An $O(\log \log m)$ Prophet Inequality for Subadditive Combinatorial Auctions

Paul Dütting
Google Research, Switzerland

Warwick DIMAP Seminar
November 1, 2021

Joint work with
Thomas Kesselheim (University of Bonn) and Brendan Lucier (Microsoft Research)
Online Combinatorial Auction

- *n* buyers, arriving one by one

- *m* items

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare
Online Combinatorial Auction

- n buyers,

\[\begin{align*}
 v_1(\{1\}) &= 1 \\
 v_1(\{2\}) &= 2 \\
 v_1(\{1, 2\}) &= 3
\end{align*} \]

- m items

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

Paul Dütting

An $O(\log \log m)$ Prophet Inequality for Subadditive Combinatorial Auctions
Online Combinatorial Auction

- n buyers, arriving one by one
 - $v_1(\{1\}) = 1$
 - $v_1(\{2\}) = 2$
 - $v_1(\{1, 2\}) = 3$
 - $v_2(\{1\}) = 0$
 - $v_2(\{2\}) = 10$
 - $v_2(\{1, 2\}) = 10$
 - $v_3(\{1\}) = 5$
 - $v_3(\{2\}) = 5$
 - $v_3(\{1, 2\}) = 5$
 - $v_4(\{1\}) = 20$
 - $v_4(\{2\}) = 50$
 - $v_4(\{1, 2\}) = 60$

- m items

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare
Online Combinatorial Auction

- n buyers, arriving one by one
- m items
- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

\[
\begin{align*}
v_2(\{1\}) &= 0 \\
v_2(\{2\}) &= 10 \\
v_2(\{1, 2\}) &= 10
\end{align*}
\]
Online Combinatorial Auction

- n buyers, arriving one by one
- m items
- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

$v_3(\{1\}) = 5$
$v_3(\{2\}) = 5$
$v_3(\{1, 2\}) = 5$
Online Combinatorial Auction

- n buyers, arriving one by one

- m items

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

$v_3(\{1\}) = 5$
$v_3(\{2\}) = 5$
$v_3(\{1, 2\}) = 5$
Online Combinatorial Auction

- \(n\) buyers, arriving one by one

- \(m\) items

- At each arrival: Decide which items to assign (possibly none)

- Maximize social welfare

\(v_4(\{1\}) = 20\)
\(v_4(\{2\}) = 50\)
\(v_4(\{1, 2\}) = 60\)
Online Combinatorial Auction

- n buyers, arriving one by one

- m items

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare

Paul Dütting

An $O(\log \log m)$ Prophet Inequality for Subadditive Combinatorial Auctions
Online Combinatorial Auction

- n buyers, arriving one by one

- m items

- At each arrival: Decide which items to assign (possibly none)
- Maximize social welfare
- $v_i \sim \mathcal{D}_i$ independently; \mathcal{D}_i known in advance

Paul Dütting
An $O(\log \log m)$ Prophet Inequality for Subadditive Combinatorial Auctions
Definition

A valuation function \(v_i : 2^{[m]} \rightarrow \mathbb{R}_{\geq 0} \) is subadditive if

\[
v_i(S \cup T) \leq v_i(S) + v_i(T) \quad \text{for all } S, T \subseteq [m]
\]
Subadditive Valuations

Definition

A valuation function \(v_i : 2^{[m]} \rightarrow \mathbb{R}_{\geq 0} \) is subadditive if

\[
v_i(S \cup T) \leq v_i(S) + v_i(T) \quad \text{for all } S, T \subseteq [m]
\]

Definition

A valuation function \(v_i : 2^{[m]} \rightarrow \mathbb{R}_{\geq 0} \) is XOS if

\[
v_i(S) = \max_{\ell} \sum_{j \in S} v_{i,j} \quad \text{for all } S \subseteq [m]
\]
Prior Work

If all valuation functions are XOS (for example submodular):

- 2-approximation of welfare via static, anonymous item prices (generalizes classic prophet inequality) [Feldman, Gravin, Lucier SODA 2015]

- $O(1)$-approximation of revenue via simple mechanism [Cai and Zhao STOC 2017]
If all valuation functions are XOS (for example submodular):

- 2-approximation of welfare via static, anonymous item prices (generalizes classic \textit{prophet inequality})

 \[[\text{Feldman, Gravin, Lucier SODA 2015}] \]

- \(O(1)\)-approximation of revenue via simple mechanism

 \[[\text{Cai and Zhao STOC 2017}] \]

Our question: Valuations are only subadditive (i.e. \(v_i(S \cup T) \leq v_i(S) + v_i(T) \))

So far: Only \(\Theta(\log m) \)-approximations
Our Results

If all valuation functions are subadditive (i.e. $\nu_i(S \cup T) \leq \nu_i(S) + \nu_i(T)$):

- $O(\log \log m)$-approximation of welfare
 via static, anonymous item prices

- $O(\log \log m)$-approximation of revenue
 via simple mechanism
If all valuation functions are \textit{subadditive} (i.e. \(v_i(S \cup T) \leq v_i(S) + v_i(T) \)):

- \(O(\log \log m)\)-approximation of welfare via static, anonymous item prices
- \(O(\log \log m)\)-approximation of revenue via simple mechanism
- Both run in polynomial time given access to demand oracles
Follow-Up Work

- [Assadi, Kesselheim, Singla SODA’21] use our key lemma to design a truthful prior-free $O((\log \log m)^3)$-approximation for XOS and subadditive combinatorial auctions
1 The balanced prices approach
2 Our new argument
3 Summary and open problems
The Balanced Prices Approach
The Classic Prophet Inequality

Theorem (Samuel-Cahn ’84; Kleinberg & Weinberg STOC’12)

For the single-item problem,

\[E[ALG(v)] \geq \frac{1}{2} \cdot E[OPT(v)]. \]
Analysis

\[\nu_1 \sim D_1 \quad \nu_2 \sim D_2 \quad \nu_3 \sim D_3 \quad \nu_4 \sim D_4 \quad \nu_5 \sim D_5 \]
Analysis

Set any price p.

$v_1 \sim D_1$, $v_2 \sim D_2$, $v_3 \sim D_3$, $v_4 \sim D_4$, $v_5 \sim D_5$
Set any price p. Let $q =$ probability that item is sold.
Set any price p. Let $q = $ probability that item is sold.

How much money do we collect?

$$E[\text{revenue}] = p \cdot q$$
Analysis

Set any price p. Let $q =$ probability that item is sold.

How much money do we collect?

$$\mathbf{E}[\text{revenue}] = p \cdot q$$

What’s a buyer’s utility (value minus payment)?

$$\mathbf{E}[u_i] = \mathbf{E}[(v_i - p)^+ \cdot 1_{\text{nobody before } i \text{ buys}}]$$

$$= \mathbf{E}[(v_i - p)^+] \cdot \mathbf{P}[\text{nobody before } i \text{ buys}]$$

$$\geq \mathbf{E}[(v_i - p)^+] \cdot (1 - q)$$
Putting the Pieces Together

So far:

\[E[\text{revenue}] = p \cdot q \quad \text{and} \quad E[u_i] \geq E[(v_i - p)^+] \cdot (1 - q) \]
Putting the Pieces Together

So far:

\[E[\text{revenue}] = p \cdot q \quad \text{and} \quad E[u_i] \geq E[(v_i - p)^+] \cdot (1 - q) \]

In combination:

\[E[\text{welfare}] = E[\text{revenue}] + \sum_i E[u_i] \]

\[\geq p \cdot q + \sum_i E[(v_i - p)^+] \cdot (1 - q) \]

\[\geq p \cdot q + E[\max_i (v_i - p)] \cdot (1 - q) \]
Putting the Pieces Together

So far:

\[E[\text{revenue}] = p \cdot q \quad \text{and} \quad E[u_i] \geq E[(v_i - p)^+] \cdot (1 - q) \]

In combination:

\[E[\text{welfare}] = E[\text{revenue}] + \sum_{i} E[u_i] \]

\[\geq p \cdot q + \sum_{i} E[(v_i - p)^+] \cdot (1 - q) \]

\[\geq p \cdot q + E[\max_i (v_i - p)] \cdot (1 - q) \]

For \(p = \frac{1}{2} \cdot E[\max_i v_i] \) this yields

\[E[\text{welfare}] \geq \frac{1}{2} \cdot E[\max_i v_i] \cdot q + \frac{1}{2} \cdot E[\max_i v_i] \cdot (1 - q) = \frac{1}{2} \cdot E[\max_i v_i] \]
Consider full information.

\[p = \max_k v_k \]

Let \(v_i = \max_k v_k \)

Case 1:
- Somebody \(i' < i \) buys item
 \[\text{revenue} \geq \frac{1}{2} v_i \]

Case 2:
- Nobody \(i' < i \) buys item
 \[u_i \geq v_i - \frac{1}{2} v_i = \frac{1}{2} v_i \]

In either case:

\[\text{welfare} = \text{revenue} + \text{utilities} \geq \frac{1}{2} v_i \]
Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is “balanced”
Consider full information.

Price \(p = \frac{1}{2} \cdot \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)
Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is “balanced”

Let $v_i = \max_k v_k$

- **Case 1:** Somebody $i' < i$ buys item
Consider full information.

Price \(p = \frac{1}{2} \cdot \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)

- **Case 1:** Somebody \(i' < i \) buys item
 \[\Rightarrow \text{revenue} \geq \frac{1}{2} v_i \]
Consider full information.

Price \(p = \frac{1}{2} \cdot \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)

- **Case 1:** Somebody \(i' < i \) buys item
 \(\Rightarrow \) revenue \(\geq \frac{1}{2} v_i \)

- **Case 1:** Nobody \(i' < i \) buys item
Consider full information.

Price $p = \frac{1}{2} \cdot \max_k v_k$ is “balanced”

Let $v_i = \max_k v_k$

- **Case 1:** Somebody $i' < i$ buys item
 \Rightarrow revenue $\geq \frac{1}{2} v_i$

- **Case 1:** Nobody $i' < i$ buys item
 \Rightarrow $u_i \geq v_i - \frac{1}{2} v_i = \frac{1}{2} v_i$
Consider full information.

Price \(p = \frac{1}{2} \cdot \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)

- **Case 1**: Somebody \(i' < i \) buys item
 \[\Rightarrow \text{revenue} \geq \frac{1}{2} v_i \]

- **Case 1**: Nobody \(i' < i \) buys item
 \[\Rightarrow u_i \geq v_i - \frac{1}{2} v_i = \frac{1}{2} v_i \]

In either case: welfare = revenue + utilities \(\geq \frac{1}{2} v_i \)
Posted Prices in Combinatorial Auctions

- \(n\) buyers, arriving one by one

- \(m\) items

- Precompute item prices \(p_1, \ldots, p_m\)
- At each arrival: Arriving buyer purchases bundle maximizing utility \(v_i(S) - \sum_{j \in S} p_j\)
- Maximize social welfare \(\sum_{i=1}^{n} v_i(X_i)\)
Posted Prices in Combinatorial Auctions

- n buyers, ∞

- $v_1(\{1\}) = 1$
- $v_1(\{2\}) = 2$
- $v_1(\{1, 2\}) = 3$

- m items

- 4
- 5

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) - \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$
Posted Prices in Combinatorial Auctions

- n buyers, arriving one by one

\[v_2(\{1\}) = 0 \]
\[v_2(\{2\}) = 10 \]
\[v_2(\{1, 2\}) = 10 \]

- m items

- Precompute item prices p_1, \ldots, p_m

- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) - \sum_{j \in S} p_j$

- Maximize social welfare $\sum_{i=1}^n v_i(X_i)$
Posted Prices in Combinatorial Auctions

- n buyers, arriving one by one
 - $v_2(\{1\}) = 0$
 - $v_2(\{2\}) = 10$
 - $v_2(\{1, 2\}) = 10$

- m items
 - Precompute item prices p_1, \ldots, p_m
 - At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) - \sum_{j \in S} p_j$
 - Maximize social welfare $\sum_{i=1}^{n} v_i(X_i)$
Posted Prices in Combinatorial Auctions

- n buyers, arriving one by one
- m items

- Precompute item prices p_1, \ldots, p_m
- At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) - \sum_{j \in S} p_j$
- Maximize social welfare $\sum_{i=1}^n v_i(X_i)$

\begin{align*}
v_3(\{1\}) &= 5 \\
v_3(\{2\}) &= 5 \\
v_3(\{1, 2\}) &= 5
\end{align*}
n buyers, arriving one by one

\begin{align*}
v_3(\{1\}) &= 5 \\
v_3(\{2\}) &= 5 \\
v_3(\{1, 2\}) &= 5
\end{align*}

m items

Precompute item prices p_1, \ldots, p_m

At each arrival: Arriving buyer purchases bundle maximizing utility $v_i(S) - \sum_{j \in S} p_j$

Maximize social welfare $\sum_{i=1}^n v_i(X_i)$
Posted Prices in Combinatorial Auctions

- n buyers, arriving one by one

- m items

- Precompute item prices p_1, \ldots, p_m

- At each arrival: Arriving buyer purchases bundle maximizing utility $\nu_i(S) - \sum_{j \in S} p_j$

- Maximize social welfare $\sum_{i=1}^n \nu_i(X_i)$
Posted Prices in Combinatorial Auctions

- \(n \) buyers, arriving one by one

 - Precompute item prices \(p_1, \ldots, p_m \)
 - At each arrival: Arriving buyer purchases bundle maximizing utility \(v_i(S) - \sum_{j \in S} p_j \)
 - Maximize social welfare \(\sum_{i=1}^{n} v_i(X_i) \)

- \(m \) items
Theorem (Feldman, Gravin, Lucier SODA’15)

For any distributions $\mathcal{D}_1, \ldots, \mathcal{D}_n$ over XOS functions there exist static, anonymous item prices such that for the resulting allocation X_1, \ldots, X_n,

$$
\mathbb{E} \left[\sum_{i=1}^{n} v_i(X_i) \right] \geq \frac{1}{2} \cdot \mathbb{E}[OPT(v)].
$$

Recall: XOS $\Leftrightarrow v_i(S) = \max_\ell \sum_{j \in S} v_{i,j}^\ell$
Balanced Prices: Definition

Definition (Dütting, Feldman, Kesselheim, Lucier FOCS’17)

A valuation function v_i admits balanced prices if for every set of items $U \subseteq [m]$ there exist item prices p_j for $j \in U$ such that for all $T \subseteq U$:

\[
\begin{align*}
\sum_{j \in U \setminus T} p_j &\leq v_i(U \setminus T) \quad \text{(prices are not too high)} \\
\sum_{j \in T} p_j &\geq v_i(U) - v_i(U \setminus T) \quad \text{(prices are not too low)}
\end{align*}
\]
Balanced Prices: Definition

Definition (Dütting, Feldman, Kesselheim, Lucier FOCS’17)

A valuation function \(v_i \) admits balanced prices if for every set of items \(U \subseteq [m] \) there exist item prices \(p_j \) for \(j \in U \) such that for all \(T \subseteq U \):

- \[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \] (prices are not too high)
- \[\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \] (prices are not too low)

Observation: XOS functions admit balanced prices

Let \(\ell^* \) be such that \(v_i(U) = \sum_{j \in U} v_{i,j}^{\ell^*} \)
Let \(p_j = v_{i,j}^{\ell^*} \)
Balanced Prices: Examples

$$\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U)$$

$$\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U)$$

$$U = \{1, 2, 3\}$$
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \]
\[\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[U = \{1, 2, 3\} \]

Example 1: Additive

\[v_1(S) = |S| \]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[U = \{1, 2, 3\} \]

Example 1: Additive

\[v_1(S) = |S| \]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \quad \sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[\text{U} = \{1, 2, 3\} \]

Example 1: Additive

\[v_1(S) = |S| \]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \quad \sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \]

\[U = \{1, 2, 3\} \]

Example 1: Additive
\[v_1(S) = |S| \]
Balanced Prices: Examples

\[
\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U)
\]

\[
\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U)
\]

\(U = \{1, 2, 3\}\)

Example 1: Additive

\(v_1(S) = |S|\)

Example 2: Unit-Demand

\(v_2(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}\)
Balanced Prices: Examples

\[
\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U)
\]

\[
\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U)
\]

\[U = \{1, 2, 3\}\]

Example 1: Additive

\[v_1(S) = |S|\]

Example 2: Unit-Demand

\[v_2(S) = \begin{cases}
0 & \text{if } S = \emptyset \\
1 & \text{if } S \neq \emptyset
\end{cases}\]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \quad \sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\(U = \{1, 2, 3\} \)

Example 1: Additive

\(v_1(S) = |S| \)

Example 2: Unit-Demand

\[
 v_2(S) = \begin{cases}
 0 & \text{if } S = \emptyset \\
 1 & \text{if } S \neq \emptyset
\end{cases}
\]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[U = \{1, 2, 3\} \]

Example 1: Additive
\[v_1(S) = |S| \]

Example 2: Unit-Demand
\[v_2(S) = \begin{cases}
0 & \text{if } S = \emptyset \\
1 & \text{if } S \neq \emptyset
\end{cases} \]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \quad \sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \]

\[U = \{1, 2, 3\} \]

Example 1: Additive
\[v_1(S) = |S| \]

Example 2: Unit-Demand
\[v_2(S) = \begin{cases}
0 & \text{if } S = \emptyset \\
1 & \text{if } S \neq \emptyset
\end{cases} \]
Balanced Prices: Examples

\[\sum_{j \in U \setminus T} p_j \leq v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \]

\[\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T) \quad (\forall T \subseteq U) \quad \checkmark \]

\[U = \{1, 2, 3\} \]

Example 1: Additive
\[v_1(S) = |S| \]

Example 2: Unit-Demand
\[v_2(S) = \begin{cases}
0 & \text{if } S = \emptyset \\
1 & \text{if } S \neq \emptyset
\end{cases} \]
If a class of valuations admits balanced prices, then for any distributions D_1, \ldots, D_n there exist static, anonymous item prices such that for the resulting allocation X_1, \ldots, X_n,

$$
E \left[\sum_{i=1}^{n} v_i(X_i) \right] \geq \frac{1}{2} \cdot E[OPT(v)].
$$
Setting the Prices

Fix $\tilde{v}_1, \ldots, \tilde{v}_n$

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(\tilde{v})\}$

For $j \in U_i$ set $p_j^{\tilde{v}}$ to balanced price for item j in \tilde{v}_i, U_i

Price for item j: $\bar{p}_j = \frac{1}{2} \cdot E_{\tilde{v} \sim D}[p_j^{\tilde{v}}]$
Proof Sketch Full Information

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$

Set price $\bar{p}_j = \frac{p_j}{2}$ for $j \in U$

Let $T_i = \{j \in U_i \text{ sold to buyers } i' \neq i\}$
Proof Sketch Full Information

Let \(U_i = \{ j \mid i \text{ gets } j \text{ in } OPT(\nu) \} \)

Set price \(\bar{p}_j = \frac{p_j}{2} \) for \(j \in U \)

Let \(T_i = \{ j \in U_i \text{ sold to buyers } i' \neq i \} \)

Because prices are balanced:

(a) \(\sum_{j \in U_i \setminus T_i} \bar{p}_j \leq \frac{1}{2} \nu_i(U_i \setminus T_i) \)

(b) \(\sum_{j \in T_i} \bar{p}_j \geq \frac{1}{2} (\nu_i(U_i) - \nu_i(U_i \setminus T_i)) \)
Proof Sketch Full Information

Let $U_i = \{ j \mid i \text{ gets } j \text{ in } \text{OPT}(v) \}$

Set price $\bar{p}_j = \frac{p_j}{2}$ for $j \in U$

Let $T_i = \{ j \in U_i \text{ sold to buyers } i' \neq i \}$

Because prices are balanced:

(a) $\sum_{j \in U_i \setminus T_i} \bar{p}_j \leq \frac{1}{2} v_i(U_i \setminus T_i)$

(b) $\sum_{j \in T_i} \bar{p}_j \geq \frac{1}{2} (v_i(U_i) - v_i(U_i \setminus T_i))$

Then, for the allocation X_1, \ldots, X_n, we have:

$$u_i(X_i, \bar{p}) + \sum_{j \in T_i} \bar{p}_j \geq \left(v_i(U_i \setminus T_i) - \sum_{j \in U_i \setminus T_i} \bar{p}_j \right) + \sum_{j \in T_i} \bar{p}_j$$

$$\geq \left(v_i(U_i \setminus T_i) - \frac{1}{2} v_i(U_i \setminus T_i) \right) + \frac{1}{2} \left(v_i(U_i) - v_i(U_i \setminus T_i) \right)$$

$$= \frac{1}{2} v_i(U_i)$$
Proof Sketch Full Information

Let \(U_i = \{ j \mid i \text{ gets } j \text{ in } \text{OPT}(\nu) \} \)

Set price \(\bar{p}_j = \frac{p_j}{2} \) for \(j \in U \)

Let \(T_i = \{ j \in U_i \text{ sold to buyers } i' \neq i \} \)

Because prices are balanced:
(a) \(\sum_{j \in U_i \setminus T_i} \bar{p}_j \leq \frac{1}{2} \nu_i(U_i \setminus T_i) \)
(b) \(\sum_{j \in T_i} \bar{p}_j \geq \frac{1}{2} (\nu_i(U_i) - \nu_i(U_i \setminus T_i)) \)

Then, for the allocation \(X_1, \ldots, X_n \), we have:

\[
\sum_{i=1}^{n} \nu_i(X_i) \geq \sum_{i=1}^{n} \left[u_i(X_i, \bar{p}) + \sum_{j \in T_i} \bar{p}_j \right] \geq \sum_{i=1}^{n} \left[\left(\nu_i(U_i \setminus T_i) - \sum_{j \in U_i \setminus T_i} \bar{p}_j \right) + \sum_{j \in T_i} \bar{p}_j \right] \\
\geq \sum_{i=1}^{n} \left[\left(\nu_i(U_i \setminus T_i) - \frac{1}{2} \nu_i(U_i \setminus T_i) \right) + \frac{1}{2} \left(\nu_i(U_i) - \nu_i(U_i \setminus T_i) \right) \right] \\
= \sum_{i=1}^{n} \frac{1}{2} \nu_i(U_i)
\]
Subadditive functions admit approximately balanced prices
This way we can get a $\Theta(\log m)$ approximation
But we cannot do better than this
Our New Argument
Lemma (Dütting, Kesselheim, Lucier FOCS’20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S \subseteq U} \lambda_S \left(v_i(S \setminus T) - \sum_{j \in S \setminus T} p_j \right) + \sum_{j \in T} p_j \geq \frac{v_i(U)}{\gamma},$$

where $\gamma \in O(\log \log m)$.

Key Lemma
Lemma (Dütting, Kesselheim, Lucier FOCS’20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S \subseteq U} \lambda_S \left(v_i(S \setminus T) - \sum_{j \in S \setminus T} p_j \right) + \sum_{j \in T} p_j \geq \frac{v_i(U)}{\gamma},$$

where $\gamma \in O(\log \log m)$.
Lemma (Dütting, Kesselheim, Lucier FOCS’20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S \subseteq U} \lambda_S \left(v_i(S \setminus T) - \sum_{j \in S \setminus T} p_j \right) + \sum_{j \in T} p_j \geq \frac{v_i(U)}{\gamma},$$

where $\gamma \in O(\log \log m)$.
Lemma (Dütting, Kesselheim, Lucier FOCS’20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S \subseteq U} \lambda_S \left(v_i(S \setminus T) - \sum_{j \in S \setminus T} p_j \right) + \sum_{j \in T} p_j \geq \frac{v_i(U)}{\gamma},$$

where $\gamma \in O(\log \log m)$.
Lemma (Dütting, Kesselheim, Lucier FOCS’20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S \subseteq U} \lambda_S \left(v_i(S \setminus T) - \sum_{j \in S \setminus T} p_j \right) + \sum_{j \in T} p_j \geq \frac{v_i(U)}{\gamma},$$

where $\gamma \in O(\log \log m)$.

Paul Dütting
An $O(\log \log m)$ Prophet Inequality for Subadditive Combinatorial Auctions

23
Key Lemma

Lemma (Dütting, Kesselheim, Lucier FOCS’20)

For any subadditive valuation v_i and any set $U \subseteq [m]$ there exist prices p_j for $j \in U$ and a probability distribution λ such that for all $T \subseteq U$

$$\sum_{S \subseteq U} \lambda_S \left(v_i(S \setminus T) - \sum_{j \in S \setminus T} p_j \right) + \sum_{j \in T} p_j \geq \frac{v_i(U)}{\gamma},$$

where $\gamma \in O(\log \log m)$.
Lemma

For every subadditive function v_i and set U there exists a probability distribution λ on $S \subseteq U$ so that for every probability distribution μ on $T \subseteq U$ with $\sum_{T : j \in T} \mu_T \leq \sum_{S : j \in S} \lambda_S$ for all items j, it holds that

$$\sum_{S, T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{1 \gamma} \cdot v_i(U).$$
Equivalent to Key Lemma

Lemma

For every subadditive function v_i and set U there exists a probability distribution λ on $S \subseteq U$ so that for every probability distribution μ on $T \subseteq U$ with $\sum_{T:j \in T} \mu_j \leq \sum_{S:j \in S} \lambda_S$ for all items j, it holds that

$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$
For every subadditive function v_i and set U there exists a probability distribution λ on $S \subseteq U$ so that for every probability distribution μ on $T \subseteq U$ with $\sum_{T:j \in T} \mu_T \leq \sum_{S:j \in S} \lambda_S$ for all items j, it holds that

$$\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$
Lemma

For every subadditive function v_i and set U there exists a probability distribution λ on $S \subseteq U$ so that for every probability distribution μ on $T \subseteq U$ with $\sum_{T: j \in T} \mu_T \leq \sum_{S: j \in S} \lambda_S$ for all items j, it holds that

$$\sum_{S, T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$
Equivalent to Key Lemma

Lemma

For every subadditive function v_i and set U there exists a probability distribution λ on $S \subseteq U$ so that for every probability distribution μ on $T \subseteq U$ with $\sum_{T: j \in T} \mu_T \leq \sum_{S: j \in S} \lambda_S$ for all items j, it holds that

$$\sum_{S, T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{\gamma} \cdot v_i(U).$$
Claim: There is λ such that for all μ:
\[\sum_{S, T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U). \]
Claim: There is λ such that for all μ: $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$
subject to $\sum_{S:j \in S} \lambda_S \leq q$
Claim: There is \(\lambda \) such that for all \(\mu \):

\[
\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For \(q = \frac{1}{2} \):

Take \(\lambda \) that maximizes \(\sum_S \lambda_S \cdot v_i(S) \)

subject to \(\sum_{S: j \in S} \lambda_S \leq q \)
Claim: There is λ such that for all μ: $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$.
Claim: There is \(\lambda \) such that for all \(\mu \):
\[
\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For \(q = \frac{1}{2} \):

Take \(\lambda \) that maximizes
\[
\sum_S \lambda_S \cdot v_i(S)
\]
subject to
\[
\sum_{S:j \in S} \lambda_S \leq q
\]
Claim: There is λ such that for all μ: \[
\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$ subject to $\sum_{S : j \in S} \lambda_S \leq q$

By subadditivity:

If $E[v_i(S \setminus T)]$ is small then $E[v_i(S \cap T)]$ is large.
Claim: There is λ such that for all μ: $\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U)$.

For $q = \frac{1}{2}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:
If $\mathbb{E}[v_i(S \setminus T)]$ is small then $\mathbb{E}[v_i(S \cap T)]$ is large.

Furthermore: $\mathbb{Pr}[j \in S \cap T] = q^2$.
Claim: There is \(\lambda \) such that for all \(\mu \):

\[
\sum_{S, T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For \(q = \frac{1}{2}, \frac{1}{4} \):

Take \(\lambda \) that maximizes \(\sum_S \lambda_S \cdot v_i(S) \)
subject to \(\sum_{S:j \in S} \lambda_S \leq q \)

By subadditivity:
If \(E[v_i(S \setminus T)] \) is small then \(E[v_i(S \cap T)] \) is large.

Furthermore: \(\Pr[j \in S \cap T] = q^2. \)
Claim: There is \(\lambda \) such that for all \(\mu \):

\[
\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For \(q = \frac{1}{2}, \frac{1}{4} \):

Take \(\lambda \) that maximizes \(\sum_S \lambda_S \cdot v_i(S) \)

subject to \(\sum_{S:j \in S} \lambda_S \leq q \)

By subadditivity:

If \(E[v_i(S \setminus T)] \) is small then \(E[v_i(S \cap T)] \) is large.

Furthermore: \(\Pr[j \in S \cap T] = q^2 \).
Claim: There is λ such that for all μ: \[
\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For $q = \frac{1}{2}, \frac{1}{4}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:
If $E[v_i(S \setminus T)]$ is small then $E[v_i(S \cap T)]$ is large.

Furthermore: $Pr[j \in S \cap T] = q^2$.

Paul Dütting
An O(\log \log m) Prophet Inequality for Subadditive Combinatorial Auctions
Claim: There is λ such that for all μ: \[\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U). \]

For $q = \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \ldots, \frac{1}{m}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:
If $\mathbb{E}[v_i(S \setminus T)]$ is small then $\mathbb{E}[v_i(S \cap T)]$ is large.

Furthermore: $\Pr[j \in S \cap T] = q^2$.
Claim: There is λ such that for all μ: \[
\sum_{S,T} \lambda_S \cdot \mu_T \cdot v_i(S \setminus T) \geq \frac{1}{O(\log \log m)} \cdot v_i(U).
\]

For $q = \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \ldots, \frac{1}{m}$:

Take λ that maximizes $\sum_S \lambda_S \cdot v_i(S)$ subject to $\sum_{S:j \in S} \lambda_S \leq q$

By subadditivity:
If $E[v_i(S \setminus T)]$ is small then $E[v_i(S \cap T)]$ is large.

Furthermore: $\Pr[j \in S \cap T] = q^2$.

\Rightarrow One of $q = \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \frac{1}{256}, \ldots, \frac{1}{m}$ will be good.
Additional Results in the Paper
The $O(\log \log m)$ bound is tight for the equal marginals approach taken here.

An alternative proof of key lemma based on configuration LP, which yields an efficient algorithm.

A simple, DSIC mechanism that yields a $O(\log \log m)$ approximation to the optimal revenue.
Conclusion and Open Questions
Summary

- Major progress on one of the main frontiers in the posted pricing/prophet inequalities literature
- Technique for dealing with subadditive valuations that goes beyond “approximate with XOS functions”
- Big open question: Can we get $O(1)$?

Thanks! Questions?