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Plan

• Basic probability
random variables, PMF, PDF and CMF, independence, expectation, median, variance, stan-
dard deviation, characteristic functions, LLN, CLT;
distributions: uniform, Bernoulli, Binomial, Poisson, Geometric, Exponential, Gaussian,
power laws (Pareto, stable laws)

• Visualization of data
Q-Q plot, probability plot, tail plot, histogram, kernel density estimate, Box plot

• Joint/multivariate RVs
joint distributions, sum rule, product rule, Bayes rule, basic Bayesian inference, covariances,
correlation, multi-variate Gaussians, scatter plot

• Basic statistics
estimators, sample mean, variance, median, quantiles, bias, consistency, MLE, mean squared
error, statistical significance

• Extreme value statistics
order statistics for iid random variables, Frechet, Gumbel, Weibull distributions

• Basic time series analysis
Gaussian regression, LSE, model selection, over-fitting and cross-validation, Markovian and
auto-regressive models

• Stationary time series
detrending and regression, autocorrelation function, spectral analysis, Fourier series and
Fourier transform

We will only cover very basic Bayesian inference, and NO hypothesis testing, please refer to the
module CO902 Probabilistic and statistical inference. I will produce a typed script as the course
progresses which will be available for revision of the course material.
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1 Basic probability

The basic ingredients for a probabilistic model are

sample/state space S = set of all possible values

outcome/state s ∈ S element of S

events A ⊆ S (certain) subsets of S . (1.1)

S can be an abstract set (e.g. set of birds sitting on a rhinoceros), or a subset of R (or a higher
dimensional set) which will be the most common case. While for discrete S, any subset A ⊆ S
is an event, this would lead to inconcistencies for continuous state spaces, and one has to restrict
events to so-called σ-algebras. These still contain all interesting events for us anyway, so we will
not go into details on this (which can be found in any standard textbook on probability or measure
theory).
A probability distribution P on S is a function that assigns a number P (A) to every eventA ⊆ S
such that

• P (A) ≥ 0 for all A ⊆ S (positivity)

• P (S) = 1 (normalization)

• P (∪iAi) =
∑

i P (Ai) for all Ai ⊆ S which are mutually disjoint. (additivity)

A random variable X on S with distribution P takes (random) values on S which are distributed
according to P , i.e.

P(X ∈ A) = P (A) for all events A ⊆ S . (1.2)

Two random variables X,Y are independent, if for all events A,B ⊆ S

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B) . (1.3)

Independence, and the lack of independence corresponding to correlations among random vari-
ables, is one of the most important concepts and will be discussed in great detail. Note that in this
course we understand the symbol P just intuitively as ’the probability that’.

1.1 Review of most important distributions and properties

For discrete state space S = {s1, s2, . . .} finite or countably infinite, distributions of a random
variable X are characterized by a

probability mass function (PMF) ps = P(X = s) , s ∈ S . (1.4)

The simplest example is the

• uniform distribution, which can be defined on any finite S = {s1, . . . , sn} of size n, and
is characterized by

ps = 1/|S| = 1/n for all s ∈ S , with shorthand X ∼ U(S) . (1.5)
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If S is actually a subset of R, the standard properties of a distribution are

expectation E(X) =
∑
s∈S

s ps

variance Var(X) = E
(
(X − E(X))2

)
= E(X2)− E(X)2

standard deviation σ(X) =
√

Var(X) . (1.6)

Further characteristics of distrubion functions are

cumulative distribution function (CDF) FX(s) = P(X ≤ s)
tail distribution function (TDF) F̄X(s) = P(X > s) . (1.7)

Deviding the CDF into regular intervals, we have the

median m ∈ R such that P(X ≤ m) ≥ 1/2 , P(X ≥ m) ≥ 1/2 ;

quantiles Qqk ∈ R such that P(X ≤ Qqk) ≥ k/q , P(X ≥ Qqk) ≥ 1− k/q . (1.8)

Note that the median is simplym = Q2
1, and in general there are q−1 q-quantiles. Other common

special cases are quartiles q = 4 and percentiles q = 100. If FX is not continuous (as is the case
for discrete state space S), then quantiles are usually not well defined numbers but can lie in an
interval, in which case one usually takes the midpoint of that interval.
In the following we discuss further common distributions and their interpretation.

• Bernoulli distribution with S = {0, 1} and parameter θ ∈ [0, 1], writing X ∼ Be(θ), with
PMF

p1 = 1− p0 = θ . (1.9)

Models success (1) or failure (0) in single experiment with probability θ (e.g. coin throw).
E(X) = θ, Var(X) = θ(1− θ).

• Binomial distribution with S = {0, . . . n}, parameters n ∈ N and θ ∈ [0, 1], writing
Y ∼ Bin(n, θ) with PMF

pk = P(Y = k) =

(
n

k

)
θk (1− θ)n−k . (1.10)

Models the number of successes in n independent experiments with success probability θ.
So if Xi ∼ Be(θ) are iid we have Y =

∑n
i=1Xi ∼ Bin(n, θ) .

E(y) = nθ, Var(y) = nθ(1− θ) (both are additive for iid random variables).

• geometric distribution with S = {1, 2 . . .} and parameter θ ∈ [0, 1], writing X ∼ Geo(θ)
with PMF

pk = P(X = k) = (1− θ)k−1θ . (1.11)

Models the number of independent trials necessary until success.
E(X) = 1/θ, Var(X) = (1− θ)/θ2.
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The above distributions describe most interesting observables of successive, independent experi-
ments/observations. The statistics of many large systems are described by particular scaling limits
of those distributions.

• Poisson distribution with S = {0, 1, . . .}, parameter λ ≥ 0, writing X ∼ Poi(λ) with PMF

pk = P(X = k) =
λk

k!
e−λ . (1.12)

Models the number of successes under vanishing success probability θn = λ/n in the limit
of infinitely many trials, i.e.

Yn ∼ Bin(n, λ/n) → Y ∼ Poi(λ) in distribution as n→∞ , (1.13)

since P(Xn = k) = n···(n−k+1)
k!

(
λ
n

)k(
1− λ

n

)n−k → λk

k! e
−λ .

For example, the degree distribution in an Erdös-Rényi random graph G(n, p) is Bin(n − 1, p)
(edges are placed to n − 1 neighbours independently with probability p. In the scaling limit
p = λ/n and n → ∞, this converges to a Poi(λ) Poisson distribution. In general, the Poisson
distribution models the statistics of rare events over a long period of time, such as the number of
meteorites that have hit the earth in the last million years or so.
For further scaling limits we need to consider continuous state spaces, the most common choices
being S = [0,∞) or S = R. Distributions of random variables X ∈ S are now described by a

probability density function (PDF) fX : S → R such that P(X ∈ A) =

∫
A
fX(s) ds .(1.14)

Note that fX(s) is not equal to P(X = s), which is in general equal to 0. One can only associate
non-vanishing probabilities to events A which contain at least one small intervall of non-zero
length. For continuous S we have

expectation E(X) =

∫
S
s fX(s) ds

CDF FX(x) = P(X ≤ x) =

∫ x

−∞
fX(s) ds , (1.15)

and the definition of all other quantities remains the same. The simplest example is again the

• uniform distribution with S = [a, b), parameters a < b ∈ R, writing X ∼ U([a, b)) with
PDF

fX(s) =
1

b− a
1[a,b) =

{
1/(b− a) , s ∈ [a, b)

0 , s 6∈ [a, b)
. (1.16)

Coming back to the scaling limit of rare successes, we may be interested in the time it takes to see
such a rare success, which is given by the scaling limit of the geometric distribution.
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• exponential distribution with S = [0,∞), parameter λ > 0, writing X ∼ Exp(λ) with
PMF

fX(s) = λ e−λ s . (1.17)

It describes the time to the next successXn ∼ Geo(λ/n) in the limit n→∞ after rescaling,
i.e. we have

Xn/n→ X ∼ Exp(λ) since P(Xn/n ≥ s) = (1− λ/n)ns → e−λs . (1.18)

The tail has the simple form F̄X(x) = e−λs.
E(X) = 1/λ, Var(X) = 1/λ2 and λ can be interpreted as the success rate or intensity.
Often the exponential distribution is also parametrized by the mean µ = 1/λ (e.g. in MAT-
LAB). Scaling property: if X ∼ Exp(λ) then aX ∼ Exp(λ/a) for all a > 0.

The exponential distribution models the statistics of rare events which are purely driven by fluc-
tuations, such as the lifetime distribution of light bulbs. To a good approximation they do not age
(other than humans), but fail with small probability each time they are turned on. The statistics
of times between rare events (such as meteorites, catastrophes in nuclear power plants,. . . ) should
therefore be exponentially distributed. If we are interested in the statistics of number of events St
up to time t if events happen at rate λ this will be Poisson St ∼ Poi(λt), which follows directly
from the scaling limit for the Poisson distribution.

1.2 Gaussian distribution and CLT

Let X be a real-valued random variable with PDF fX . The characteristic function (CF) φX(t) is
defined as the Fourier transform of the PDF, i.e.

φX(t) = E
(
eitX

)
=

∫ ∞
−∞

eitxfX(x) dx for all t ∈ R . (1.19)

As the name suggests, φX uniquely determines (characterizes) the distribution of X and the usual
inversion formula for Fourier transforms holds,

fX(x) =
1

2π

∫ ∞
−∞

e−itxφX(t) dt for all x ∈ R . (1.20)

By normalization we have φX(0) = 1, and moments can be recovered via

∂k

∂tk
φX(t) = (i)kE(XkeitX) ⇒ E(Xk) = (i)−k ∂

k

∂tk
φX(t)

∣∣
t=0

. (1.21)

Also, if we add independent random variables X and Y , their characteristic functions multiply,

φX+Y (t) = E
(
eit(X+Y )

)
= φX(t)φY (t) . (1.22)

Furthermore, for a sequence X1, X2, . . . of real-valued random variables we have

Xn → X in distribution, i.e. fXn(x)→ fX(x) ∀x ∈ R ⇔ φXn(t)→ φX(t) ∀t ∈ R .(1.23)

A real-valued random variableX ∼ N(µ, σ2) has normal or Gaussian distribution with mean
µ ∈ R and variance σ2 ≥ 0 if its PDF is of the form

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (1.24)
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Properties.

• The characteristic function of X ∼ N(µ, σ2) is given by

φX(t) =
1√

2πσ2

∫ ∞
−∞

exp
(
− (x− µ)2

2σ2
+ itx

)
dx = exp

(
iµt− 1

2
σ2t2

)
. (1.25)

To see this (try it!), you have to complete the squares in the exponent to get

− 1

2σ2
(
x− (itσ2 + µ)

)2 − 1

2
t2σ2 + itµ , (1.26)

and then use that the integral over x after re-centering is still normalized.

• This implies that linear combinations of independent Gaussians X1, X2 are Gaussian, i.e.

Xi ∼ N(µi, σ
2
i ), a, b ∈ R ⇒ aX1 + bX2 ∼ N

(
aµ1 + bµ2, a

2σ21 + b2σ22
)
.(1.27)

For discrete random variables X taking values in Z with PMF pk = P(X = k) we have

φX(t) = E
(
eitX

)
=
∑
k∈Z

eitkpk for all t ∈ R . (1.28)

So pk is the inverse Fourier series of the function φX(t), the simplest example is

X ∼ Be(p) ⇒ φX(t) = peit + 1− p . (1.29)

Note that this is a 2π-periodic function in t, since only two coefficients are non-zero. We will
come back to that later for time-series analysis.

LetX1, X2, . . . be a sequence of iidrv’s with mean µ and variance σ2 and set Sn = X1+ . . .+Xn.
The following two important limit theorems are a direct consequence of the above.

Theorem 1.1 Weak law of large numbers (LLN)
Under the above assumptions we have

Sn/n→ µ in distribution as n→∞ . (1.30)

There exists also a strong form of the LLN with almost sure convergence which is harder to prove.

Theorem 1.2 Central limit theorem (CLT)
Under the above assumptions we have

Sn − µn
σ
√
n
→ N(0, 1) in distribution as n→∞ . (1.31)
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The LLN and CLT imply that for n→∞, Sn ' µn+ σ
√
n ξ with ξ ∼ N(0, 1) .

Proof. With φ(t) = E
(
eitXi

)
we have from (1.22)

φn(t) := E
(
eitSn/n

)
=
(
φ(t/n)

)n
.

(1.21) implies the following Taylor expansion of φ around 0:

φ(t/n) = 1 + iµ
t

n
− σ2

2

t2

n2
+ o(t2/n2) ,

of which we only have to use the first order to see that

φn(t) =
(

1 + iµ
t

n
+ o(t/n)

)n
→ eitµ as n→∞ .

By (1.23) and uniqueness of characteristic functions this implies the LLN.

To show the CLT, set Yi =
Xi − µ
σ

and write S̃n =
n∑
i=1

Yi =
Sn − µn

σ
.

Then, since E(Yi) = 0, the corresponding Taylor expansion (now to second order) leads to

φn(t) := E
(
eitS̃n/

√
n
)

=
(

1− t2

2n
+ o(t2/n)

)n
→ e−t

2/2 as n→∞ ,

which implies the CLT. 2

2 Less basic probability

2.1 Power laws and generalized CLT

A positive random variable with CDF F is said to have a power-law tail with exponent α > 0, if

F̄ (x)xα → C ∈ (0,∞) i.e. F̄ (x) ∝ x−α as x→∞ . (2.1)

The simplest example is the

• Pareto distribution with S = [xm,∞), xm > 0 and parameter α > 0, writing X ∼
Pareto(xm, α) with PDF

fX(x) = αxαm/x
α+1 for x ≥ xm . (2.2)

The tail has the simple form F̄X(x) = (xm/x)α.
E(X) = αxm/(α− 1) if α > 1, otherwise∞, Var(X) = x2mα

(α−1)2(α−2) if α > 2, otherwise
∞.

Power-law tails occur frequently in statistics of every-day life quantities, social sciences and fi-
nance. Power laws are also called scale-free distributions, due to the following:

X ∼ Pareto(xm, α) then aX ∼ Pareto(axm, α) for a > 0 . (2.3)

So the power law exponent does not change under scaling, only the range does. Except for the
lower cut-off at xm, Pareto distributed phenomena look the same on all scales, and the system does
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not have a characteristic length scale (such as 1/λ for exponential or µ for Gaussian distributions).
This is relevant in critical phenomena in statistical mechanics, where systems exhibit scale free
distributions at points of phase transitions. Power law degree distributions in complex networks
can emerge from preferential attachment-type dynamics, which is often used as an explanation for
the abundance of power-law distributed observables in social or other types of networks.

For heavy-tailed distributions with diverging mean and/or variance the LLN and CLT have
to be modified. The Gaussian has to be replaced by a generalized class of stable limit laws, the
α-stable Lévy distributions. They are most easily characterized by their characteristic function,
which for symmetric distributions is simply given by

χα(t) = e−|c t|
α

where the scale c > 0 determines the width . (2.4)

Note that for α = 2 this corresponds to the centred Gaussian, and for α = 1 it is known as the
Cauchy-Lorentz distribution with PDF

f1(x) =
1

π

c

c2 + x2
. (2.5)

Asymptotically, symmetric Lévy distributions behave as

fα(x) ∝ αc

|x|1+α
as |x| → ∞ , (2.6)

i.e. they exhibit a power-law tail with exponent α. For the general asymmetric form of these
distributions and more details on generalized LLN and CLT see e.g. [V], Chapter 5, or [BP],
Chapter 1.

Theorem 2.1 Generalized LLN and CLT
Let X1, X2 . . . be iid random variables with symmetric power-law tail P(|Xi| ≥ x) ∝ x−α with
α ∈ (0, 2). For Sn =

∑n
i=1Xi we have for α ∈ (0, 1)

1

n
Sn does not converge, but

1

n1/α
Sn does (modified LLN) . (2.7)

If α ∈ (1, 2), E(|Xi|) <∞ and we have

1

n
Sn → µ = E(Xi) (usual LLN) ,

1

n1/α
(Sn − nµ) → α-stable Lévy (generalized CLT) . (2.8)

The proof follows the same idea as the usual CLT with |t|α being the leading order term in the
expansion of the characteristic function.

2.2 Extreme value statistics

Consider a sequence of iid random variables X1, X2, . . . with CDF F , and let

Mn = max{X1, . . . , Xn} (2.9)

be the maximum of the first n variables. Analogous to the CLT, the distribution of the maximum
will converge to a universal limit distribution.
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Theorem 2.2 Extreme value theorem (Fisher-Tippet Gnedenko)
If there exist normalizing sequences such that P

(
Mn−bn
an

≤ x
)

converges to a non-degenerate CDF
G(x) as n→∞, then G is of the form

G(x) = exp

(
−
(

1 + k
(x− µ

σ

))−1/k)
(2.10)

with parameters for location µ ∈ R, scale σ > 0 and shape k ∈ R, and is called the generalized
extreme value distribution.

The normalizing sequences and the parameter values ofG are related to the tail of the distribu-
tion F in a rather complicated way (see e.g. [BP], Chapter 1 for details). Depending on the shape
parameter k, one typically distinguishes the following 3 classes of extreme value distributions:

• Gumbel (Type I): k = 0 and G(x) = exp
(
− e−(x−µ)/σ

)
limit if F̄ has exponential tail (including actual xponential or Gaussian rv’s)

• Fréchet (Type II): k = 1/α > 0 and G(x) =

{
0 , x ≤ µ

exp
(
−
(x−µ

σ

)α)
, x > µ

limit if F̄ has power-law tail (including e.g. Pareto rv’s)

• Weibull (Type III): k = −1/α < 0 and G(x) =

{
exp

(
−
(
−x−µ

σ

)α)
, x < µ

1 , x ≥ µ
limit if F̄ has light tail (including bounded support such as uniform rv’s)

Note that the rescaled shape parameter α for Types II and III is usually taken to be positive, and
the different types are compatible with (2.10) taking the limit k → 0, and with σ = kµ for k 6= 0.

The typical scaling (location) sn of E(Mn) as a function of n can be determined relatively
easily. Note that for iid random variables

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = P(X1 ≤ x)n = (F (x))n . (2.11)

Now sn is determined by requiring that (F (sn))n has a non-degenerate limit in (0, 1) as n→∞,
so that

(F (sn))n =
(
1− F̄ (sn)

)n → e−c , c > 0 which implies F̄ (sn) ' c/n . (2.12)

The proof of Theorem 2.2 uses the same idea, and it turns out that one can further parametrize all
possible limit distributions according to (2.10), which is technical and we omit here.

For exponential Exp(λ) random variables with tail F̄ (sn) = e−λsn this leads to

sn ' (log n− log c)/λ which implies Mn = log n/λ+O(1) (2.13)

where O(1) is a random variable that does not scale with n. This implies that we may choose
bn = log n/λ and an = 1 in Theorem 2.2 as normalizing sequences with convergence to Gumbel.
For Pareto random variables Pareto(xm, α) with power-law tail F̄ (sn) =

(
xm
sn

)α we get

sn ' xm(n/c)1/α , so that Mn = xmn
1/αO(1) (2.14)

with multiplicative randomness, implying bn = 0 and an = xmn
1/α as a valid normalization with

convergence to Fréchet.
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Note that for α ∈ (0, 1) where the power-law has infinite mean, this implies E(Mn) � 1 scales
faster than the number of variables n, and is of the same order as the total sum Sn. So the sum is
therefore dominated by the largest contributions, whereas for α > 1 we have E(Mn) � n ∝ Sn.
For any α > 0 iid variables with power-law tails exhibit a hierarchical order statistics, i.e. for the
ordered sequence of random variables X(1) ≤ . . . ≤ X(n) we have

E(X(k)) ∝
( n

n− k + 1

)1/α
for all k = 1, . . . , n . (2.15)

As a last example, for uniform U([0, 1)) random variables we expect Mn → 1 as n → ∞, and
with F̄ (x) = 1 − x we get sn ' 1 − c/n so that we can choose bn = 1 and an = 1/n with
convergence to Weibull.

3 Joint distributions

3.1 Basic definitions and results

In many applications outcomes take values in higher dimensional spaces such as S = Rd or
Nd, and if d > 1 such random variables are called multivariate. They are described by joint
distributions, and in the simplest case for d = 2 a multivariate discrete random variable (X,Y )
this is given by mass function

p(X,Y )(x, y) = P(X = x, Y = y) for all x ∈ Sx and y ∈ SY , (3.1)

where SX and SY are the sample space forX and Y , respectively. As before, p(X,Y ) is normalized
and non-negative.

Each component of a multivariate random variable is a random variable itself, and its distribu-
tion, the marginal probability, is given by the sum rule

pX(x) = P(X = x) =
∑
y∈SY

P(X = x, Y = y) =
∑
y∈SY

p(x, y) . (3.2)

The conditional probability distribution forX given that Y = y takes a particular value is defined
as

pX|Y=y(x) = P(X = x|Y = y) =
P (X = x, Y = y)

P(Y = y)
=
p(X,Y )(x, y)

pY (y)
. (3.3)

Note that from the sum rule (3.2) we get that∑
x∈SX

P(X = x|Y = y) =
1

P(Y = y)

∑
x∈SX

P(X = x, Y = y) =
P(Y = y)

P(Y = y)
= 1 , (3.4)

so for each y ∈ Sy the conditional probability of X is normalized. The definition of conditional
probabilities can be re-written as the product rule

p(X,Y )(x, y) = P(X = x, Y = y) = P(X = x|Y = y)P(Y = y) . (3.5)

By definition, X and Y are independent if

p(X,Y )(x, y) = pX(x) pY (y) for all x ∈ SX and y ∈ SY . (3.6)
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This implies that the conditional distribution

P(X = x|Y = y) =
pX(x) pY (y)

pY (y)
= pX(x) (3.7)

is actually independent of the value y, coinciding with the intuitive meaning of independence.

Simple examples.

• Draw from a deck of cards with suit X ∈ SX = (H,S,C,D) and rank Y ∈ SY =
(A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K). There are in total 4 × 13 = 52 outcomes for (X,Y )
(cards), and the joint distribution can be represented in a table with entries p(X,Y )(x, y),
which should all be equal to 1/4 × 1/13 = 1/52 for the first card from a well-mixed deck
(suit and rank are independent).
The second card will be uniform among the 51 remaining, and so on. Are suit and rank still
independent?

• In medical applications X could signify a particular treatment, and Y characterize the out-
come of the treatment; or X indicates if a person smokes, and Y if the person gets lung
cancer.

Analogous formulations hold continuous random variables with joint PDF f(X,Y ):

sum rule fX(x) =

∫
SY

f(X,Y )(x, y) dy (3.8)

product rule f(X,Y )(x, y) = fX|Y=y(x) fY (y) , (3.9)

where fX is the PDF of the first marginal of (X,Y ) and fX|Y=y is the PDF of the conditional law
of X given Y = y. Note that the conditional distribution of X given Y has to be defined through
a limit

FX|Y=y(x) = lim
ε↘0

P
(
X ≤ x

∣∣Y ∈ [y, y + ε)
)
, (3.10)

and if this exists and has a well-defined derivative, the conditional density is given by

fX|Y=y(x) =
d

dx
FX|Y=y(x) . (3.11)

The standard and most common example for which all this can be worked out in detail is the
multivariate Gaussian. X = (X1, . . . , Xd) ∈ Rd is a d-dimensional multivariate Gaussian,
X ∼ N(µ,Σ) if it has PDF

fX(x) =
1√

(2π)d det Σ
exp

(
− 1

2

〈
(x− µ) |Σ−1| (x− µ)

〉)
with x = (x1, . . . , xd) ,(3.12)

with mean µ = (µ1, . . . , µd) ∈ Rd and covariance matrix Σ = (σij : i, j = 1, . . . , d) ∈ Rd×d
with entries

σij = Cov(Xi, Xj) = E
(
(Xi − µi)(Xj − µj)

)
. (3.13)

We use the notation 〈.|.〉 for a scalar product of a row vector 〈.| with a column vector |.〉. The
characteristic function of X is given by

φX(t) = E
(
ei〈t|X〉

)
= exp

(
i〈t|µ〉 − 1

2

〈
t|Σ|t

〉)
, t ∈ Rd .
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Note that the PDF (3.12) factorizes if and only if the covariance matrix is diagonal, i.e. σij = σ2i δij
where σ2i = Var(Xi). So Gaussian random variables are independent if and only if they are
uncorrelated, i.e.

σij = Cov(Xi, Xj) = 0 for all i 6= j . (3.14)

The covariance matrix as defined in (3.13) can be used for general distributions. It is symmetric
by definition, it is positive semi-definite, since

〈v|Σ|v〉 = Var(〈v|X〉) ≥ 0 for all v ∈ Rd , (3.15)

and therefore has d real eigenvalues λ1, . . . , λd ≥ 0 which are non-negative. If all eigenvalues are
positive (i.e. Var(Xi) > 0 for all i = 1, . . . , d) its inverse Σ−1 that appears in the multivariate
Gaussian PDF is well defined. The inverse is also called concentration or precision matrix, and
its entries can be interpreted in terms of conditional correlations, i.e. fixing the values of all other
coordinates with conditional expectations

E
(
(Xi − µi)(Xj − µj)

∣∣Xk, k 6= i, j
)
, (3.16)

as compared to the full (or marginal) expectations in the covariance matrix. Since Σ is symmetric,
the eigenvectors |v1〉, . . . , |vd〉 can be chosen orthogonal, i.e. 〈vi|vj〉 = δij , and form a basis of
Rd. The inverse is then given by

Σ−1 =

d∑
i=1

λ−1i |vi〉〈vi| , (3.17)

where |vi〉〈vi| is the projector matrix on the eigenspace of eigenvalue λi and Σ itself can be
written as Σ =

∑d
i=1 λi|vi〉〈vi|. Then we have

Σ−1Σ =
d∑

i,j=1

λ−1i λj |vi〉 〈vi|vj〉︸ ︷︷ ︸
=δij

〈vj | =
d∑
i=1

|vi〉〈vi| = Id . (3.18)

The correlation coefficient ρX,Y for two random variables X , Y with means µX , µY and
standard deviations σX , σY is defined as

ρX,Y = corr(X,Y ) =
Cov(X,Y )

σX σY
=

E
(
(X − µX)(Y − µY )

σX σY
, (3.19)

and takes values in [−1, 1]. If Y is a linear function of X , |ρX,Y | = 1 and is +1 for an increasing
function, and −1 for a decreasing function (anticorrelation). Again, for independent variables
ρX,Y = 0, but the converse is not true in general (but holds for Gaussians). Correlations can be
well detected by eye in so-called scatter plots, where many realizations of (X,Y ) ∈ R are shown
in a 2-dimensional plot.

3.2 Bayes’ rule and simple hypothesis testing

In statistics the (dangerously) compact notation P (X) = P(X = x) is often used to represent the
distribution of a random variable X . We will do the same in the following to get some exercise in
using and understanding it. The sum and product rule can be written in the simple form

P (X) =
∑
Y

P (X,Y ) and P (X,Y ) = P (X|Y )P (Y ) . (3.20)
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As a direct consequence of the product rule and its symmetric left-hand side we get

P (X|Y )P (Y ) = P (Y |X)P (X) , (3.21)

which can be rewritten as the famous

Bayes’ rule P (X|Y ) =
P (Y |X)P (X)

P (Y )
. (3.22)

The main interpretation is

• P (X) is the prior distribution, summarizing the initial knowledge on X

• P (X|Y ) is the posterior distribution, summarizing the updated knowledge on X knowing
about Y , which is usually an observation or outcome of an experiment (data)

• P (Y |X) is the likelihood of data Y , given X (which is often parameters of a model or a
hypothesis)

The ratio P (Y |X)/P (Y ) represents the support that Y provides for X . Usually P (Y ) is not
easily accessible directly, but can just be found as a normalization of the right-hand side P (Y ) =∑

X P (Y |X)P (X). Bayes’ rule is therefore often written as

P (X|Y ) ∝ P (Y |X)P (X) , (3.23)

which contains all crucial components listed above.

Example. Suppose the secret service of some country monitors mobile phone conversations and
can have devised a clever test that can identify terrorists with 99% accuracy. Suppose 1 in 10000
people are terrorists. If the police kick in your door on the basis of one of one of your intercepted
phone calls, what is the probability that you are a terrorist?
Let X be a random variable on S = {0, 1} indicating whether I am a terrorist, and Y a variable on
S indicating positivity of the terrorist test. Without further knowledge on me our prior distribution
is

P (X) =

{
1

10000 , X = 1
9999
10000 , X = 0

(3.24)

For the likelihood we know from the test description

P (Y |X = 1) =

{
99
100 , Y = 1
1

100 , Y = 0
99% sensitivity

P (Y |X = 0) =

{
1

100 , Y = 1
99
100 , Y = 0

99% specificity . (3.25)

In general, sensitivity (related to false negatives) and specificity (related to false positives) could
have different values. By Bayes’ rule we get for the posterior distribution

P (X|Y ) =
P (Y |X)P (X)

P (Y |X = 1)P (X = 1) + P (Y |X = 0)P (X = 0)
(3.26)
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and in particular:

P (X = 1|Y = 1) =
P (Y = 1|X = 1)P (X = 1)

P (Y = 1|X = 1)P (X = 1) + P (Y = 1|X = 0)P (X = 0)
=

=
99
100

1
10000

99
100

1
10000 + 1

100
9999
10000

=
99

10098
≈ 0.01 (3.27)

which is actually of the same order as the probability that the test result is incorrect.
In general, if a ∈ [0, 1] is the accuracy of the test (specificity and sensitivity), and f ∈ [0, 1] is the
fraction of terrorists in the population, we get

P (X = 1|Y = 1) =
a f

a f + (1− a)(1− f)
≈ a f

(1− a)(1− f)
≈ f

1− a
� 1 (3.28)

as long as f � 1− a� 1. In that case the probability of false positives

P (X = 0|Y = 1) ≈ 1− f

1− a
≈ 1 (3.29)

is very close to 1 and results have to be interpreted with care.
On the other hand, the probability of false negatives

P (X = 1|Y = 0) =
(1− a) f

(1− a) f + a(1− f)
≈ (1− a) f

a(1− f)
≈ f

a
� 1 (3.30)

is low and those are usually not problematic.

Q: How accurate would the classifier have to be to achieve b = 99% accuracy over the entire
population (as opposed to only over the terrorist population)?

A: Since false positives are the crucial problem, we have to solve

P (X = 1|Y = 1) =
a f

a f + (1− a)(1− f)
= b (3.31)

for a, which yields after some steps (still assuming f � 1− a ∝ 1− b� 1)

a ≈ 1− f 1− b
b

= 1− f 1

99
� 1− f . (3.32)

So not surprisingly, the error rate 1 − a has to be significantly less than the fraction f of
terrorists.

Often a problem: Posterior probabilities depend significantly on the prior distribution, which is in
general not determined uniquely and should be chosen as ’informatively’ as possible.
Using the prior P (X = 1) = 1/10000 above, we assumed implicitly that we were kicking the
door of a guy who was as likely to be a terrorist as anyone else before the test result came up.
But if one can narrow down the list of prior suspects, this could significantly improve results. In
general, choosing an informative prior is one of the central problems in Bayesian inference.

Q: Think about genetic paternity tests. Even if they come with 99.99% accuracy, there are
about 3 billion possible fathers of the child. How can these tests give reliable answers?
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4 Basic statistics

4.1 Most common statistics

Let X = (X1, . . . , XN ) ∈ RN be a sample ofN real valued datapoints. We assume in this section
that the data are purely distributional and are independent samples from a single distribution.
A statistic θ̂(X) is a function of the data, and therefore directly measurable as opposed to the true
parameters θ of the underlying distribution. The most common examples are

• sample mean µ̂ = µ̂(X) := 1
N

∑N
i=1Xi

• sample variance σ̂2 = 1
N

∑N
i=1(Xi − µ̂)2

• order statistics X(1) ≤ . . . ≤ X(N) is the ordered data sample, where
X(1) = min{X1, . . . , XN} and X(N) = max{X1, . . . , XN}

• empirical distribution: the empirical CDF is given by the monotone increasing step func-
tion

F̂X(x) =
1

N

N∑
i=1

1[Xi,∞)(x) , (4.1)

and the empirical tail is given by ˆ̄FX(x) = 1− F̂X(x) =
1

N

N∑
i=1

1(−∞,Xi)(x) .

Formally, the derivative of the step function 1[Xi,∞)(x) is given by the delta function δXi(x),
which leads to an expression for the empirical density

f̂X(x) =
1

N

N∑
i=1

δXi(x) , (4.2)

which mathematically is a random point measure on R (not a function). Since it is purely
atomic, for practical purposes it is usually smoothed with a filter, e.g. the

Gaussian kernel K(x) =
1√

2πs2
e−x

2/(2s2) (4.3)

with a filter parameter s2. This has nothing to do with the actual distribution of the data
which does not have to be Gaussian. The kernel density estimate of f̂ is then given by the
convolution

f̂K(x) = (f̂ ? K)(x) :=

∫
R
f̂(y)K(x− y) dy =

1

N

∫
R

N∑
i=1

δXi(y)K(x− y) dy =

=
1

N

N∑
i=1

K(x−Xi) =
1

N

N∑
i=1

1√
2πσ2

e−(x−Xi)
2/(2σ2) . (4.4)

A histogram consists of a partition of R given by intervals Ik, k = 1, . . . ,M where Ik =
[vk−1, vk), where one possible convention at the boundaries is to choose v0 = −∞ and
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vM =∞. The values associated to each interval reflect the proportion of data points in that
interval, so that

hist(X) =
1

N

( N∑
i=1

1I1(Xi), . . . ,

N∑
i=1

1IM (Xi)
)
. (4.5)

• Quantiles remember that the k-th q-quantile Qqk of a distribution is any x ∈ R such that

P(X ≤ x) ≥ k/q and P(X ≥ x) ≥ 1− k/q . (4.6)

As an estimator, one usually picks the datapoint with the closest rank in the order statistics,
i.e.

Q̂qk = X(dkN/qe) rounding up if kN/q is not an integer , (4.7)

and averaging data points

Q̂qk =
1

2

(
X(kN/q) +X(kN/q+1)

)
if kN/q is an integer . (4.8)

This leads e.g. to a consistent definition of the median as Q̂2
2 for samples of odd and even

length.

4.2 Statistical models and estimators

Generative statistical models are mathematical modesl that generate data which is statistically
identical to the sample. For distributional data (iid samples) which we focus on here, these are
simply probability distributions, for time series data studied in later sections the models become
more involved.

The simplest approach is to use the empirical distribution as a statistical model. This is non-
parametric, i.e. there are no parameter values to be fitted, and summarizes all the statistical
information about the data available from the sample. This is often used to resample datasets to
get realistic error bars or confidence intervals on estimates of statistics or hypothesis tests. This
method is called bootstrap. In terms of informative mathematical modelling the empirical distri-
bution does not provide any further understanding and has in a sense as many parameters as the
sample has datapoints. Modelling is usually associated with a reduction of the underlying mecha-
nism to a lower dimensional space, which is achieved by fitting parameters of parametric models,
i.e. probability distributions. The idea is that those models have usually far less parameters than
the sample has data points, but can still give a good representation of their statistical properties.

An estimator θ̂ = θ̂(X) is a statistic which provides an estimate for the parameter (or param-
eter vector) θ of a model (distribution) Fθ, such as θ = λ for Exp(λ) or Poi(λ), or θ = (µ, σ2)
for N(µ, σ2).

As before, the likelihood of the sample, given the model Fθ is

L(θ) := P (X|θ) (4.9)
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where P denotes a PDF for continuous distributions and a PMF for discrete. Note that L(θ) is not
a distribution for θ, in general it is not normalized. The maximum likelihood estimator (MLE)
is then defined as

θ̂ := arg maxL(θ) (4.10)

the set of parameter values that maximize the likelihood. I most examples maximization of the
likelihood has a unique solution and the MLE is well defined. Since models of iid samples are
usually product distributions, it is often simpler to maximize the log-likelihood logL(θ) instead,
which gives the same MLE since the logarithm is a monotone increasing function.
Example. Let X = (X1, . . . , XN ) be a sample of iid coin tosses, i.e. Xi ∈ {0, 1}. The obvious
model is iid Be(θ) random variables with θ ∈ [0, 1]. The likelihood is given by

L(θ) = P (X|θ) =
N∏
i=1

θXi(1− θ)1−Xi , (4.11)

and the log-likelihood

logL(θ) =
N∑
i=1

Xi log θ + (1−Xi) log(1− θ) . (4.12)

Maximizing the latter yields

d

dθ
logL(θ) =

N∑
i=1

Xi

θ
− 1−Xi

1− θ
=

N∑
i=1

Xi − θ
θ(1− θ)

= 0 for θ = θ̂ , (4.13)

which implies that θ̂ =
1

N

N∑
i=1

Xi .

This isintuitively reasonable, since θ = E(Xi) is in fact the expected value of a Bernoulli random
variable.

A more quantitative analysis of the value of an estimator is given by the followint two concepts, for
which we assume that the data X are indeed a sample of the model Fθ, which turns the estimator
θ̂(X) into a random variable w.r.t. the model.

• Bias. an estimator θ̂ is unbiased if it’s expectation is equal to θ, i.e. the bias

E[θ̂|θ]− θ = 0 . (4.14)

• Consistency. An estimator θ̂N from a sample of sizeN is consistent, if θ̂N → θ asN →∞
in probability, which means that

∀ε > 0 P(|θ̂ − θ| > ε)→ 0 as N →∞ . (4.15)

Intuitively this means that the distribution of the estimator concentrates around the true
value θ for larger and larger sample size. Two sufficient conditions to assure consistency
and which are simpler to check are

E[θ̂N |θ] → θ i.e. the estimator is asymptotically unbiased ,
Var[θ̂N |θ] → 0 as N →∞ . (4.16)
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In particular, for unbiased estimators only the second condition on variances needs to be
checked.

Example. The MLE θ̂ = 1
N

∑N
i=1Xi for iid coin tosses is unbiased and consistent, since

E[θ̂|θ] =
1

N

N∑
i=1

E[Xi|θ] = θ ,

Var[θ̂|θ] =

N∑
i=1

Var
[Xi

N

∣∣∣θ] =
N

N2
Var[X1|θ] =

θ(1− θ)
N

→ 0 . (4.17)

In general, the exact value of the estimator variance is not important for consitency, it should
simply vanish in the limit N →∞.

4.3 MLE for Gaussians

Let X = (X1, . . . , XN ) be an iid sample of real-valued random variables, with a Gaussian model
N(µ, σ2). The likelihood is given by the PDF for the sample

L(µ, σ2) =
∏

i = 1N
1√

2πσ2
exp

(
− (Xi − µ)2

2σ2

)
(4.18)

and the log-likelihood by

logL(µ, σ2) =

N∑
i=1

(
− 1

2
log(2π)− 1

2
log σ2 − (Xi − µ)2

2σ2

)
=

= −N
2

log(2π)− N

2
log σ2 − 1

2σ2

N∑
i=1

(Xi − µ)2 . (4.19)

To find the MLE we have to find the roots of two partial derivatives. The first one

∂

∂µ
logL(µ, σ2) = − −2

2σ2

N∑
i=1

(Xi − µ) = 0 (4.20)

implies that, as expected, the MLE for µ is given by the sample mean,

N∑
i=1

Xi −Nµ̂ = 0 ⇒ µ̂ =
1

N

N∑
i=1

Xi . (4.21)

The second derivative

∂

∂σ2
L(µ, σ2) = − N

2σ2
+

1

2(σ2)2

N∑
i=1

(Xi − µ)2 = 0 (4.22)

leads to the sample variance as MLE for σ2,

σ̂2 =
1

N

N∑
i=1

(Xi − µ̂)2 . (4.23)
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Analogously to (4.17) µ̂ is unbiased, and for σ̂2 we get

E[σ̂2|µ, σ2] =
1

N

N∑
i=1

E
[
(Xi − µ̂)2

∣∣µ, σ2] = E
[
(X1 − µ̂)2

∣∣µ, σ2] (4.24)

using that the Xi are iid under our model. This leads to

E[σ̂2|µ, σ2] = E[X2
1 − 2µ̂X1 + µ̂2|µ, σ2] =

= σ2 + µ2 − 2E
[ 1

N

N∑
i=1

XiX1

∣∣∣µ, σ2]+ E
[ 1

N2

N∑
i,j=1

XiXj

∣∣∣µ, σ2] =

= σ2 + µ2 − 2
N

[
(σ2 + µ2) + (N−1)µ2

]
+ 1

N2

[
N(σ2 + µ2) +N(N−1))µ2

]
= σ2

N − 1

N
< σ2 , (4.25)

so the sample variance is a biased estimator for the variance. Form the above computation it is
clear that

σ̂2 :=
1

N − 1

N∑
i=1

(Xi − µ̂)2 (4.26)

is an unbiased estimator σ2. Since we have not used the fact that we have a Gaussian distribution
to compute the bias, this holds in fact for estimators for mean and variance for all iid distributed
samples.

For consistency of µ̂ we get analogous to the Bernoulli case

Var[µ̂|µ] =
1

N
Var[X1|µ] =

σ2

N
→ 0 as N →∞ . (4.27)

For the variance estimator we get, using that the Xi are iid,

Var[σ̂2|µ, σ2] =
1

N − 1
Var[(X1 − µ̂)2|µ, σ2] =

C

N − 1
→ 0 , (4.28)

where the constant C can in principle be obtained from a cumbersome computation, but is not
really relevant to check for consistency.

4.4 Confidence intervals

Recall that the sample mean

µ̂ =
1

N

N∑
i=1

Xi has variance Var[µ̂|µσ2] =
σ2

N
.

The standard error (SE) of the mean is a statistic that estimates the standard deviation of µ̂,

SE(X) :=
σ̂√
N

where σ̂ =
√
σ̂2 . (4.29)

By the CLT µ̂ is asymptotically Gaussian, i.e.

µ̂ ∼ N
(
µ, σ2/N

)
for large N . (4.30)
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Therefore one can use the standard confidence intervals for the Gaussian, the boundaries of which
are determined by percentiles of the normal centered CDF, e.g. for 95% we have

1√
2πσ2

∫ x

−∞
e−y

2/(2σ2) dy = 0.025 . (4.31)

and a symmetric condition for the tail. Since Φ−1(0.025) ≈ −1.96σ the 95% confidence interval
for the estimate of the mean is that

µ ∈
[
µ̂− 1.96 SE, µ̂+ 1.96 SE

]
with probability 0.95 . (4.32)

Ususally one uses simply ±2SE for the confidence interval or error bars for the estimator of the
mean. Analogous intervals can be computed for other estimators, explicit formulas for the standard
error can become quite complicated.

Note that the Gaussian approximation only holds for large enough N . For small or moderate
sample sizes the confidence interval is larger (since confidence is smaller). For Gaussian data it
is given by the 0.025-percentile of the well-known Student’s t-distribution with N degrees of
freedom, which has PDF

f(x) = CN

(
1 +

x2

N

)−(N+1)/2
with a normalizing constant CN . (4.33)

Note that for finite N it has a power-law tail, so fluctuations are more likely as for Gaussians,
and as N → ∞ it converges to the Gaussian PDF. In general, an α-confidence interval Iα for
any distribution with PDF f is usually defined symmetrically around the mean µ, i.e. Iα =
[µ− a, µ+ a] such that∫

Iα

f(x) dx = α . (4.34)

The CDF of the standard Gaussian N(0, 1) is also called the error function

Φ(x) :=
1√
2π

∫ x

−∞
e−y

2/2 dy . (4.35)

There is no analytic formula for this function, but it has a slightly modified Gaussian tail, i.e. to
leading order we have

1− Φ(x) = e−x
2
/(x
√
π)
(
1 + o(1)

)
as x→∞ . (4.36)

This follows from re-arranging the derivative e−x
2

= −(2x)−1(e−x
2
)′ and integrating by parts.
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5 Time series

5.1 Mathematical models for time series data

Time series data are given in the form X = (X1, . . . , xN ) or X = {(ti, Xi) : i = 1, . . . , N}.
If the Xi are iid the data are actually distributional, and the time series would look like a scatter
plot since Xt and t are actually independent, any permutation of the data would give a statistically
equivalent time series.

Standard models.

• trend/signal plus noise: Xt = f(t) + ξt with ξt iid noise, usually Gaussian, and the
signal is given by a deterministic function f(t). This is a typical model to describe measure-
ment errors, and the Xt are independent but not identical random variables. To detect the
independence structure in correlation functions, the time series has to be det-trended first,
which we will discuss in detail.

• moving average process MA(q):

Xt = µ+ ξt + θ1ξt−1 + . . .+ θqξt−q , (5.1)

where the ξt are iid noise and µ, θ1, . . . , θq ∈ R, q ∈ N are paremeters. This corresponds
to integrated or averaged noise and is the simplest model for a stationary time series with
E[Xt] = µ for all t. Note that Xt and Xt+q+1 are independent and the largest correlation
length in the system is q. Such processes also occur as (truncated) solutions for the following
auto regressive models.

• autoregressive process AR(q):

Xt = c+ φ1Xt−1 + . . .+ φqXt−q + ξt , (5.2)

where ξt is iid noise and c, φ1, . . . , φq ∈ R, q ∈ N are parameters. This recursive definition
of the process (Xt) can admit stationary solutions, depending on the parameter values, but
solutions could also diverge. The recursion can generate long range dependences which
only decay asymptotically, and infinite moving average processes can be solutions to the
recursion, which often can be truncated at a finite, large value. AR(p) and MA(q) can be
combined to general ARMA(p,q) models, with recursion depth p and average depth q. In
MATLAB this class of processes is implemented under the name arima.

• Any time series can in general be viewed as a realization or sample of a stochastic pro-
cess. The above models are all examples of processes with linear/additive noise, and the
ARMA(1,0) process of depth 1 is actually a Markov process, i.e. the future value Xt+1

only depends on the present Xt and noise ξt.
In some examples multiplicative noise is more appropriate, e.g. geometric Brownian motion
given by the recursion

Xt+1 = Xt(µ+ ξt) with ξt iid noise and µ ∈ R (5.3)

is a common discrete-time model for stock prices. We will not consider these models further,
often they can be turned into additive noise models by taking logarithms.
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5.2 Correlations and stationarity

The most general model of a timeseries is a stochastic process (Xt : t ∈ T), where we denote by
T a general time index set which could be discrete (e.g. N, Z) or continuous (e.g. [0,∞), R).

• If theXt are iid, (Xt : t ∈ T) is a pure noise process, and if they are standard GaussianXt ∼
N(0, 1) this process is called white noise. This process exists for discrete and continuous
time.

• If the Xt are independent but not identically distributed, signal plus noise is often a good
model.

• If the Xt are identical but not independent, (Xt : t ∈ T) could be a stationary process,
which is a very important class of timeseries models, as we will discuss in the following.

A stochastic process (Xt : t ∈ T) is called stationary, if its joint distributions are invariant under
time shifts, i.e.(

Xt1+τ , . . . , Xtk+τ

)
∼ (Xt1 , . . . , Xtk) (5.4)

for all k ∈ N, ti ∈ T and ti + τ ∈ T. The problem with this definition is that it cannot be checked
from data, so one has to resort to a weaker version from a statistical point of view which is related
to correlations.
Let (Xt : t ∈ T) and (Yt : t ∈ T) be two processes with the same time index set. Then the cross
correlation is defined as

RXY (s, t) =
Cov(Xs, Yt)

σ(Xs)σ(Yt)
=

E((Xs − EXs)(Yt − EYt))
σ(Xs)σ(Yt)

. (5.5)

By the Cauchy-Schwarz inequality we have

E
(
(Xs − EXs)(Yt − EYt)

)2 ≤ E
(
(Xs − EXs)

2
)
E
(
(Yt − EYt)2

)
) , (5.6)

and therefore, the cross correlation is bounded by RXY (s, t) ∈ [−1, 1] for all s, t. The auto
correlation of a process (Xt : t ∈ T) is then given by

R(s, t) = RXX(s, t) =
Cov(Xs, Xt)

σ(Xs)σ(Xt)
=

γ(s, t)√
γ(s, s)γ(t, t)

, (5.7)

where we use the notation γ(s, t) = Cov(Xs, Xt) for the self-covariances.
The process (Xt : t ∈ T) is then called weakly stationary (or covariance stationary), if

E[Xt] ≡ µ and γ(t, t+ τ) ≡ γ(τ) for all t ∈ T , (5.8)

i.e. the covariances depend only on the time-lag τ . In this case we have

R(t, t+ τ) = R(τ) =
γ(τ)

γ(0)
(5.9)

and R(τ) is a symmetric function by definition with R(0) = 1. Furthermore, |γ(τ)| ≤ γ(0) for
all t and R(τ) ∈ [−1, 1].
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In general, if we have M samples of our timeseries X1, . . . ,XM , we can use the obvious
estimator for the auto correlation function

RM (s, t) :=
1

M

M∑
k=1

(Xk
t − µ̂t)(Xk

s − µ̂s)
σ̂tσ̂s

, (5.10)

where µ̂t =
1

M

M∑
k=1

Xk
t and σ̂2t =

1

M

M∑
k=1

(Xk
t − µ̂t)2

are the sample mean and variance at each time t ∈ T. This situation is common if one can
perform several realizations of an experiment, and the function RN (s, t) can then be used to test
for stationarity. In many cases, however, there is only a single sample available of a time series,
such as temperature records and other observational data. In this case, the only possibility to
compute auto correlations is to use stationarity of the series and replace the sample average by a
time average. So let us assume that we are given a single realization X = (X1, . . . , XN ) of a
stationary timeseries. Then an estimator of the auto correlation is given by

RN (τ) :=
1

N − τ

N−τ∑
t=1

(Xk
t − µ̂)(Xk

s − µ̂)

σ̂2
(5.11)

where µ̂ =
1

N

N∑
t=1

Xt and σ̂2 =
1

N

N∑
t=1

(Xt − µ̂)2

are the estimates for the time-independent mean and variance of the sample. RN (0) = 1 by
defitition and is also a symmetric function in τ , which is consistent with the true auto correlation.
If X actually consists of iid random variables with finite mean µ and variance σ2, one can show
that

E[RN (τ)] ∝ − 1

N
and Var[Rn(τ)] ∝ 1

N
for all τ > 0 . (5.12)

So in this case RN (τ) is actually a asymptotically unbiased, consistent estimator for the true auto
correlation. One can also show that for large N , RN (τ) is approximately Gaussian distributed, so
by the CLT the 95% confidence interval has width proportional to 1/

√
N . So if RN (τ) takes val-

ues in this interval, there is no statistically significant correlation at time lag τ since an iid model
would lead to a similar value.

If a given timeseries is not stationary, the above analysis does not give reasonable results and
the correlation function decays very slowly or does not decay at all even for independent random
variables. In this case, the first thing to do is to de-trend the time series using techniques such as
linear regression, which we will discuss next.

5.3 Gaussian processes

(Xt : t ∈ T) is a Gaussian process if all joint distributions are Gaussian, i.e.

(Xt1 , . . . , Xtk) ∼ N(µ,Σ) (5.13)

with mean µ =
(
µ(t1), . . . , µ(tk)

)
and covariance matrix Σ =

(
σ(ti, tj) : i, j = 1, . . . , k

)
.

Such a process is uniquely determined by its

mean µ(t) := E[Xt] and covariance function σ(s, t) := Cov(Xs, Xt) . (5.14)
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A Gaussian process has auto correlation function

R(s, t) =
σ(s, t)√

σ(s, s)σ(t, t)
(5.15)

and is weakly stationary if µ(t) ≡ µ and σ(t, t+ τ) = σ(τ) for all t ∈ T. As with independence
and correlation, weak stationarity is actually equivalent to stationarity since the process is fully
determined by mean and covariance functions.
Examples include the signal plus noise process in the case of Gaussian noise, where the signal
f(t) = µ(t) is equal to the mean. Also Brownian motion is a Gaussian process with mean
0 and covariance σ(t, t + τ) = t, which is increasing with t and the process is not stationary
(even though it has constant mean). The formal derivative of Brownian motion is the white noise
process, which is a stationary Gaussian process with

mean µ = 0 and covariance σ(t, t+ τ) = σ(τ) = δ0(τ) . (5.16)

So the random variables Xt ∼ N(0, 1) are iid Gaussians.
Due to the nice invariance properties of Gaussians, combinations of Gaussian processes are again
Gaussian processes and they are used as a common class of models for timeseries data.

6 Linear regression

6.1 Least squares and MLE

Given a time series of the form
{

(ti, Xi) : i = 1, . . . , N
}

we consider the model

Xi = f(ti) + ξi with iid noise, and (6.1)

deterministic trend or signal f : R → R. For linear regression, the trend is given by a linear
combination of M ∈ N basis functions φ0, . . . , φM−1, parametrized as

f(t) = f(z|w) =

M∑
i=0

wi φi(t) = 〈w|φ(t)〉 , (6.2)

with parameters w0, . . . , wM−1 ∈ R that can be inferred from the data. One usually chooses
φ0(t) = 1 to account for a constant shift in the data, the other functions are arbitrary but have to
be chosen to form a basis of a linear space. That means that they have to be linearly independent
and none of the basis functions can be written as a linear combination of others. The most common
choice are

polynomial basis functions φi(t) = ti , i = 0, . . . ,M − 1 , (6.3)

other choices include sin(ωt) and cos(ωt) e.g. for seasonal trends in climate data, or Gaussians or
sigmoid basis functions.

The least squares estimate (LSE) ŵ for the parameters w is defined as the minimizer of the
least squares error function

E(w) =
1

2

N∑
i=1

(
Xi − 〈w|φ(ti)〉

)2
. (6.4)
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This is equivalent to the MLE under a Gaussian model

Xi = 〈w|φ(ti)〉+ ξi with ξi ∼ N(0, σ2)iid (6.5)

with mean 0 and variance σ2. The log-likelihood of the model is given by

logL(w, σ2) = −N
2

log(2π)− N

2
log σ2 − 1

2σ2

N∑
i=1

(
Xi − 〈w|φ(ti)〉

)2
, (6.6)

and maximizing this expression over w for given σ2 is equivalent to minizing (6.4).
To compute the LSE/MLE, the partial derivative is given by

∂

∂wk
E(w) =

N∑
i=1

(
Xi − 〈w|φ(ti)〉

)
(−φk(ti)) , (6.7)

which leads to the following condition for the gradient (written as a row vector)

〈∇|E(w) =

N∑
i=1

(
〈w|φ(ti)〉〈φ(ti)| −Xi〈φ(ti)|

)
=

=
〈
w
∣∣∣ N∑
i=1

|φ(ti)〉〈φ(ti)| −
N∑
i=1

Xi〈φ(ti)| = 〈0| . (6.8)

This can be written in a shorter way in terms of the design matrix

Φ =

 φ0(t1) . . . φM−1(t1)
...

...
φ0(tN ) . . . φM−1(tN )

 ∈ RN×M , (6.9)

which consists of the basis functions evaluated at the base points t1, . . . , tN . Then

〈∇|E(w) = 〈w| ΦTΦ︸︷︷︸
∈RM×M

− 〈X︸︷︷︸
∈RN

| Φ︸︷︷︸
RN×M

= 〈0| ∈ RM , (6.10)

which has the solution

〈w| = 〈X|Φ(ΦTΦ)−1 or |w〉 = (ΦTΦ)−1ΦT |X〉 . (6.11)

(ΦTΦ)−1ΦT is called the Moore-Penrouse pseudo inverese of the desing matrix Φ, and is well
defined as long as all basis functions evaluated at t1, . . . , tN (columns of Φ) are linearly inde-
pendent, and the rank(Φ) = M (full rank). This is only possible if N ≥ M , since otherwise
the rank of Φ is bounded by N < M and ΦTΦ is not invertible. In practice numerical inversion
becomes unstable long before M reaches N , and usually requires M � N is required. This is
also consistent with the main idea of regression, where the number of inferred parameters in the
signal should be clearly less than the number of data points.
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6.2 Goodness of fit and model selection

The quality of the fit ŵ is characterized by the residual sum of squares (RSS)

RSS = 2E(ŵ) =

N∑
i=1

(
Xi − 〈ŵ|φ(ti)〉

)2
= Nσ̂2 , (6.12)

which is also proportional to the MLE for the variance σ2 in the Gaussian model (6.5). For given
parameter dimension M this quantity is minimzed, and it is instructive to compare its value it to
the total sum of squares (TSS)

TSS =
N∑
i=1

(
Xi − µ̂

)2 with sample mean µ̂ =
1

N

N∑
i=1

Xi . (6.13)

This is equivalent to using w = (µ̂, 0, . . .) instead of ŵ, i.e. TSS = 2E
(
(µ̂, 0, . . .)

)
(which would

be the LSE for a model withM = 1). If the data does not exhibit any particular trend in addition to
a simple shift, TSS and RSS are of the same order, whereas for non-trival trends the latter should
be much smaller. This is quantified in the coefficient of determination

R2 := 1− RSS

TSS
(6.14)

which is close to 1 if the fit leads to a good approximation.
In general, the RSS is a decreasing function of M and decays to 0 if M = N , i.e. there are

as many parameters as data points. In this case, since the basis functions are linearly independent,
the trend f(t|w) can go through all the points. This is, however, not desirable, since the model
has simply learned the noise of the data, and the data itself could be as good a model without any
regression. The problem of fitting too many parameters in a regression is called overfitting, and
has to be avoided in order for the mathematical model to be informative and separate the signal
from noise effectively. In the following we discuss the most common systematic approaches to
model selection, i.e. to avoid overfitting and determine an optimal number of parameters in a
regression.

Cross validation. We partition the data
{

(ti, Xi) : i = 1, . . . , N
}

into a training set XA ={
(ti, Xi) : i =∈ A

}
and a test set XB =

{
(ti, Xi) : i ∈ B

}
with A ∪ B = {1, . . . , N} and

A ∩B = ∅. We fit the model (6.1) through linear regression on the training set so that

ŵ = argminwE
A(w) = argminw

1

2

∑
i∈A

(
Xi − 〈w|φ(ti)〉

)2
. (6.15)

As we have discussed above, the training error EA(ŵ) is a decreasing function of the number
M of parameters since the model learns the noise of the trainig set. The test error

EB(ŵ) =
1

2

∑
i∈B

(
Xi − 〈ŵ|φ(ti)〉

)2 (6.16)

however, typically increases only initially and then increases with M , and exhibits a minimum
around the desired value for M . In order to learn all features of the model the training set should
be typical, which is best achieved by picking the training set A at random. A natural size for
training and test set is N/2, but as long as N is large enough other fractions can work well as
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well. A typical procedure is to compute an averaged test error Ē(M) for each M over about 10
independent choices of training and test set, and select the best model size M∗ as the minimum of
Ē(M).

Regularized least squares regression (ridge regression). Another approach is to adapt the
cost/error function E(w) to punish large values of the coefficients wk, which usually come along
with overfitting. This looks like

Ẽ(w) =
1

2

N∑
i=1

(
Xi − 〈w|φ(ti)〉

)2
+
λ

2
〈w|w〉 , (6.17)

where λ ≥ 0 is a parameter that multiplies the norm ‖w‖22 = 〈w|w〉. Minimization of this
function contains a new term

∂

∂wk

( M∑
j=1

w2
j

)
= 2wk , (6.18)

and is otherwise analogous to standard LS regression, leading to

〈∇|Ẽ(w) = 〈w|ΦTΦ− 〈X|Φ + λ〈w| = 〈0| (6.19)

with the solution

|w〉 = (ΦTΦ + λId)−1ΦT |X〉 . (6.20)

In Bayesian context this is equivalent to having a Gaussian prior on w with mean 0 and variance
1/λ, where the standard case corresponds to a uniform prior, i.e. no a-priori knowledge on the
possible parameter values. This can be generalized to Gaussians with inverse covariance matrix Γ
by adding 1

2〈w|Γ|w〉, which leads to

|w〉 = (ΦTΦ + ΓTΓ)−1ΦT |X〉 . (6.21)

The most important point is to choose λ ’correctly’. For a fixed large enough number M of pa-
rameter values, the test error as a function of λ should have a minimum at the optimal value λ∗,
whereas the training error will exhibit a plateau around this value and then further decrease with
decreasing λ. Typical values of λ∗ are very small (around 10−3 − 10−6), since the coefficients
usually can have quite different values which have to be equally likely under the prior.

Maximize adjusted coefficient of determination. The adjusted coefficient is defined as

R̄2 := 1− (1−R2)
N − 1

M −M
= 1− RSS

TSS

N − 1

M −M
= R2 − (1−R2)

M

N −M
. (6.22)

From the last expression we see that compared to R2, R̄2 has a negative component with a prefac-
tor that is increasing withM and eventually leads to a decrasing evaluation of the fit for increasing
M . However, since R2 itself is M -dependent, R̄2(M) as a function of M takes often a maximum
at a particular value M∗, which can be taken as the optimal choice for the number of parameters
in the regression.
From the second expression in (6.22) we see that the motivation for the adjustment is a result of
replacing the biased estimators RSS and TSS (both normalized by 1/N ) by their unbiased version,
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normalized by 1/(N −M) and 1/(N − 1), respectively. The general concept behind this normal-
ization is called degrees of freedom, where one such degree has been used to compute the sample
mean for the TSS (hence N − 1), and M degrees have been used to determine the coefficients w
in RSS (hence N −M ).

The adjusted R̄2-value is the simplest of the above approaches and often leads to reason-
able results. There are also automated implementations of the regularized/ridge regression (e.g.
ridge(X,Φ, λ) in MATLAB), which make this a computationally viable method. The most flex-
ible approach which can always be implemented and will deliver some controlled understanding
of the optimum M∗ (but requires some work) is cross validation. In general, it is also very impor-
tant to use common sense in model selection. If the coefficients of the fitted polynomial decay
very quickly and there are only Q < M∗ which are not essentially 0, choosing Q over M∗ (by
however method this was determined) can be well justified. In general the simplest way to argue
is that the adjusted R̄2(M) as a function of the number of parameters grows rapidly until Q and
than more slowly and R̄2(Q) and R̄2(M∗) are very similar. This provides a good justification to
choose Q. In general both choices could be compared by an hypothesis test, which is not part of
this module (see CO902 in term 2).

6.3 Detrending

One of the most important uses of linear regression is detrending of a timeseries. Assume the
following model

Xt = f(t) + Yt where Yt is a stationary process (not necessarily iid) . (6.23)

The goal is to extract the deterministic signal F (t) from the timeseries in order to study the cor-
relation structure of the stationary part Yt. A linear trend f(t) = β1 + β2t in the timeseries can
simply be removed by differencing,

(∇X)t := Xt −Xt−1 = β1 + β2t+ Yt − β1 − β2(t− 1)− Yt−1 = β2 + (∇Y )t . (6.24)

If Yt is stationary, the difference process ∇Y is stationary with mean 0, so ∇X is stationary with
mean β2. The variance is given by

Var
(
(∇X)t

)
= Var

(
(∇Y )t

)
= 2σ2 − 2Cov(Yt, Yt−1) = 2

(
γ(0)− γ(1)

)
, (6.25)

where σ2 = Var(Yt) = γ(0) denotes variance and covariance of the stationary process Yt. This
approach could be extended to higher order polynomial trends.

The most general and usual approach is detrending by regression. We assume the above model to
be of the usual form

Xt = 〈w|φ(t)〉+ Yt with basis functions φ0, . . . , φM−1 . (6.26)

After finding the LSE estimate ŵ the series

Yt := Xt − 〈ŵ|φ(t)〉 (6.27)

is a stationary sequence (hopefully, as far as can be determined from the data). Usual choices for
basis functions are as mentioned before polynomials or sin and cos for seasonal trends in data or
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a combination of both.

The use of sin and cos is also common in extracting a signal from noise, which consists of
identifying a carrier wave in a noisy signal. If the frequency ν of the wave is known, this can be
achieved by linear regression and is possible even for very high noice levels. The associated model
is

Xt = A cos(2πνt+ φ) + ξt with noise ξt ∼ N(0σ2) iid , (6.28)

amplitude A > 0 and phase φ ∈ [0, 2π). One often uses the notation ω = 2πν for the angular
frequency. By trigonometric identities this can also be written in the form

Xt = B1 sin(ωt) +B2 cos(ωt) + ξt , (6.29)

which is linear in the coefficients B1, B2 ∈ R. These are functions of A and φ and can be esti-
mated by linear regression to determine the latter.

7 Autoregressive models

7.1 Correlation functions and stationary solutions

Consider the autoregressive model AR(q) of degree q ∈ N,

Xt = c+ φ1Xt−1 + . . .+ φqXt−q + ξt , (7.1)

where ξt is iid noise with E(ξt) = 0 and Varξt = σ2. Under certain conditions on the paramters,
this recursion relation admits a stationary solution, i.e. a stationary process Xt that fulfills (7.1).
Assuming thatXt is stationary, we can get a condition on the mean E(Xt) = µ from the recursion,

µ = c+ (φ1 + . . .+ φq)µ ⇒ µ =
c

1− φ1 − . . .− φq
. (7.2)

This already provides a first condition on existence of a stationary process with finite mean, namely
that φ1 + . . .+φq 6= 1 which we will explain later. Substracting the self consistent relation for the
mean from (7.1) we get the homogeneous equation

Xt − µ = φ1(Xt−1 − µ) + . . .+ φq(Xt−q − µ) + ξt . (7.3)

Multiplying with (X0 − µ) and taking expectation this leads to

γ(t) = φ1γ(t− 1) + . . .+ φqγ(t− q) , (7.4)

where we have used the usual notation γ(t) = Cov(Xt, X0) and the fact that E
(
ξt(X0 − µ)

)
= 0

since the noise is iid. This is a linear recursion/difference equation of degree q with constant
coefficients, and can be solved by the exponential ansatz γ(t) = λt (also called a mode). Pluggin
into (7.1), this leads to the characteristic equation

λq − φ1λq−1 − . . .− φq = 0 (7.5)

for the parameter λ ∈ C after multiplication with λq−t. This polynomial equation has q complex
roots λ1, . . . , λq, and assuming they are all different, by linearity the general solution of (7.4) is
given by

γ(t) = A1λ
t
1 + . . .+Aqλ

t
q with A1, . . . , Aq ∈ R . (7.6)
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If roots coincide, this leads to polynomial corrections of this expressions which are well known but
we do not consider here. Typically, for coefficients φk estimated from data roots will not coincide,
and all coefficientsAk will take non-zero values which are distinct (unless they below to a complex
conjugate pair of roots), so that no cancellations happen and the model is non-degenerate. We have

A1 + . . .+Aq = γ(0) = Var(X1) (7.7)

and further conditions necessary to determine the parameters can be written in terms of γ(t) for
t = 1, . . . , q − 1, which can be inferred from the data. In general, they depend on the actual
distribution of the noise, and in the Gaussian case can be computed also analytically in terms of
known expressions for covariances.
We know that for stationary processes |γ(t)| ≤ γ(0) for all t, so the solution has to be a bounded
function. This is possible if |λk| < 1 for all k = 1, . . . , q, where strict inequality is required due
to the presence of noise. If |λk| = 1 for some k, the noise would lead to a random walk-type,
non-stationary process for q ≥ 2 or a ballistic motion with random direction for q = 1. In fact, for
a non-degenerate model the condition

|λk| < 1 for all k = 1, . . . , q (7.8)

is equivalent to existence of a stationary solution. In particular, this implies that

1− φ1 − . . .− φq 6= 0 (7.9)

since otherwise 1 would be a root of (7.5).
So the amplitutes of all modes decay exponentially to 0 since

λtk = Re(λk)
t eiphase(λk)t , (7.10)

and Re(λk) < 1 and |eiphase(λk)t| = 1. Nevertheless, typical realizations of the process show
stationary oscillations or correlated fluctuations around the mean value, which are driven by the
noise term.

Example. The simplest case is q = 1, for which we get µ = c/(1 − φ1) and need φ1 = φ ∈
(−1, 1). So if φ gets close to 1 the mean can become arbitrarily large, and if φ = 0, Xt is just an
iid noise process with mean c. The characteristic equation is simply λ− φ = 0, so that λ = φ and
the covariances of the process are

γ(t) =
σ2

1− φ2
φt . (7.11)

For q = 1 we can determine the constant of this solution from a self-consistent equation for the
variance (analogous to the mean for the general case), from (7.1) we get from stationarity and
independence of the noise

Var(X1) = φ2Var(X1) = σ2 ⇒ γ(0) = Var(X1) =
σ2

1− φ2
. (7.12)

Note that this simple approach does not work for q > 1 since the variables in the recursion are not
independent. Negative values of φ lead to anti-correlations and oscillations with period 1 around
the mean with added noise, whereas for positive φ the noise is dominating sign changes, and the
recursion is just damping the noise. Similar statements hold also for larger q, where negative real
λk lead to period 1 oscillations, complex pairs lead to higher period oscillations, and real positive
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λk to damping of noise without sign change around the mean.

In general, discrete-time stationary processes can be defined for all t ∈ Z since the distribution at
time t is independent of t, and for a semi-infinite sequence (X0, X1, . . .) one can simply shift the
value of the initial time to any negative value. So let’s assume that X = (. . . X−1, X0, X1 . . .) is a
full stationary sequence which fulfilles (7.1). Then we can rewrite this as a vector valued equation

X = c + (φ1L+ . . .+ φqL
q)X + ξ , (7.13)

where we use the left-shift operator L : RZ → RZ, defined by

(LX)t = Xt−1 , (7.14)

and the obvious notation c = (. . . c, c . . .) and ξ = (. . . ξ−1, ξ0, ξ1 . . .). We can also write an
equation for the mean vector µ = (. . . , µ, µ . . .)

c = (Id− φ1L− . . .− φqLq)µ . (7.15)

This leads to the following formal solution of the recursion (7.13)

X = (Id− φ1L− . . .− φqLq)−1(c + ξ) = µ + (Id− φ1L− . . .− φqLq)−1ξ . (7.16)

The operator/matrix inverse is defined by the following series

(Id− φ1L− . . .− φqLq)−1 =
∞∑
j=0

(φ1L+ . . .+ φqL
q)j (7.17)

which is analogous to the geometric sum formula. In the simplest case q = 1 this leads to

X = µ + ξt + φ1ξt−1 + φ21ξt−2 + φ31ξt−3 + . . . (7.18)

which is equivalent to a moving average process of infinite degree MA(∞). This is also true
for higher values of q with more complicated expressions for the coefficients, and ingeneral MA
processes can be interpreted as truncated expansions of solutions to AR models. For stationary
solutions this expansions actually converge since |λk| < 1, and MA processes are good approx-
imations of stationary AR solutions. However, the solution formula (7.16) also holds in some
non-stationary cases (modulo invertability of the operator), and can lead to exponentially diverg-
ing solutions if |λk| > 1 for some k, or linearly diverging solutions if |λk| = 1 for some k.

7.2 Linear regression for AR(1) models

In this subsection we consider an AR(1) model with iid N(0, σ2) Gaussian noise

Xt = c+ φXt−1 + ξt which implies µ =
c

1− φ
and Var(X1) =

σ2

1− φ2
. (7.19)

From the solution expansion formula (7.18) we see that Xt is given by a combination of Gaussian
variables ξt, ξt−1, . . ., so that Xt ∼ N

(
c/(1 − φ), σ2/(1 − φ2)

)
is itself a Gaussian for all t.

Moreover, (Xt : t ∈ Z) is a stationary Gaussian process with covariances γ(t) given in (7.11).
Let us denote a finite sample of this stationary process by XN = (X1, . . . , XN ). Since we have no
further information onX0, the distribution ofX1 under our model is simplyN

(
c/(1−φ), σ2/(1−
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φ2)
)
. X2 will be correlated with X1 via the recursion, and in general the conditional distributions

for further values are

X2|X1 ∼ N(c+ φX1, σ
2) , X3|X1,X2 ∼ N(c+ φX2, σ

2) , . . . (7.20)

Using the product rule, the joint PDF of XN can be written as

fXN
(x1, . . . xN ) = fXN |XN−1

(xN |xN−1, . . . x1) fXN−1
(x1, . . . xN−1) . (7.21)

This holds in general for any PDF and can be iterated, for one-step recursions we have the addi-
tional simplification that XN only depends on XN−1, which leads to

fXN
(x1, . . . xN ) = fX−1(x1) fX2|X1

(x2|x1) · fXN |XN−1
(xN |xN−1) . (7.22)

The log-likelihood for this joint PDF is then given by

logL(XN |c, φ, σ2) = −1

2
log(2π)− 1

2
log

σ2

1− φ2
− (X1 − c/(1− φ))2

2σ2/(1− φ2)

−N − 1

2
log(2π)− N − 1

2
log σ2 −

N∑
t=2

(Xt − c− φXt−1)
2

2σ2
.(7.23)

This expression can also be determined by using the usual formula for the multivariate Gaussian
XN ∼ N(µN ,Σ) with constant mean vector µN = c/(1 − φ)(1, . . . , 1) and covariance matrix
(from (7.11))

Σ = (σij i, j = 1, . . . , N) , σij = Cov(Xi, Xj) =
σ2

1− φ2
φ|i−j| . (7.24)

The inverse of this matrix, which enters the joint PDF, is given by

Σ−1 =
1

σ2



1 −φ

−φ 1 + φ2
. . .

. . . . . . . . .
. . . 1 + φ2 −φ

−φ 1


. (7.25)

This is tri-diagonal and simpler than Σ itself, since it describes the conditional correlations be-
tween variables, which are given by a one-step recursion in our case leading to only one non-zero
off-diagonal. The joint Gaussian PDF is then

fXN
(xN ) =

1

((2π)N/2det(Σ)
exp

(
− 1

2

〈
xN − µN

∣∣Σ−1∣∣xN − µN
〉)

, (7.26)

which leads to the same expression as above, since one can compute

det(Σ)−1 = det(Σ−1) =
1− φ2

(σ2)N
(7.27)

for the normalization terms to match. For the quadratic term in (7.23) in the second line one gets

(Xt − c− φXt−1)
2 =

(
Xt − c

1−φ + cφ
1−φ − φXt−1

)2
=

=
(
Xt− c

1−φ
)2 − 2φ

(
Xt− c

1−φ
)(
Xt−1− c

1−φ
)

+ φ2
(
Xt−1− c

1−φ
)2
,(7.28)
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which together with the term corresponding to X1 leads to the desired expression
1
2

〈
xN − µN

∣∣Σ−1∣∣xN − µN
〉

.
Note that the log-likelihood (7.23) can be minimized w.r.t. c and φ without considering σ2 (anal-
ogous to previous cases) and the error function to be minimized is

E(c, φ) =
1

2

(
X1 −

c

1− φ

)
(1− φ2)− log(1− φ2) +

1

2

N∑
t=2

(
Xt − c− φXt−1

)2
. (7.29)

This, however, does not have the nice symmetric form as for usual Gaussian linear regression, and
we cannot apply the formalism with the design matrix developed in the previous section.

LS regression with fixed X1.
In the following we therefore consider a simpler model, where we take the first data pointX1 to be
deterministally fixed to the observed value, i.e. the likelihood of this observation is simply 1 and
the first two terms in the error function associated to X1 drop out. We are left with minimizing

Ẽ(c, φ) =
1

2

N∑
t=2

(
Xt − c− φXt−1

)2
. (7.30)

Writing it in the standard form 〈c, φ|ψ0(t), ψ1(t)〉 we can identify the basis functions

ψ0(t) = (1, . . . , 1) and ψ1(t) = (X1, . . . , XN−1) . (7.31)

Note that ψ1 depends in fact on the data XN in this case. The design matrix is then given gy

Φ =

 1 X1
...

...
1 XN−1

 and ΦTΦ =

(
N − 1

∑N−1
t=1 Xt∑N−1

t=1 Xt
∑N−1

t=1 X2
t

)
∈ R2×2 . (7.32)

Writing out ΦT |XN 〉 =
∣∣∣∑N

t=2Xt,
∑N

t=2XtXt−1

〉
, this leads to the solution

|ĉ, φ̂〉 = (ΦTΦ)−1ΦT |XN 〉 =

(
N − 1

∑N−1
t=1 Xt∑N−1

t=1 Xt
∑N−1

t=1 X2
t

)−1∣∣∣ N∑
t=2

Xt,

N∑
t=2

XtXt−1

〉
, (7.33)

which can easily be implemented numerically. As before, the estimate for σ2 is then simply given
by the residual sum of squares (RSS),

σ̂2 =
1

N − 1
RSS =

1

N − 1

N∑
t=2

(
Xt − ĉ− φ̂Xt−1

)2
. (7.34)
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8 Spectral analysis

8.1 Fourier series

A function f : R→ R is periodic with period T if f(t+T ) = f(t) for all t ∈ R. A periodic func-
tion is completely determined by its values on a single period, which we take to be [−T/2, T/2).
Simple examples are

trigonometric functions f(t) = sin
(
2πnt/T

)
, n ∈ Z ,

square wave f(t) =

{
1 , −T/2 ≤ t < 0
−1 , 0 ≤ t < T/2

(8.1)

Fourier series. Let f be a periodic real or complex valued function with period T . Then it can be
written as a series of periodic exponentials

f(t) =
∑
n∈Z

An e
2πint/T , (8.2)

where the Fourier coefficients are unique, and given by

An =
1

T

∫ T/2

−T/2
f(t) e−2πint/T dt ∈ C . (8.3)

To show this, we use the orthogonality relations for complex exponentials,∫ T/2

−T/2
e2πint/T e−2πimt/T dt = T δn,m (8.4)

since for n = m we simply integrate 1 and for n 6= m we have∫ T/2

−T/2
e2πint/T e−2πimt/T dt =

T

2πi(n−m)

(
e2πi(n−m)/2 − e−2πi(n−m)/2

)
= 0 . (8.5)

With this, using the representation (8.2) we get

1

T

∫ T/2

−T/2
f(t) e−2πimt/T dt =

1

T

∑
n∈Z

An

∫ T/2

−T/2
e2πint/T e−2πimt/T dt

=
1

T

∑
n∈Z

AnT δn,m = Am , (8.6)

which confirms (8.3).

Simple examples.

sin(2πt/T ) =
1

2i

(
e2πit/T − e−2πit/T

)
⇒ A1 = −A−1 =

1

2i
, (8.7)

and all other coefficients vanish. For f(t) = 1 we have An = δn,0.
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In general, if f(t) is a real-valued function then we have

f∗(t) = f(t) ⇒
∑
n∈Z

A∗n e
+2πint/T =

∑
n∈Z

An e
−2πint/T

⇒
∑
n∈Z

A∗−n e
−2πint/T =

∑
n∈Z

An e
−2πint/T

⇒
∑
n∈Z

(A∗−n −An) e−2πint/T = 0 . (8.8)

Since the Fourier coefficients are unique (in this case for the simple function f(t) = 0), this
implies the following symmetry for the coefficients,

f(t) real ⇔ A−n = A∗n for all n ∈ Z . (8.9)

In particular, A∗0 = A0 ∈ R. Further symmetries that can be derived in the same way are

f(t) even, i.e. f(−t) = f(t) ⇔ A−n = An for all n ∈ Z ,
f(t) odd, i.e. f(−t) = −f(t) ⇔ A−n = −An for all n ∈ Z . (8.10)

In particular, for odd functions A0 = 0 and if f is also real, the coefficients are purely imaginary
(∈ iR) and for even functions they are real (∈ R). For real-valued functions, the Fourier series can
also be expressed in terms of sin and cos. Using (8.9) we have

f(t) =
∑
n∈Z

An e
2πint/T =

∑
n∈Z

An
(

cos(2πnt/T ) + i sin(2πnt/T )
)

= A0 +
∑
n≥1

(An +A−n)︸ ︷︷ ︸
=An+A∗

n

cos(2πnt/T ) +
∑
n≥1

i (An −A−n)︸ ︷︷ ︸
=An−A∗

n

sin(2πnt/T )

= A0︸︷︷︸
∈R

+
∑
n≥1

2Re(An)︸ ︷︷ ︸
:=an∈R

cos(2πnt/T ) +
∑
n≥1

i 2Im(An)︸ ︷︷ ︸
:=bn∈R

sin(2πnt/T ) . (8.11)

So for even, real functions we have bn = 0 and for odd, real functions A0, an = 0.

Example. Consider the square wave f(t) =

{
1 , −T/2 ≤ t < 0
−1 , 0 ≤ t < T/2

.

This is an odd function so A0 = 0, and for all n 6= 0 we have

An =
1

T

∫ 0

−T/2
e−2πint/T dt− 1

T

∫ T/2

0
e−2πint/T dt

= − 1

2πin

(
1− eπin

)
+

1

2πin

(
e−πin − 1

)
=

i

2πn

(
2− eπin − e−πin

)
=

i

πn

(
1− (−1)n

)
=

{
0 , n even
2i
πn , n odd

. (8.12)

Thus an = 0 and bn = 2Im(An) =

{
0 , n even
4
πn , n odd

and we have

f(t) =
∞∑
k=0

4

(2k + 1)π
sin
(2π(2k + 1)

T
t
)
. (8.13)
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A mathematical subtlety: Fourier series can be proven to converge pointwise at every ponit of
continuity of f and to the average of the left and right limits at a point of discontinuity of f .
However, convergence is not absolute, and if we define the partial sum

SN (t) :=
∑
|n|≤N

An e
2πint/T (8.14)

for the square wave example above, the limits N → ∞ and t → 0 do not commute, since 0 is a
point of discontinuity,

lim
t→0

lim
N→∞

SN (t) 6= lim
N→∞

lim
t→0

SN (t) = 0 . (8.15)

This results in ’ringing artifacts’ at points of discontinuity, which is also called Gibbs phe-
nomenon.

Stationary sequences.
Let (Xn : n ∈ Z) be a stationary, discrete-time process with autocorrelation function R(n),
n ∈ Z. The corresponding Fourier series

D(ω) :=
1

2π

∑
n∈Z

eiωnR(n) , ω ∈ [−π, π) (8.16)

is called power spectral density. Slightly different from above, this is defined as a normalized,
2π-periodic function on the interval [−π, π) in terms of the angular frequency ω. The formula for
Fourier coefficients gives the representation

R(n) =

∫ π

−π
D(ω) e−iωn dω . (8.17)

D(ω) provides a spectral decomposition of the covariance structure of the process. The simplest
example is an iid sequence with R(n) = δn,0, which leads to

D(ω) =
1

2π

∑
n∈Z

eiωnδn,0 =
1

2π
. (8.18)

There is no particular structure in this process and the flat spectrum corresponds to a discrete
version of white noise.
For a stationary, autoregressive AR(1) model Xn = c+ φXn−1 + ξn we have derived above that
R(n) = φ|n| for all n ∈ Z. This leads to

D(ω) =
1

2π

∑
n∈Z

eiωnφ|n| =
1

2π

(∑
n≥0

(eiωφ)n +
∑
n≥0

(e−iωφ)n − 1
)

=
1

2π

( 1

1− eiωφ
+

1

1− e−iωφ
− 1
)

=
1

2π

( 2− 2φ cosω

1− 2φ cosω + φ2
− 1
)

=
1

2π

1− φ2

1− 2φ cosω + φ2
. (8.19)

This is a symmetric/even function on [−π, π) since R(n) = R(−n), with a maximum D(0) =
1−φ2

2π(1−φ)2 , and reduces to the flat case for φ = 0 as the AR(1) model is then iid noise.
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8.2 Fourier transform and power spectra

The Fourier transform extends the notion of a Fourier series to non-periodic functions, by taking
the limit T → ∞. For each term in the series (8.2) we introduce the the angular frequency
variable

ωn :=
2πn

T
with spacings ∆ω = ωn − ωn−1

2π

T
→ 0 as T →∞ . (8.20)

We rewrite the Fourier series as

f(t) =
1

2π

∑
n∈Z

2π

T
f̂(ωn) eiωnt =

1

2π

∑
n∈Z

f̂(ωn) eiωnt∆ω , (8.21)

where

f̂(ωn) =

∫ T/2

−T/2
f(t) e−iωnt dt ∈ C . (8.22)

The series is a Riemann sum approximation to an integral over ω which becomes exact in the limit
T →∞ and we get

f(t) =
1

2π

∫
R
f̂(ω) eiωt and

f̂(ω) =

∫
R
f(t) e−iωt dt . (8.23)

f̂ is the Fourier transform of f and the first line is the inverse Fourier transform. Note that one
could use different conventions for the normalization,

f(t) =

√
|b|

(2π)1+a

∫
R
f̂(ω) eibωt and

f̂(ω) =

√
|b|

(2π)1−a

∫
R
f(t) e−biωt dt (8.24)

are equally good for any choice of constants a, b ∈ R, and we use a = 1, b = 1. The Fourier
transform allows us to decompose any function or signal into its constituent frequencies. The
quantity

D(ω) := f̂(ω) f̂∗(ω) ∈ R (8.25)

is called the power spectrum of f(t) and is the squared amplitude (energy) of the frequency ω.

Properties of Fourier transforms.

• Translation. If h(t) := f(t+ τ) we have

1

2π

∫
R
ĥ(ω) eiωt dω =

1

2π

∫
R
f̂(ω) eiωτ eiωt dω ⇒ ĥ(ω) = eiωτ f̂(ω) . (8.26)

So a shift in the time domain corresponds to a multiplicative phase factor for the Fourier
transform.
Note that for a T -periodic function f this implies

f̂(ω) = eiωT f̂(ω) . (8.27)
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This can only hold if f̂(ω) = 0, or

eiωT = 1 ⇒ ω = 2πn/T with n ∈ Z . (8.28)

If An are the coefficients of the Fourier series for the periodic function f , the Fourier trans-
form is then given by

f̂(ω) =
∑
n∈Z

Anδ(ω − 2πn/T ) (8.29)

which is consistent with (8.2) and is basically the Fourier series coefficients embedded in
the real line.

• Convolution theorem. Consider smoothing of f by a kernel K,

(f ∗ k)(t) :=

∫
R
ds f(t− s) k(s)

=

∫
R
ds

1

2π

∫
R
dω1 f̂(ω1)e

iω1(t−s) 1

2π

∫
R
dω2 K̂(ω2)e

iω2s

=
1

2π

∫
R

∫
R
dω1dω2 f̂(ω1)K̂(ω2)e

iω1t 1

2π

∫
R
ds ei(ω2−ω1)s

=
1

2π

∫
R

∫
R
dω1dω2 f̂(ω1)K̂(ω2)δ(ω2 − ω1) e

−iω1t

=
1

2π

∫
R
dω1 f̂(ω1)K̂(ω1) e

iω1t = F−1
[
F [f ]F [K]

]
(8.30)

This is useful, since Fourier transforms (denoted byF) can be implemented more efficiently
O(N lnN) than convolution products which take O(N2) steps (see also below).

• Fourier transform of a Gaussian. Let f(t) = e−at
2
. Then

f̂(ω) =

∫
R
e−at

2
e−iωtdt =

∫
R

exp
[
− a
(
t2 +

iω

a
t− (

iω

2a
)2 + (

iω

2a
)2
)]
dt

= e−a
ω2

4a2

∫
R
e−a
(
t+ iω

a

)2
dt =

1√
a
e−

ω2

4a

∫
R
ez

2
dz =

√
π

a
e−

ω2

4a , (8.31)

so the Gaussian is invariant under Fourier transformation. Note that if a is large, i.e. the
pulse narrow/localized in t-space, 1/a is small, i.e. it is broad in ω-space. This is a general
property of Fourier representations which is related to the uncertainty principle in quantum
mechanics.

Let (Xt : t ∈ R) be a continuous-time weakly stationary process with positive variance. Then,
if it is continuous at τ = 0, the autocorrelation function

R(τ) = (F [D])(τ) =

∫
R
eiωτ D(ω) dω (8.32)

can be written as the Fourier transform of the power spectral density

D(ω) := (F [R])(ω) =
1

2π

∫
R
e−iωτ R(τ) dτ . (8.33)
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Note thatR(τ) is a real and even function, so that the same holds forD(ω). D(ω) is not necessarily
a function, and can contain atomic parts in terms of δ functions. In general we have for some index
set I ,

D(ω) =
∑
k∈I

δλk(ω) + smooth part , (8.34)

and the set {λk : k ∈ I} is called the point spectrum of the process.
The simplest example is white noise, a Gaussian process with mean 0 and (degenerate) covariance
Cov(Xt, Xs) = δ(t− s). Then we get the smooth spectral density

R(t) = δ(t) and D(ω) =
1

2π

∫
R
δ(t)eiωtdt =

1

2π
, (8.35)

analogous to the iid discrite-time noise process.

8.3 Discrete Fourier transform

Consider a timeseries or a discrete function {(ti, fi) : i = 1, . . . , N}, with evenly spaced sampling
points ti = i T/N over the time interval (0, T ], where we take N even for simplicity. The nec-
essarily finite range of observation and the finite sampling rate lead to two effects for the Fourier
transform, which are a-priori defined only for functions f(t), T ∈ R.

• Discrete spectrum. The usual approach is to simply assume the function extends pe-
riodically to ±∞, which leads to a discrete Fourier transform as explained above with
∆ω = 2π/T . The angular frequencies are therefore

ωn = n∆ω = 2πn/T , n ∈ Z . (8.36)

• Aliasing. Due to the finite sampling rate with ∆t = T/N , the shortest period that can be
detected from the timeseries is 2∆t, which corresponds to the so-called

Nyquist frequency ωN/2 = 2πN/(2T ) = πN/T . (8.37)

Higher frequencies ω in the Fourier spectrum are indistinguishable from lower ones such as
ω/2 from the timeseries, and therefore one usually considers the spectrum only for

ωn with n ∈ {−N/2 + 1, . . . , N/2} . (8.38)

We represent the timeseries as a function f : R→ R as

f(t) = ∆t
N∑
k=1

fk δtk(t) . (8.39)

This is more convenient than a piecewise constant interpolation, and the normalizing factor ∆t =
T/N is chosen so that the integral over the function has the same value. Now we can simply use
the usual formula for the Fourer transform (8.23) to get

f̂(ωn) = ∆t

∫
R
dt

N∑
k=1

fk δtk(t) e−iωnt = ∆t

N∑
k=1

fk e
−iωntk = ∆tf̂n (8.40)
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where f̂n :=

N∑
k=1

fk e
−2πink/N , n ∈ {−N/2 + 1, . . . , N/2}

is called the discrete Fourier transform of the timeseries. The normalization is usually not
included in implementations, but sometimes is (→ important to check the documentation!). Re-
member that for real fk we know that f̂−n = f∗n. For the inverse formula we get

fk =

N/2∑
n=−N/2+1

f̂n e
2πink/N . (8.41)

The direct computation time for the discrete FT is O(N2), but Fast Fourier Transform (FFT)
developed by Cooley and Tukey in 1965 provides an O(N logN) algorithm.

The discrete FT of a real-valued timeseries provides an estimate for the power spectral density

D(ωn) = f̂∗n f̂n = |fn|2 , n ∈ {0, . . . ,N/2} , (8.42)

which is non-negative and symmetric, and therefore usually only considered for non-negative ωn.
There are several methods for stationary timeseries X = {(ti, Xi) : i = 1, . . . , N} based on
different ways to extend the series/signal to infinity.

• Periodogram. This is based on a strictly periodic extension of the timeseries as used above,
and since the latter can contain a significant amount of noise the periodogram is usually
rather noisy itself. It is most appropriate for signals which are deterministic or have little
noise (such as measurement errors).
(Implemented in MATLAB as periodogram.)

• Autoregressive power spectral density estimate. This is most appropriate for a noisy
timeseries which can be fitted well to an autoregressive model, and provides the FT of the
autocorrelation function R(n) which is a symmetric, real-valued function. Modulo normal-
ization, this is given in (8.16), and provides a smoother version of the spectral density as the
periodogram.
(Implemented in MATLAB as pmcov, needs parameter q for the AR(q) model.)

Note that the timeseries itself can be seen as a noisy, unnormalized version of the autocorrelation
function and therefore the periodogram is a noisy version of the autoregressive estimate of the
spectral density.

The discrete FT is also often used as a fast method for smoothing and filtering timeseries. This
is usually done by convolution products (cf. kernel density estimates discussed before), which
require O(N2) operations. Using the convolution formula for Fourier transforms (8.30) and FFT
this can be done in O(N logN).
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Possible viva questions

1. Basic probability

• What is a probability distribution and a random variable?
Explain mentioning concepts of state space, outcome and event.

• What is independence of random variables, and how is it related to correlations?

• Define expectation, variance and standard deviation, CDF, TDF, PMF, median, quantiles.
Explain PDF, CDF and expectation for continuous rv’s through integrals.

• Give state space (support) and PDF and/or CDF and/or tail of the
uniform, Bernoulli, binomial, geometric, Poisson, exponential and Gaussian distribution.
Be able to compute (or know) mean and variance, give typical examples where distributions
show up and how they are related, including Poisson as scaling limit of binomial, exponen-
tial from geometric.

2. Less basic probability

• Define heavy tail, Pareto distribution and characterize Lévy distribution.

• Scaling properties of Gaussians, exponentials and Pareto variables.

• Define characteristic functions and state their basic properties.

• State the weak LLN and the CLT (with assumptions), also the generalized version for heavy
tails.
If you want 80+, be able to prove Gaussian case using characteristic functions.

• State the extreme value theorem, define the 3 types of extreme value distributions by their
CDF and for which tails they apply.

• Explain how to compute typical values and fluctuations of the maximum of iidrv’s.

3. Joint distributions

• Define the joint PMF, marginal and conditional probability, give sum rule and product rule.
Corresponding versions for continuous rv’s, with special care for conditional probabilities.

• give PDF of multivariate Gaussian, explain mean, covariance matrix, correlations and inde-
pendence.

• Definition and interpretation of the concentration/precision matrix, and correlation coeffi-
cient.

• Give Bayes’ rule, prior, posterior and likelihood. Be ready to do an example.
Explain the problem of false positives when testing for rare events, related choice of prior.
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4. Basic statistics

• Give the definition of sample mean, variance, order statistics and quantiles.

• Give the definition of empirical density, CDF and tail, histogram and kernel density estimate.

• Empirical distribution as simplest non-parametric model, explain bootstrap.

• For parametric models explain likelihood, log-likelihood, MLE and be ready to do an ex-
ample computation.

• Explain bias and consistency, compute for simple examples.
Explain unbiased variance estimator and degrees of freedom.

• Define standard error, and explain confidence intervals base on the Gaussian distribution.

5. Time series

• Give standard models for timeseries data: signal plus noise, MA(q), AR(q), Markov process.

• Define stationarity and weak stationarity, how are the two related?
Define cross correlation and auto correlation function. Be ready to compute it for examples
(iid noise, AR or AM models).

• Give an estimator for the auto correlation function for single or multiple datasets, explain
the difference.

• Define a Gaussian process, and give a simple example (e.g. white noise).

6. Linear regression

• Write down the basic model for linear regression, define LSE and LS error function.
How is this related to the MLE?

• Define the design matrix and be ready to show (or know) how the LSE can be written in
terms of the data X. What is the Moore-Penrose pseudo inverse?

• Define the RSS and TSS and the R2 coefficient of determination. How can this be inter-
preted to measure the goodness of fit?

• Explain the problem of overfitting and standard approaches to model selection: cross vali-
dation, regularized LS regression, adjusted R2 coefficient.

• Explain how to detrend data using differencing and regression.
Explain how to detect a periodic signal in noise.

7. Autoregressive models

• Compute the mean of a stationary AR(q) model and explain how to compute the covariances
and auto correlation. Be able to do an explicit computation for AR(1).
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• Explain how to write the stationary solution of an AR(1) model in terms of shift operators
and a series expansion over the noise.

• Compute mean and variance of an AR(1) model and be able to write the most important
terms of the log likelihood based on the recursion.
Give the LS error function for fixed initial value and show how to derive the MLE using the
design matrix. Explain the last part for the AR(2) model.

8. Spectral analysis

• Define the Fourier series for periodic functions and use orthogonality of basis functions to
show inverse formula. Be ready to compute a simple example.

• Explain the symmetry relations of the coefficients for real/even and odd functions.

• Explain the Gibbs phenomenon and how it is related to convergence of Fourier series.

• Define the power spectral density for general stationary processes, and compute it for an
AR(1) model or another model with given auto correlation function.

• Explain how to derive the Fourer transform in the limit of period T →∞.
What is the power spectrum of a function f?

• State basic properties of FTs (translation, convolution theorem, FT of Gaussian and uncer-
tainty)

• Explain the two basic issues of discrete FT: finite range and periodic extension leads to
discrete spectrum, finite sampling rate leads to aliasing and Nyquist frequency

• Give formulas for discrete FT and estimator for the power spectral density. Explain the
difference between a periodogram and an AR power spectral density estimate.

• Explain how to use spectral analysis to extract a periodic signal from noise.

General questions.

• How would you go about systematically analyzing a timeseries?
What preprocessing is necessary to do what?

• How can you check if your data are iid or a timeseries?

• What is a scatter plot, box plot?

• How can you plot distributions most appropriately (log/lin etc)?

• Explain practical problems that can occur in model selection and how to use common sense
(e.g. set small parameter values to 0, when is that justified?)
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