Online Capacity Maximization in Wireless Networks

Sascha Geulen

July 15, 2010

Joint work with Alexander Fanghänel, Martin Hoefer, and Berthold Vöcking

Problem

Situation

- Wireless network
- Request (s_i, r_i) from sender s_i to receiver r_i :

$$s_i \longrightarrow r_i$$

Objective: Accept as many requests as possible

Problem

Situation

- Wireless network
- Request (s_i, r_i) between s_i and r_i :

$$s_i \longleftrightarrow r_i$$

Objective: Accept as many requests as possible

Problem

Situation

- Wireless network
- Request (s_i, r_i) between s_i and r_i :

$$s_i \longleftrightarrow r_i$$

Objective: Accept as many requests as possible

Competitive Analysis: Acceptance based on previous requests only

Characteristics:

 (s_i,r_i)

- Broadcast network
- Station sends with transmission power P

Characteristics:

 (s_i, r_i)

- Broadcast network
- Station sends with transmission power P
- Signal strength at another station: $S = rac{P}{\mathsf{distance}_{ij}^{lpha}}$

lpha - path-loss exponent

Characteristics:

 (s_i,r_i)

- Broadcast network
- Station sends with transmission power P
- Signal strength at another station: $S = rac{P}{ ext{distance}_{ij}^{lpha}}$
- Receiver can interpret the signal if SINR (signal-to-interference-plus-noise-ratio) constraint holds:

$$\frac{S}{N+I} \ge \beta$$

lpha - path-loss exponent

eta - gain

N - ambient noise

I - interferences caused by other senders

Characteristics:

 (s_i,r_i)

- Broadcast network
- Station sends with transmission power P
- Signal strength at another station: $S = rac{P}{ ext{distance}_{ij}^{lpha}}$
- Receiver can interpret the signal if SINR (signal-to-interference-plus-noise-ratio) constraint holds:

$$\frac{S}{N+I} \ge \beta$$

• Metric space: d-dimensional Euclidean space

lpha - path-loss exponent

eta - gain

N - ambient noise

I - interferences caused by other senders

Power Assignments

$$S = rac{(s_i, r_i)}{ ext{distance}_{ij}^{lpha}}$$
 $rac{S}{N+I} \geq eta$

Power Assignments:

- Distance-based: $P = \phi(\mathsf{distance}_{ii})$
- Polynomial: $P = \mathsf{distance}_{ii}^{r\alpha}$ for a fix $r \in \mathbb{R}$
 - r = 0 (uniform)
 - r = 1 (linear)
 - $r = \frac{1}{2}$ (square root)

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

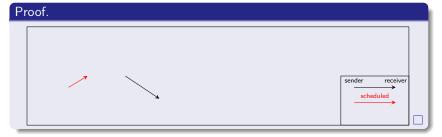
Theorem

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem

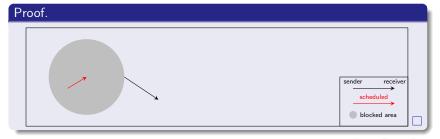


Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem



Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem

Greedy Algorithm

Algorithm 1 (GREEDY)

Accept if SINR constraint still holds at each accepted receiver

Theorem

Assumption: distance $_{ii} \in [1, \Delta]$ for each request i

Assumption: distance $_{ii} \in [1, \Delta]$ for each request i

Acceptance of a request should have a local effect only

ightarrow Safe distance σ

Assumption: distance $_{ii} \in [1, \Delta]$ for each request i

Acceptance of a request should have a local effect only

- \rightarrow Safe distance σ
- → Conflict between correctness and competitive ratio

Assumption: distance $_{ii} \in [1, \Delta]$ for each request i

Acceptance of a request should have a local effect only

- \rightarrow Safe distance σ
- → Conflict between correctness and competitive ratio
- → Worst-case scenario

Safe Distance Algorithm

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Algorithm 2 (SAFE-DISTANCE)

Accept if $\min\{\text{distance}_{ij}, \text{distance}_{ji}\} \geq \sigma$ for each scheduled request

Safe Distance Algorithm

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Algorithm 2 (SAFE-DISTANCE)

Accept if $min\{distance_{ij}, distance_{ji}\} \ge \sigma$ for each scheduled request

Theorem

SAFE-DISTANCE has competitive ratio

$$O\left(\Delta^d
ight), \qquad ext{if } r \in [0,1]$$
 $O\left(\Delta^{d \cdot ext{max}\{r,1-r\}}
ight), \qquad ext{else}$

Square-root power assignment

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

- $r \in (0,1)$
- → Short requests can be scheduled in longer ones
- ightarrow Use m length classes

Square-root power assignment

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

- $r \in (0,1)$
- → Short requests can be scheduled in longer ones
- ightarrow Use m length classes
- \rightarrow Compute m safe distances

Square-root power assignment

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

- $r \in (0,1)$
- → Short requests can be scheduled in longer ones
- ightarrow Use m length classes
- \rightarrow Compute m safe distances

Theorem

MULTI-CLASS SAFE-DISTANCE has competitive ratio

$$O\left(\Delta^{\frac{d}{2}+\epsilon}\right)$$

for any constant $\epsilon > 0$

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Theorem

Every deterministic online algorithm has at least competitive ratio

$$\Omega\left(\Delta^{d\cdot \mathsf{max}\{r,1-r\}}\right)$$

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Theorem

Every deterministic online algorithm has at least competitive ratio

$$\Omega\left(\Delta^{d\cdot \mathsf{max}\{r,1-r\}}\right)$$

Proof (Idea).

Online Algorithm must accept the first request

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Theorem

Every deterministic online algorithm has at least competitive ratio

$$\Omega\left(\Delta^{d\cdot \mathsf{max}\{r,1-r\}}\right)$$

Proof (Idea).

- Online Algorithm must accept the first request
- It blocks some area around sender and receiver.

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Theorem

Every deterministic online algorithm has at least competitive ratio

$$\Omega\left(\Delta^{d\cdot \mathsf{max}\{r,1-r\}}\right)$$

Proof (Idea).

- Online Algorithm must accept the first request
- It blocks some area around sender and receiver
- Offline Algorithm can place requests into these blocked areas

Channels

Use multiple channels

 \rightarrow Each for a specific request length

$$P = \mathsf{distance}_{ii}^{rlpha}$$
 $\mathsf{distance}_{ii} \in [1, \Delta]$

Channels

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Use multiple channels

 \rightarrow Each for a specific request length

Theorem

MULTI-CLASS SAFE-DISTANCE with *k*-channels has competitive ratio

$$O\left(k\Delta^{\frac{d}{2k}+\epsilon}\right)$$

for any constant $\epsilon>0$

Channels

 $P = \mathsf{distance}_{ii}^{r lpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Use multiple channels

 \rightarrow Each for a specific request length

Theorem

MULTI-CLASS SAFE-DISTANCE with k-channels has competitive ratio

$$O\left(k\Delta^{\frac{d}{2k}+\epsilon}\right)$$

for any constant $\epsilon > 0$

Corollary

MULTI-CLASS SAFE-DISTANCE with log Δ -channels has competitive ratio

$$O(\log \Delta)$$

Randomization

$$P = \mathsf{distance}_{ii}^{rlpha}$$
 $\mathsf{distance}_{ii} \in [1, \Delta]$

Simulate k-channels by one channel using randomization

Randomization

 $P = \mathsf{distance}_{ii}^{rlpha}$ $\mathsf{distance}_{ii} \in [1, \Delta]$

Simulate k-channels by one channel using randomization

Theorem

RANDOM SAFE-DISTANCE has competitive ratio

$$O(\log \Delta)$$

Conclusion

- GREEDY is not competitive
- Usage of safe distance leads to local effect
- MULTI-CLASS SAFE-DISTANCE approaches lower bound
- RANDOM SAFE-DISTANCE is $O(\log \Delta)$ -competitive

Conclusion

- GREEDY is not competitive
- Usage of safe distance leads to local effect
- MULTI-CLASS SAFE-DISTANCE approaches lower bound
- RANDOM SAFE-DISTANCE is $O(\log \Delta)$ -competitive

Thank you for your attention

 $r_{i_{\bullet}}$

