each component of v evolves in time:

∂vi
∂t

(t) = D
∂2v

∂x2
(xi, t).

We can approximate the second derivative on the RHS at a given time with a finite difference:

∂vi
∂t

(t) =
D

(∆x)2
[vi+1(t)− 2vi(t) + vi−1(t)] +O(∆x).

We are immediately confronted with the question of what to do at the boundaries. For now lets
assume periodic boundary conditions (the solution wraps around at the end of the spatial domain):

vN (t) = v0(t)

v
−1(t) = vN−1(t).

We will return to the question of how to handle other boundary conditions in Sec. 3.2. Note that we
now have an approximation of the form

dv

dt
= G(v). (3.2)

33

3.2. SOURCE TERMS AND BOUNDARY CONDITIONS IN THE FTCS SCHEMECHAPTER 3. THE DIFFUSION EQUATION

Although the dimension, N , of this first order system is considerably larger in practice than those
which we solved in Chap. 1, in principle everything we learned there is applicable now. It is clear
thatG(v) is rather simple here:

G(v) = Av (3.3)

where is an N ×N matrix of the form (for N = 5):

A =
D

(∆x)2









−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2









(3.4)

With the exception of the effects of the periodic boundary conditions, A, is a tridiagonal matrix. Tri-
diagonal matrices and banded matrices in general are attractive in designing numerical algorithms
since there exist very efficient algorithms for performing matrix operations with such matrices.
To solve our original problem we must now select a timestepping algorithm to advance Eq. (3.2).

The simplest choice would be to use the Forward Euler Method. We choose a time increment, h, and
create temporal gridpoints, tj = j h. The Forward Euler Scheme is

v(tj+1) = v(tj) + hAv(tj) (3.5)

If we now adopt the notation
vi,j = v(xi, tj).

we can see that the Forward Euler Scheme gives us an explicit timestepping algorithm for Eq. (3.1)
without the source term:

vi,j+1 = vi,j + δ [vi+1,j − 2vi,j + vi−1,j] (3.6)

where

δ =
Dh

(∆x)2
. (3.7)

Eq. (3.6) is called the Forward Time Centred Space (FTCS) algorithm. It can be written as a simple
matrix multiplication:

vj+1 = Bvj (3.8)

where

B =









1− 2δ δ 0 0 δ
δ 1− 2δ δ 0 0
0 δ 1− 2δ δ 0
0 0 δ 1− 2δ δ
δ 0 0 δ 1− 2δ









. (3.9)

For this reason, there are strong links between linear algebra and numerical analysis of PDEs. One of
the main differences between the algorithms which we studied in Chap 1 and Eq. (3.6) is that there
are now two sources of approximation - a spatial and temporal discretisation. These can interact to
make questions of stability and convergence more delicate.

3.2 Source Terms and Boundary Conditions in the FTCS Scheme

3.2.1 Including a source term in the FTCS scheme

It is not hard to incorporate the source term in Eq. (3.1) into the FTCS scheme. We create vector,
f(t) ∈ R

N , by evaluating the source term at each spatial gridpoint:

f(t) = (f0(t), f1(t), . . . , fN−1(t)),

34

3.2. SOURCE TERMS AND BOUNDARY CONDITIONS IN THE FTCS SCHEMECHAPTER 3. THE DIFFUSION EQUATION

where fi(t) = f(xi, t). The analogue of Eq. (3.2) is then

dv

dt
= A(v) + f(t). (3.10)

with the matrix A still given by Eq. (3.4). Note that the problem is now potentially non-autonomous.
We could increase the dimension by one to get an autonomous system as we learned to do in Chap. 1.
If we did that, however, the G operator for the augmented system would no longer be banded or
(unless the source was very special) linear. This would be bad news for large N since we would no
longer be able to use all those fast algorithms for performing linear operations on banded matrices.
Instead, for PDE applications, we generally prefer to work directly with the non-autonomous system
and write our Forward Euler Scheme with the source included explicitly:

v(tj+1) = v(tj) + hAv(tj) + hf(tj). (3.11)

A single timestep of the FTCS algorithm, Eq. (3.8), now requires a vector addition in addition to a
matrix multiplication:

vj+1 = Bvj + bj (3.12)

where bj = hfj . One thing to watch out for here is not to use more sophisticated integrators which
have been designed for non-autonomous systems.

3.2.2 Imposing Dirichlet Boundary Conditions in the FTCS scheme

Dirichlet conditions:

v(xL, t) = DL(t) (3.13)

v(xR, t) = DR(t).

(DL andDR could be constant or zero!) With these boundary conditions we know the time evolution
of v0 and vN−1. Thus we only need to compute the solution for the points on the interior of the
domain, [xL +∆x, xR −∆x]. From a conceptual point of view, it is easier to think of [xL +∆x, xR −
∆x] = [�xL.�xR] as a new domain to be discretised. The boundary points are considered to be external

to the domain (sometimes called “false points”). Thuswe divide the new domain [�xL.�xR] into �N−1 =

N−3 intervals of length∆x using �N = N−2 equally spaced points xi = �xL+i∆x. In the newdomain,
the boundary conditions are applied at nodes x

−1 and x eN
.

The FTCS scheme is the same as before for the interior points i = 1, ldots �N − 2:

vi,j+1 = vi,j + δ [vi+1,j − 2vi,j + vi−1,j] (3.14)

but at the boundary points, i = 0 and i = �N − 1we have

v0,j+1 = v0,j + δ [v1,j − 2v0,j +DL(tj)]

v eN−1,j+1
= v eN−1,j

+ δ
�
DR(tj)− 2v eN−1,j

+ v eN−2,j

�
. (3.15)

Eqs. (3.14) and (3.15) are equivalent to the �N × �N linear system

vj+1 = Bvj + bj (3.16)

where (for �N = 5)

B =









1− 2δ δ 0 0 0
δ 1− 2δ δ 0 0
0 δ 1− 2δ δ 0
0 0 δ 1− 2δ δ
0 0 0 δ 1− 2δ









b =









δDL(tj)
0
0
0

δDR(tj)









. (3.17)

35

3.2. SOURCE TERMS AND BOUNDARY CONDITIONS IN THE FTCS SCHEMECHAPTER 3. THE DIFFUSION EQUATION

3.2.3 Imposing Neumann Boundary Conditions in the FTCS scheme

Neumann conditions:

∂v

∂x
(xL, t) = NL(t) (3.18)

∂v

∂x
(xR, t) = NR(t).

To implement these boundary conditions, we again use “false points”, x
−1 and xN which are external

points. We use a centred difference to approximate ∂v
∂x

(xL, t) and set it equal to the desired boundary
condition:

∂v

∂x
(xL, t) =

v1 − v
−1

2∆x
+O(∆x2) = NL(t).

From this we can determine v
−1:

v
−1(t) = v1(t)− 2∆xNL(t). (3.19)

Similarly at the right boundary we determine vN :

vN (t) = vN−1(t) + 2∆xNR(t). (3.20)

The FTCS scheme is the same as before for the interior points i = 1, ldots �N − 2:

vi,j+1 = vi,j + δ [vi+1,j − 2vi,j + vi−1,j] (3.21)

but at the boundary points, i = 0 and i = N − 1we have

v0,j+1 = v0,j + δ [2v1,j − 2v0,j]−
2Dh

∆x
NL(tj)

vN−1,j+1 = vN−1,j + δ [−2vN−1,j + 2vN−2,j] +
2Dh

∆x
NR(tj). (3.22)

Eqs. (3.21) and (3.22) are equivalent to the N ×N linear system

vj+1 = Bvj + bj (3.23)

where (for N = 5)

B =









1− 2δ 2δ 0 0 0
δ 1− 2δ δ 0 0
0 δ 1− 2δ δ 0
0 0 δ 1− 2δ δ
0 0 0 2δ 1− 2δ









b =









−2Dh
∆x

NL(tj)
0
0
0

2Dh
∆x

NR(tj)









. (3.24)

Fig. 3.1 shows some numerical solutions to the diffusion equationwith gaussian initial conditions
obtained using the FTCS scheme. Although Dirichlet boundary conditions have been imposed, Fig.
3.1 shows the evolution at early times before the solution starts to feel the boundaries. The solution
is therefore very well approximated by the self similar solution, Eq. (2.48), obtained in Chap. 2. The
solution on the left has a timestep of h = 2.00 × 10−2. The solution on the right has a timestep of
h = 2.66 × 10−2. It is clear that something goes catastrophically wrong with the FTCS scheme under
certain circumstances. The oscillatory behaviour captured in the right hand frame of Fig. 3.1 is the
leading edge of an exponentially growing instability which, within a few more timesteps completely
engulfs the entire solution rendering the numerical solution useless.
Is this instability absent in the left hand frame or is would the left hand computation fall victim

to the same instability if we waited for slightly longer time? The question of when the numerical
solution obtained from a given numerical algorithm converges to the exact solution is one of the
central questions of numerical analysis. We now turn to this issue.

36

3.3. CONSISTENCY AND STABILITY OF THE FTCS SCHEMECHAPTER 3. THE DIFFUSION EQUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

v(
x,

t)

x

t=0
t=1
t=2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

v(
x,

t)

x

t=0
t=1
t=2

Figure 3.1: Snapshots of the numerical solution of Eq. (3.1) with f = 0 and D = 1 computed using
the FTCS scheme, Eq. (3.6) . The spatial interval was [−20 : 20] (only the range [−5 : 5] is shown) with
Dirichlet boundary conditions v(−20, t) = v(20, t) = 0 imposed at the edges. The initial condition

was v(x, 0) = e−x2

. For the computation on the left, h = 0.02. For the computation on the right,
h = 0.0266. Solid lines show the approximate analytic solution.

3.3 Consistency and Stability of the FTCS Scheme

We now look at the concepts of consistency and stability which allow us to understand when a nu-
merical solution to a PDE converges to the exact solution. We shall then apply them to the FTCS
scheme.

Consistency:

a finite difference scheme is consistent if the numerical solution computed after a fixed number
of steps converges to the exact solution as h and∆x tend to zero.

Consistency ensures that the finite difference equation converges to the original PDE.

Stability:

a finite difference scheme is stable if the numerical solution computed after a fixed time remains
bounded as h → 0.

Stability ensures that the numerical solution at a finite time does not blow up as the timestep is
reduced to zero. Consistency and stability together ensure convergence of the numerical solution
according to the following theorem:

37

3.3. CONSISTENCY AND STABILITY OF THE FTCS SCHEMECHAPTER 3. THE DIFFUSION EQUATION

Lax–Richtmeyer Theorem:

a finite difference approximation to a well posed linear IVP converges to the exact solution as h
and∆x tend to zero if and only if it is consistent and stable.

3.3.1 Consistency of the FTCS Scheme

We want to compare the numerical and exact solution after a fixed number of timesteps, say j + 1.
Let us denote the numerically computed solution at space-time point xi, tj by �vi,j to distinguish it
from corresponding value of the exact solution of Eq. (3.1), which we denote by vi,j . For simplicity,
we shall assume that f = 0. Recall how �vi,j+1 is computed using the FTCS scheme:

�vi,j+1 = δ�vi−1,j + (1− 2δ)�vi,j + δ�vi+1,j , (3.25)

where δ = Dh
(∆x)2

. The error at each point is

εi,j = vi,j − �vi,j.

From Eq. (3.25), we easily obtain

εi,j+1 = δ(εi−1,j + εi+1,j) + (1− 2δ)εi,j + δ(vi−1,j + vi+1,j) + (1− 2δ)vi,j − vi,j+1. (3.26)

By Taylor’s Theorem

vi+1,j = vi,j + (∆x)
∂v

∂x
(xi, tj) +

1

2
(∆x)2

∂2v

∂x2
(ηi, tj)

vi−1,j = vi,j − (∆x)
∂v

∂x
(xi, tj) +

1

2
(∆x)2

∂2v

∂x2
(µi, tj)

vi,j+1 = vi,j + h
∂v

∂t
(xi, τj),

for some ηi ∈ [xi, xi+1], µi ∈ [xi−1, xi] and τj ∈ [tj , tj+1]. Putting these into Eq. (3.26) and doing some
algebra we obtain

εi,j+1 = δ(εi−1,j + εi+1,j) + (1− 2δ)εi,j + h

�
D

2

�
∂2v

∂x2
(ηi, tj) +

∂2v

∂x2
(µi, tj)

�

−
∂v

∂t
(xi, τj)

�

. (3.27)

Now, the solution of the PDE exists so the absolute value of term in the square brackets has a maxi-
mum value over all the (i, j) in the computational grid which we denote byM:

M = max
i,j

�
�
�
�
D

2

�
∂2v

∂x2
(ηi, tj) +

∂2v

∂x2
(µi, tj)

�

−
∂v

∂t
(xi, τj)

�
�
�
� . (3.28)

Let us denote by Ej the maximum over the spatial points of absolute value of the error at a fixed
time-slice, j:

Ej = max
i

|εi,j| . (3.29)

From Eq. (3.27), provided that 1− 2δ > 0,

|εi,j+1| ≤ δ [Ej + Ej] + (1− 2δ)Ej +Mh

= Ej + hM.

Let us now assume that 1− 2δ > 0 and take the maximum over i:

Ej+1 ≤ Ej + hM. (3.30)

38

3.3. CONSISTENCY AND STABILITY OF THE FTCS SCHEMECHAPTER 3. THE DIFFUSION EQUATION

We can iterate this argument:

Ej+1 ≤ Ej + hM ≤ Ej−1 + 2hM . . . ≤ E0 + jhM = jhM, (3.31)

since E0 = 0. Now let h → 0 and ∆x → 0. Ej+1 will tend to zero provided thatM remains finite.
Clearly as h → 0 and ∆x → 0, ηi → xi, µi → xi and τj → tj . Then from Eq. (3.28) and Eq. (3.1) (recall
we are taking f = 0) we see thatM → 0. Hence the error after j + 1 steps, Ej+1 tends to zero. We
conclude that the FTCS scheme, Eq. (3.25), is consistent if

δ =
Dh

(∆x)2
<

1

2
. (3.32)

Notice that in this argument, we cannot take h and∆x to zero independently.

3.3.2 Stability of the FTCS Scheme

Reminder: Finding the largest eigenvalue of a matrix:

If A is an N × N diagonalisable matrix with eiganvalues λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN . The for
any vector b0 having nonzero component in the direction of the eigenvector associated with λ1,
(iteratively) define

bk+1 =
Abk

|Abk|
.

Then bk+1 → λ1bk as k → ∞. This is called the Power Method.

Let us consider the case of Dirichlet conditions for concreteness. Eq. (3.16) shows that the FTCS
scheme, Eq. (3.25), is naturally expressed as a linear system,

�vj+1 = B�vj + bj .

In reality, we have some error relative to the exact solution which means

vj+1 + εj+1 = B(vj + εj) + bj

⇒ εj+1 = Bεj

⇒ εj+n = Bnεj .

The propagation of errors in the numerical scheme is controlled by the matrix B. Let us fix a time, T ,
and compute the solution using a timestep of h = T/m. As h → 0,

|εm| ∼ |λ1|
m |ε1| ,

where λ1 is the largest eigenvalue of the matrix B given by Eq. (3.17). Clearly the FTCS scheme will
be stable if |λ1| ≤ 1. Computing the eigenvalues of Eq. (3.17) is somewhat technical so I will just
quote the answer:

λn = 1− 4δ sin2
�

nπ

2(N + 1)

�

n = 1, . . . , N. (3.33)

For stability we need |λn| ≤ 1. δ > 0 so we automatically have λn ≤ 1. We need to ensure that
λn ≥ −1. Since sin2(x) ≤ 1 it is sufficient to require 1− 4δ < −1which translates into

δ =
Dh

(∆x)2
<

1

2
. (3.34)

We conclude that the FTCS scheme is conditionally stable. From this analysis and the Lax-
Richtmyer Theorem quoted above, our numerical solution will converge to the analytical solution

as h → 0 and∆x → 0 provided that we keep h < (∆x)2

2D . From a theoretical perspective, this is exactly
what we want. From a practical perspective, the fact that we have to decrease our timestep as the
square of the spatial grid spacing in order to maintain stability as we increase the spatial resolution
is a severe constraint on the efficiency of the method. We shall fix this problem in the next section.

39

3.4. THE CRANK–NICHOLSONMETHOD CHAPTER 3. THE DIFFUSION EQUATION

3.3.3 Von Neumann Stability Analysis

This method of determining the stability of the FTCS scheme requires that we find the largest eigen-
value of the evolution matrix, a task which is mathematically difficult in general. We now introduce
another approach to determinining numerical stability which, although less general, is easier in prac-
tice. The idea is to study the growth of a trial solution taking the form of a periodic wave.
Consider the FTCS scheme:

vnm+1 = vnm + δ (vn+1m − 2vnm + vn−1m) (3.35)

with a trial solution v(x, t) = a(t) ei k x. This trial solution leads to

a(tm+1)e
i k xn = a(tm) ei k x

�
1 + δ

�
ei k∆x − 2 + e−i k∆x

��
. (3.36)

It is then easy to show that
a(tm+1)

a(tm)
= 1 + δ (2 cos(k∆x)− 2).

For stability we require �
�
�
�
a(tm+1)

a(tm)

�
�
�
� ≤ 1

or alternatively
−1 ≤ 1− 2δ (1− cos(k∆x)) ≤ 1.

The latter inequality is clearly satisfied since 0 ≤ 1 − cos(x) ≤ 2. The first inequality requires that
δ < 1

2 . This is the same stability criterion which we obtained via the matrix method previously.

3.4 The Crank–Nicholson Method

The Crank–Nicholsonmethod is an improvement on the FTCS schemewhich is unconditionally stable.
Of course there is a price to pay: themethod is implicit. The idea is to base the finite difference scheme
on the point (xi, tj +

h
2). That is we approximate the equation:

∂v

∂t
(xi, tj +

h

2
) = D

∂2v

∂x2
(xi, tj +

h

2
). (3.37)

We use a centred difference formula for the time derivative and approximate the spatial derivative
by the average of the second order difference approximation at tj and tj+1:

∂v

∂t
(xi, tj +

h

2
) =

vi,j+1 − vi,j
h

+O(h2)

∂2v

∂x2
(xi, tj +

h

2
) =

D

2

�
vi+1,j − 2vi,j + vi−1,j

(∆x)2
+

vi+1,j+1 − 2vi,j+1 + vi−1,j+1

(∆x)2

�

+O((∆x)2)

Note that the Crank–Nicholson scheme is also more accurate than the FTCS scheme. We thus arrive
at the finite difference equation

vi,j+1 − vi,j
h

=
D

2

�
vi+1,j − 2vi,j + vi−1,j

(∆x)2
+

vi+1,j+1 − 2vi,j+1 + vi−1,j+1

(∆x)2

�

. (3.38)

We can rearrange this to give a set of equations relating the vi,j+1 to the vi,j :

−
δ

2
vi+1,j+1 + (1 + δ)vi,j+1 −

δ

2
vi−1,j+1 =

δ

2
vi+1,j + (1− δ)vi,j +

δ

2
vi−1,j, (3.39)

where δ = Dh
(∆x)2 . The method is implicit since we must solve a set of N simultaneous equations in

order to obtain the vi,j+1 from the vi,j . What about the boundaries? Suppose we impose Dirichlet
conditions on the spatial boundaries: x = xL and x = xR:

v(xL, t) = DL(t)

v(xR, t) = DR(t).

40

3.4. THE CRANK–NICHOLSONMETHOD CHAPTER 3. THE DIFFUSION EQUATION

We introduce fictitious points, x
−1 and xN as we did in Sec. 3.2 and impose the boundary conditions

on these points. At i = 0we have the approximation:

v0,j+1 − v0,j
h

=
D

2

�
v1,j − 2v0,j +DL(tj)

(∆x)2
+

v1,j+1 − 2v0,j+1 +DL(tj+1)

(∆x)2

�

. (3.40)

At i = N − 1we have the approximation:

vN−1,j+1 − vN−1,j

h
=

D

2

�
DR(tj)− 2vN−1,j + vN−2,j

(∆x)2
+

DR(tj+1)− 2vN−1,j+1 + vN−2,j+1

(∆x)2

�

. (3.41)

Eqs. (3.40) and (3.41) can be arranged to give the appropriate boundary equations to supplement
Eq. (3.39):

−
δ

2
v1,j+1 + (1 + δ)v0,j+1 =

δ

2
v1,j + (1− δ)v0,j +

δ

2
DL(tj+1) +

δ

2
DL(tj)

(1 + δ)vN−1,j+1 −
δ

2
vN−2,j+1 = (1− δ)vN−1,j +

δ

2
vN−2,j +

δ

2
DR(tj+1) +

δ

2
DR(tj). (3.42)

After multiplying across by 2 for convenience, Eq. (3.39) together with Eqs, (3.42) can be concisely
expressed as a linear system:

Avj+1 = Bvj + bj+1 + bj , (3.43)

where

A =









2(1 + δ) −δ 0 0 0
−δ 2(1 + δ) −δ 0 0
0 −δ 2(1 + δ) −δ 0
0 0 −δ 2(1 + δ) −δ
0 0 0 −δ 2(1 + δ)









bj+1 =









δDL(tj+1)
0
0
0

δDR(tj+1)









, (3.44)

and

B =









2(1 − δ) δ 0 0 0
δ 2(1− δ) δ 0 0
0 δ 2(1 − δ) δ 0
0 0 δ 2(1− δ) δ
0 0 0 δ 2(1 − δ)









bj =









δDL(tj)
0
0
0

δDR(tj)









, (3.45)

We can solve the required set of equations at each step as follows:

vj+1 = (A−1 B)vj +A−1
bj+1 +A−1

bj. (3.46)

In this example, we only need to invert the matrix A once at the beginning of the calculation since
it does not change from one timestep to the next. In more complicated problems, for example if D
were time-dependent or if adaptive stepping were used (in which case, δ would vary in time), then
Awould be different at each step. In these cases, a full matrix inversion is required at each step. This
is potentially expensive but as mentioned already, fast algorithms exist for performing inversions of

the kind of banded matrices which result from discretisation of differential operators like ∂2

∂x2 .
A similar set of steps can be followed to implement Neumann boundary conditions within the

Crank–Nicholson scheme.
Fig. 3.2 shows some snapshots of the numerical solutions obtained with the Crank–Nicholson

scheme with the same set of parameters for which the FTCS scheme was unstable (see Fig. 3.1). The
left panel shows how the error varies as a function of δ for the two schemes. The plot confirms our
analysis of the previous section that the FTCS scheme is conditionally stable (stable if δ < 1

2) and sug-
gests that the Crank–Nicholson scheme is unconditionally stable. We now perform a mathematical
analysis which confirms that this is the case.

41

3.5. STABILITY OF THE CRANK–NICHOLSON SCHEMECHAPTER 3. THE DIFFUSION EQUATION

10-5

100

105

1010

1015

1020

1025

1030

1035

 0 0.2 0.4 0.6 0.8 1

E
rr

o
r

δ

FTCS
C-N

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

v(
x,

t)

x

t=0
t=1
t=2

Figure 3.2: Left Panel: comparision of the numerical error made by the FTCS and Crank–Nicholson
schemes as a function of δ for the problem described in Fig. 3.1. The conditional stability of the FTCS
scheme is clearly evident whereas the Crank-Nicholson scheme is suggested to be unconditionally
stable. Right Panel: explicit snapshots of the numerical results obtained using the Crank–Nicholson
scheme for δ = 0.665. Compare the corresponding results for the FTCS scheme in the right panel of
Fig. 3.1.

3.5 Stability of the Crank–Nicholson Scheme

The consistency of the Crank–Nicholson scheme is a rather lenghty piece of analysis which does not
differ significantly from that performed in Sec. 3.3 for the FTCS scheme. We omit it here.
The stability of the Crank–Nicholson scheme requires that we understand the structure of the

matrix A−1 B in Eq. (3.46)with A and B given by Eqs. (3.44) and (3.45). We just quote the result for
the eigenvalues of A−1 B:

λn =
2− 4δ sin2

�
nπ
2N

�

2 + 4δ sin2
�
nπ
2N

� . (3.47)

Note that for δ = 0, λn = 1 for all values of n. As δ → ∞, λn → −1 for all values of n. In general,

|λn| =

�
�2− 4δ sin2

�
nπ
2N

��
�

2 + 4δ sin2
�
nπ
2N

�

≤
2 + 4δ sin2

�
nπ
2N

�

2 + 4δ sin2
�
nπ
2N

�

= 1.

Hence the Crank–Nicholson scheme is unconditionally stable.

3.6 Similarity solutions as attractors: rescaling

In our discussion of similarity solutions we mentioned briefly that, although such solutions are spe-
cial, they are often attracting in an asymtotic sense.That is, lots of initial conditions converge to the
similarity solution at large times provided that there are no boundary conditions or terms in the
equation which break the scaling symmetry. In chap. 2 we lacked the technology to be able to verify
this claim since we could only find the self-similar solution in isolation and could not match it to
arbitrary initial conditions.

42

3.6. SIMILARITY SOLUTIONS AS ATTRACTORS: RESCALINGCHAPTER 3. THE DIFFUSION EQUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20

v(
x,

t)

x

t=0
t=0.5
t=5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

v(
x,

t)

x

t=0.1
t=0.5
t=5.0

SS solution

Figure 3.3: Snapshots of the numerical solution to Eq. (3.1) with the initial conditions given by
Eq. (3.48) and the Dirichlet boundary conditions. Left panel shows the raw numerical solution and
the right panel shows the numerical solution rescaled according to Eq. (3.49).

Now, however, equippedwith the FTCS or Crank–Nicholson methods, we can solve the diffusion
equation for arbitrary initial conditions and check if this is indeed the case. Let us reconsider the
diffusing interface problemwhich we earlier described using the self-similar solution Eq. (2.47). Now
suppose that our initial interface does not have a step function profile but something asymmetric:

v(x, 0) =






1 x < −1
1
4(1− x)2 −1 ≤ x ≤ 1
0 x > 1.

(3.48)

This clearly does not “fit” with the self–similar Erf(x) profile. However that does not pose any
problem to themethods which we have developed in the last few sections. If the self–similar solution
is attracting however, we should find that at large times, our numerical solution, �v(x, t), should
behave as

�v(x, t) ≈ taF (xtb) (3.49)

with a and b determined as before. Suppose that we plot �v(x, t)/ta as a function of xtb then the data
should collapse onto the single curve F (x) as t gets large. This procedure is illustrated in Fig. 3.3.
The numerical solution has been computed using the Crank–Nicholson method starting with the
above initial data on the spatial intervale [−20 : 20] with Dirichlet boundary conditions v(−20, t) = 1
and v(20, t) = 0. Note that we have set things up so that the solution can evolve for a relatively
long time without feeling the boundaries. This gives the solution time to converge to the similarity
solution before the boundaries start to break the scaling symmetry. The conclusion to be drawn from
Fig. 3.3 is that the solutions quickly adopts the Erf(x) profile predicted by the similarity analysis as
we claimed would be the case.

43

