An Elementary Construction of Constant-Degree Expanders

Noga Alon, Oded Schwartz, Asaf Shapira
presented by Diana Piguet

Graphs are finite, undirected, may contain loops and multiple edges.

Definitions

A d-regular graph $G = (V, E)$ is a δ-expander, if for every set of vertices $S \subseteq V$ with $|S| \leq \frac{1}{2}|V|$, we have $e(S, V \setminus S) \geq \delta d|S|$. A $[n, d, \delta]$-expander is a n-vertex d-regular δ-expander.

The replacement product $G \circ H$, for a d-regular graph H and a D-regular graph G with a D-edge-colouring, is as illustrated below.

For $q = 2^t$ and $r \in \mathbb{N}$, we define a graph $LD(q, r)$ as follows. Vertices of $LD(q, r)$ are elements of \mathbb{F}_q^{r+1} and vertex $a = (a_0, a_1, \ldots, a_r)$ has neighbours $a + y \cdot (1, x, x^2, \ldots, x^r)$, for $(x, y) \in \mathbb{F}_q^2$. The edges $a, a + y \cdot (1, x, x^2, \ldots, x^r)$ is coloured by colour (x, y). $LD(q, r)$ is a q^2-regular graph on q^{r+1} vertices that is q^2-colourable.

Theorems

Theorem 1 (Main Theorem). There exists a fixed $\delta > 0$ such that any integer $q = 2^t$ and for any $q^4/100 \leq e \leq q^4/2$ there exists a polynomial time constructible $[q^{4r+12}, 12, \delta]$-expander.

Theorem 2. If E_1 is an $[n, D, \delta_1]$-expander and E_2 is a $[D, d, \delta_2]$-expander, then $E_1 \circ E_2$ is an $[nD, 2d, \frac{\delta_1 \delta_2}{\delta_2}]$-expander.
Theorem 3. [Pinsker] There exists a fixed $\delta > 0$ such that for any $d \geq 3$ and any even integer n, there is an $[n,d,\delta]$-expander, which is d-edge-colourable.

Theorem 4. [Alon, Roichman] For any $q = 2^t$ and integer $r < q$ we have $\lambda_2(LD(q,r)) \leq rq$.

Let λ_2 be the second largest eigenvalue of the incidence matrix of a δ-expander, then
\[
\frac{1}{2}(1-\lambda/d) \leq \delta.
\] (1)

Proofs

I’ll prove Theorems 1 and 2. The proof of Theorem 1 relies on Theorems 2, 3, 4 and Inequality (1).

The idea of the proof of Theorem 2 is that every set $S \subseteq V(E_1 \circ E_2)$ with $|S| \leq nD/2$ either intersects copies of E_2 “sparingly”, or substantially intersects only a “few” copies of E_2. In the first case, we use the expansion properties of E_2 and show that there are a lot of edges between S and \bar{S} within the copies of E_2. In the second case, we use the expansion property of E_1 and show that there are many edges between copies of E_2 running between S and \bar{S}.