sAMPle COMpression

Kolja Knauer

Warwick 07/02/2022

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d}

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative) assign to each cell a sign-vector

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative) assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative) assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)
assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$
(realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$
Complex of Oriented Matroids

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)
assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$
(realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)
assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells ${ }^{\text {as sign-vectors }}$

$$
(0<+,-)
$$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)
assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$
(realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$
$\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative)
assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$
$\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate 5

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs (positive and negative) assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate 5 \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate 5 \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H}
$H_{e} \in \mathcal{H}$ splits K in two halfs
assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$
(realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$
$\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

 (affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate 5 \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

 (affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate 5 \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs assign to each cell a sign-vector \rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$ $\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X$
as cells as sign-vectors

$$
(0<+,-)
$$

maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate 5 \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

the realizable setting

(affine) hyperplane arrangement $\mathcal{H}=\left\{H_{e} \mid e \in E\right\}$ in \mathbb{R}^{d} intersect with open convex K code position $x \in K$ relative to \mathcal{H} $H_{e} \in \mathcal{H}$ splits K in two halfs assign to each cell a sign-vector
\rightsquigarrow covectors $\mathcal{L} \subseteq\{0, \pm\}^{E}$ (realizable) $\mathbf{C O M} \mathcal{M}=(E, \mathcal{L})$
$\rightsquigarrow Y \subseteq X \Leftrightarrow Y \leq X \quad \Leftrightarrow Y \supseteq X$
as cells as sign-vectors as subgraphs
maximal cells \rightsquigarrow topes $\mathcal{T} \subseteq\{ \pm\}^{E}$ $T \sim T^{\prime} \Leftrightarrow$ differ in one coordinate \rightsquigarrow tope graph $G_{\mathcal{M}} \subseteq Q_{E}$

special cases of realizability

affine arrangement in \mathbb{R}^{d} intersected with open convex
\rightsquigarrow complex of oriented matroids (COM) (Bandelt, Chepoi, K '18)

coordinate hyperplanes in \mathbb{R}^{d} intersected with open convex \rightsquigarrow ample set systems (AMP) (Lawrence '83)
affine arrangement \mathbb{R}^{d}
\rightsquigarrow affine oriented matroid (AOM) (Edmonds, Fukuda, Mandel '82)
central arrangement in \mathbb{R}^{d}
\rightsquigarrow oriented matroid (OM) (Bland, Las Vergnas '78)

special cases of realizability

coordinate hyperplanes in \mathbb{R}^{d} intersected with open convex \rightsquigarrow ample set systems (AMP) (Lawrence '83)
affine arrangement \mathbb{R}^{d}
\rightsquigarrow affine oriented matroid (AOM) (Edmonds, Fukuda, Mandel '82)
central arrangement in \mathbb{R}^{d} \rightsquigarrow oriented matroid (OM) (Bland, Las Vergnas '78)
axioms for sign vectors

. Covector axioms: $\mathcal{M}=(E, \mathcal{L}) \mathbf{C O M}$:
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y)
$$

axioms for sign vectors

(FS)

$$
\left(\begin{array}{c}
0 \\
+ \\
- \\
+
\end{array}\right) \circ\left(-\left(\begin{array}{c}
+ \\
+ \\
+ \\
+
\end{array}\right)\right)=\left(\begin{array}{l}
- \\
+ \\
- \\
+
\end{array}\right)
$$

axioms for sign vectors

(FS)

$$
\left(\begin{array}{l}
0 \\
+ \\
- \\
+
\end{array}\right) \circ\left(\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right)=\left(\begin{array}{l}
- \\
+ \\
- \\
+
\end{array}\right)
$$

axioms for sign vectors

(FS)

$$
\left(\begin{array}{l}
0 \\
+ \\
- \\
+
\end{array}\right) \circ\left(\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right)=\left(\begin{array}{l}
- \\
+ \\
- \\
+
\end{array}\right)
$$

$$
\begin{aligned}
& \text { - Covector axioms: } \mathcal{M}=(E, \mathcal{L}) \mathrm{COM}: \\
& \text { (FS) } \mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L} \\
& \text { (SE) } \forall X, Y \in \mathcal{L} \text { and } e \in S(X, Y) \exists Z \in \mathcal{L}: \\
& \quad Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
\end{aligned}
$$

axioms for sign vectors

axioms for sign vectors

axioms for sign vectors

(SE)

$$
\left(\begin{array}{c}
0 \\
+ \\
- \\
+
\end{array}\right),\left(\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right)
$$

- Covector axioms: $\mathcal{M}=(E, \mathcal{L}) \mathbf{C O M}$:
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
$$

axioms for sign vectors

(SE)

- Covector axioms: $\mathcal{M}=(E, \mathcal{L}) \mathbf{C O M}$:
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
$$

axioms for sign vectors

(SE)

- Covector axioms: $\mathcal{M}=(E, \mathcal{L}) \mathrm{COM}$:
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
$$

axioms for sign vectors

(SE)

- Covector axioms: $\mathcal{M}=(E, \mathcal{L}) \mathbf{C O M}$:
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
$$

axioms for sign vectors

a common generalization

- Covector axioms: $\mathcal{M}=(E, \mathcal{L})$ COM ;
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) \text {. }
$$

- Covector axioms: $\mathcal{M}=(E, \mathcal{L})$ OM: (FS)+(SE) and:
(Z) $0 \in \mathcal{L}$
- Covector axioms: $\mathcal{M}=(E, \mathcal{L})$ AOM: (FS)+(SE) and:
(A) something lengthy
\circ Covector axioms: $\mathcal{M}=(E, \mathcal{L})$ AMP:
(FS)+(SE) and:
(I) $\mathcal{L} \circ\{ \pm 1\}^{E}=\mathcal{L}$

COMs as Complexes of Oriented Matroids

COMs as Complexes of Oriented Matroids

COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg '18): left regular band: idempotent semigroup with $X \circ Y \circ X=X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y=Y$ principal filters are CW-posets
CW left regular band: other examples: complex oriented matroids, interval greedoids

COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg '18): left regular band: idempotent semigroup with $X \circ Y \circ X=X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y=Y$ principal filters are CW-posets
CW left regular band:
other examples: complex oriented matroids, interval greedoids

COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg '18): left regular band: idempotent semigroup with $X \circ Y \circ X=X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y=Y$
principal filters are CW-posets
CW left regular band:

COMs as Complexes of Oriented Matroids

CW left regular bands (Margolis, Saliola, Steinberg '18): left regular band: idempotent semigroup with $X \circ Y \circ X=X \circ Y$ \rightsquigarrow poset structure: $X \leq Y$ if $X \circ Y=Y$
principal filters are CW-posets
CW left regular band:

COMs as Complexes of Oriented Matroids

CAT(0) cube complexes (Gromov '87)
examples:
CAT(0) Coxeter complexes

COMs as Complexes of Oriented Matroids

CAT(0) cube complexes (Gromov '87)

AMPs are those COMs whose faces are cubes

COMs as Complexes of Oriented Matroids

CAT(0) cube complexes (Gromov '87)

> examples:

CAT(0) Coxeter complexes

AMPs are those COMs whose faces are cubes
rank of $\mathcal{M}=$ max rank among faces

tope graphs

\circ Covector axioms: (E, \mathcal{L}) COM iff
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:
$Z_{e}=0$ and $Z_{f}=X_{f} \circ Y_{f}$ for $f \notin S(X, Y)$.

- Covector axioms: (E, \mathcal{L}) oriented matroid: (FS)+(SE) and:
$(Z) 0 \in \mathcal{L}$
- Covector axioms: (E, \mathcal{L}) affine oriented matroid: (FS)+(SE) and:
(A) something lengthy

Covector axioms: (E, \mathcal{L}) ample set: (SE) and:
(I) $\mathcal{L} \circ\{ \pm 1\}^{E}=\mathcal{L}$

tope graphs

- Covector axioms: (E, \mathcal{L}) COM iff

(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z$
$Z_{e}=0$ and $Z_{f}=X_{f} \circ Y_{f}$

- Covector axioms: (E, \mathcal{L}) oriented matroid: (FS)+(SE) and:
(Z) $0 \in \mathcal{L}$
- Covector axioms:
(E. (FS)+(SE) and:
(A) sometr.

Cor orap

tope graphs are partial cubes

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$

tope graphs are partial cubes

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$

tope graphs are partial cubes

 G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube $G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$

tope graphs are partial cubes

 G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$
isometric \Leftrightarrow shortest paths use each color at most once

tope graphs are partial cubes

 G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$
isometric \Leftrightarrow shortest paths use each color at most once

tope graphs are partial cubes

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$
isometric \Leftrightarrow shortest paths use each color at most once \rightsquigarrow partial-cube-minors

pc-contraction of e
Θ-class
$\subseteq Q_{6}$

pc-restrictions wrt e

tope graphs are partial cubes

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$
isometric \Leftrightarrow shortest paths use each color at most once \rightsquigarrow partial-cube-minors

pc-contraction of e
Θ-class
$\subseteq Q_{6}$

pc-restrictions wrt e

tope graphs are partial cubes

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$
isometric \Leftrightarrow shortest paths use each color at most once \rightsquigarrow partial-cube-minors

pc-contraction of e
Θ-class
$\subseteq Q_{6}$

pc-restrictions wrt e

tope graphs are partial cubes

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q_{n}$ such that $d_{G}(v, w)=d_{Q_{n}}(v, w) \forall v, w \in G$
isometric \Leftrightarrow shortest paths use each color at most once \rightsquigarrow partial-cube-minors Θ-class

pc-contraction of e

pc-restrictions wrt e

convex subgraphs and sign vectors

if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G

convex subgraphs and sign vectors

if G partial cube, then $G^{\prime} \subset G$ convex $\begin{aligned} \text { shortest paths between } & \Longleftrightarrow G^{\prime} \text { restriction of } G \\ \text { vertices of } G^{\prime} \text { stay in } G^{\prime} & X\left(G^{\prime}\right) \text { containing } G^{\prime}\end{aligned}$

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

$(00--0)$

$$
(+0--+)
$$

convex subgraphs and sign vectors

$G^{\prime} \subseteq G$ antipodal: $\forall v \in G^{\prime} \exists \bar{v} \in G^{\prime}:$
$w \in G^{\prime}$ iff there is shortest (v, \bar{v})-path through w

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

$$
\begin{aligned}
& (00--0) \\
& (+0--+)
\end{aligned}
$$

$G^{\prime} \subseteq G$ antipodal: $\forall v \in G^{\prime} \exists \bar{v} \in G^{\prime}:$
$w \in G^{\prime}$ iff there is shortest (v, \bar{v})-path through w
Thm[K, Marc '19]:
G tope graph of $\mathrm{COM} \mathcal{M}=(E, \mathcal{L})$, then
$X \in \mathcal{L} \Leftrightarrow X=X\left(G^{\prime}\right)$ for antipodal $G^{\prime} \subseteq G$

convex subgraphs and sign vectors

> if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}

$$
\begin{aligned}
& (00--0) \\
& (+0--+)
\end{aligned}
$$

$G^{\prime} \subseteq G$ antipodal: $\forall v \in G^{\prime} \exists \bar{v} \in G^{\prime}:$
$w \in G^{\prime}$ iff there is shortest (v, \bar{v})-path through w
Thm[K, Marc '19]:
G tope graph of COM $\mathcal{M}=(E, \mathcal{L})$, then \quad Cor: G tope graph of AMP \Leftrightarrow $X \in \mathcal{L} \Leftrightarrow X=X\left(G^{\prime}\right)$ for antipodal $G^{\prime} \subseteq G$ all antipodal subgraphs cubes

convex subgraphs and sign vectors

if G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime} associate sign vector $X\left(G^{\prime}\right)$ to convex subgraph G^{\prime}
(00

$$
\begin{aligned}
& --0) \\
& (+0--+)
\end{aligned}
$$

actually: Boolean lattice of sign vectors for the same convex G^{\prime}

$G^{\prime} \subseteq G$ antipodal: $\forall v \in G^{\prime} \exists \bar{v} \in G^{\prime}:$
$w \in G^{\prime}$ iff there is shortest (v, \bar{v})-path through w Thm [K, Marc '19]:
G tope graph of $\operatorname{COM} \mathcal{M}=(E, \mathcal{L})$, then
Cor: G tope graph of AMP \Leftrightarrow $X \in \mathcal{L} \Leftrightarrow X=X\left(G^{\prime}\right)$ for antipodal $G^{\prime} \subseteq G$ all antipodal subgraphs cubes
labelled sample compression concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$
set system

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$set system

realizable samples

$\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set systemrealizable samples
$\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$
proper labelled compression scheme of size k

$\beta: \underset{\text { reconstructor }}{\alpha}$

$$
\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}
$$

labelled sample compression concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set system

realizable samples
$\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$
proper labelled compression scheme of size k
$\alpha: \downarrow \mathcal{C} \rightarrow \underset{\mathcal{C}}{\boldsymbol{C}} \rightarrow \underset{\mathcal{C}}{ }$
compressor

$$
\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}
$$

$\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$

labelled sample compression concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set system

realizable samples

$\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$
proper labelled compression scheme of size k
 $\beta: \underset{\text { reconstructor }}{\alpha(\downarrow \mathcal{C}}$

$$
\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}
$$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set systemrealizable samples
$\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$
proper labelled compression scheme of size k
$\alpha: \downarrow \mathcal{C} \rightarrow \underset{\text { compressor }}{\rightarrow}$ $\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$

$$
\alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C}
$$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set systemrealizable samples
$\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$
proper labelled compression scheme of size k
 $\beta: \underset{\text { reconstructor }}{\alpha(\downarrow \mathcal{C}} \underset{\text { C }}{\mathcal{C}}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& |\underline{\alpha(S)}| \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set system> realizable samples
> $\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}$
proper labelled compression scheme of size k
 $\beta: \underset{\text { reconstructor }}{\alpha}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& |\underline{\alpha(S)}| \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ set system
realizable samples

$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

proper labelled compression scheme of size k
 $\beta: \underset{\text { reconstructor }}{\alpha}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid} \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth '95]:
concept class \mathcal{C} of VC-dim d admits sample compression scheme of size $O(d)$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

proper labelled compression scheme of size k $\alpha: \downarrow \underset{\text { compressor }}{\mathcal{C}} \underset{\sim}{\downarrow}$ $\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid} \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

proper labelled compression scheme of size k $\alpha: \downarrow \mathcal{C} \underset{\text { compressor }}{\boldsymbol{\mathcal { C }}} \boldsymbol{\sim}$ $\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \overrightarrow{\mathcal{C}}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid} \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$ known of size d for \mathcal{C} (tope graphs of):

- realizable AOM (Ben-David, Litmann '89)
- AMP (Moran, Warmuth '16)

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

proper labelled compression scheme of size k $\alpha: \downarrow \mathcal{C} \underset{\text { compressor }}{\boldsymbol{\mathcal { C }}} \boldsymbol{\sim}$ $\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid} \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth
concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$ known of size d for \mathcal{C} (tope graphs of):

- realizable AOM (Ben-David, Litmann '89)
- AMP (Moran, Warmuth '16)
idea: try to complete \mathcal{C} to AMP of same rank and then use MW

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

improper labelled compression scheme of size k $\alpha: \downarrow \mathcal{C}$
cómpressor $\beta: \alpha(\downarrow \mathcal{C}) \overrightarrow{\text { ren }}\{ \pm\}^{U}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}}
\end{aligned}
$$

Conj[Floyd, Warmuth
concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$ known of size d for \mathcal{C} (tope graphs of):

- realizable AOM (Ben-David, Litmann '89)
- AMP (Moran, Warmuth '16)
idea: try to complete \mathcal{C} to AMP of same rank and then use MW

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longleftrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

improper labelled compression scheme of size k $\alpha: \downarrow \underset{\text { compressor }}{\mathcal{C}} \underset{\sim}{\downarrow}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid} \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$ known of size d for \mathcal{C} (tope graphs of):

- realizable AOM (Ben-David, Litmann '89)
- AMP (Moran, Warmuth '16)
idea: try to complete \mathcal{C} to AMP of same rank and then use MW
- rank 2 partial cubes (Chepoi, K, Philibert '20)
- OMs and CUOMs (Chepoi, K, Philibert '21)

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

improper labelled compression scheme of size k $\alpha: \downarrow \underset{\text { compressor }}{\boldsymbol{C}} \underset{\sim}{\downarrow}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& |\underline{\alpha(S)}| \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth
concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$ known of size d for \mathcal{C} (tope graphs of):

- realizable AOM (Ben-David, Litmann '89)
- AMP (Moran, Warmuth '16)
idea: try to complete \mathcal{C} to AMP of same rank and then use MW
- rank 2 partial cubes (Chepoi, K, Philibert '20)
- OMs and CUOMs (Chepoi, K, Philibert '21)

Conj[Chepoi, K, Philibert '21]: COMs admit AMP completion of same rank

labelled sample compression

 concepts $\mathcal{C} \subseteq\{ \pm\}^{U}$ subgraph of cube \longrightarrow set system realizable samples$$
\downarrow \mathcal{C}:=\left\{S \in\{ \pm, 0\}^{U} \mid \exists T \in \mathcal{C}: S \leq T\right\}
$$

proper labelled compression scheme of size k $\alpha: \downarrow \mathcal{C} \underset{\text { compressor }}{\boldsymbol{\mathcal { C }}} \boldsymbol{\sim}$ $\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$

$$
\begin{aligned}
& \alpha(S) \leq S \leq \beta(\alpha(S)) \quad \forall S \in \downarrow \mathcal{C} \\
& \mid \underline{\alpha(S) \mid} \leq k \longleftarrow \underline{X}=\left\{e \in U \mid X_{e} \neq 0\right\}
\end{aligned}
$$

Conj[Floyd, Warmuth
concept class \mathcal{C} of rank d admits sample compression scheme of size $O(d)$ known of size d for \mathcal{C} (tope graphs of):

- realizable AOM (Ben-David, Litmann '89)
- AMP (Moran, Warmuth '16)

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d

Thm[Chepoi, K, Philibert ' 21^{+}]: COMs of rank d admit proper labelled sample compression scheme of size d

$$
\text { concepts } \mathcal{C} \longrightarrow \text { tope graph } G \subseteq\{ \pm\}^{E}
$$

realizable samples $\downarrow \mathcal{C} \xrightarrow{\text { partial cube }}$ convex subgraphs

Thm[Chepoi, K, Philibert ' 21^{+}]:

 COMs of rank d admit proper labelled sample compression scheme of size $d$$$
\text { concepts } \mathcal{C} \longrightarrow \text { tope graph } G \subseteq\{ \pm\}^{E}
$$

proper labelled compression scheme of size d
α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces
$\beta: S^{\prime} \rightarrow v \in S$

Thm[Chepoi, K, Philibert ' 21^{+}]:

 COMs of rank d admit proper labelled sample compression scheme of size d

proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces
$\beta: S^{\prime} \rightarrow v \in S$

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d

proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces
$\beta: S^{\prime} \rightarrow v \in S$

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d
concepts $\mathcal{C} \longrightarrow$ tope graph $G \subseteq\{ \pm\}^{E}$

proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces $\beta: S^{\prime} \rightarrow v \in S$

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d
concepts $\mathcal{C} \longrightarrow$ tope graph $G \subseteq\{ \pm\}^{E}$
realizable samples $\downarrow \mathcal{C} \xrightarrow{\text { partial cube }}$ convex subgraphs
proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces $\beta: S^{\prime} \rightarrow v \in S$

contract Θ-classes from S pick an OM-face X^{\prime} containing S^{\prime} \rightsquigarrow vertex S^{\prime} of COM G^{\prime}

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d
concepts $\mathcal{C} \longrightarrow$ tope graph $G \subseteq\{ \pm\}^{E}$

proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces
$\beta: S^{\prime} \rightarrow v \in S$

contract Θ-classes from S pick an OM-face X^{\prime} containing S^{\prime} \rightsquigarrow vertex S^{\prime} of COM G^{\prime}
find $f: X^{\prime} \rightarrow\binom{\Theta-$ classes }{$d}$, such that

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d
concepts $\mathcal{C} \longrightarrow$ tope graph $G \subseteq\{ \pm\}^{E}$
realizable samples $\downarrow \mathcal{C} \xrightarrow{\text { partial cube }}$ convex subgraphs
proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces
gallery $\quad \beta: S^{\prime} \rightarrow v \in S$ take minimal face X in G, crossed by D, such that contracting all other yields cube
contract Θ-classes from S pick an OM-face X^{\prime} containing S^{\prime} \rightsquigarrow vertex S^{\prime} of COM G^{\prime}
find $f: X^{\prime} \rightarrow\binom{\Theta-$ classes }{$d}$, such that

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d
concepts $\mathcal{C} \longrightarrow$ tope graph $G \subseteq\{ \pm\}^{E}$
realizable samples $\downarrow \mathcal{C} \xrightarrow{\text { partial cube }}$ convex subgraphs
proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces gallery $\quad \beta: S^{\prime} \overrightarrow{ } v \in S$ take minimal face X in G, crossed by D, such that contracting all other yields cube $\leadsto \beta\left(S_{\mid D}^{\prime}\right):=T \in X$ such that $T_{\mid f(T)}=S_{\mid D}^{\prime}$
contract Θ-classes from S pick an OM-face X^{\prime} containing S^{\prime} \rightsquigarrow vertex S^{\prime} of COM G^{\prime}
find $f: X^{\prime} \rightarrow\binom{\Theta-$ classes }{$d}$, such that

Thm[Chepoi, K, Philibert ' 21^{+}]:
COMs of rank d admit proper labelled sample compression scheme of size d
concepts $\mathcal{C} \longrightarrow$ tope graph $G \subseteq\{ \pm\}^{E}$
realizable samples $\downarrow \mathcal{C} \xrightarrow{\text { partial cube }}$ convex subgraphs
proper labelled compression scheme of size d α :convex $S \mapsto$ convex S^{\prime} defined by subset of $\leq d$ halfspaces gallery $\quad \beta: S^{\prime} \rightarrow v \in S$ take minimal face X in G, crossed by D, such that contracting all other yields cube $\leadsto \beta\left(S_{\mid D}^{\prime}\right):=T \in{ }_{\Delta}^{X}$ such that $T_{\mid f(T)}=S_{\mid D}^{\prime}$ much easier if AMP, because X, X^{\prime} cubes
contract Θ-classes from S pick an OM-face ${ }^{\prime} X^{\prime}$ containing S^{\prime} \rightsquigarrow vertex S^{\prime} of COM G^{\prime} find $f: X^{\prime} \rightarrow\binom{\Theta-$ classes }{$d}$, such that

corners and unlabeled sample compressior computational learing theory

Conj[Kuzmin, Warmuth '04]: Every LOP has a corner peeling.

corners and unlabeled sample compression computational learing theory

Conj[Kuzmin, Warmuth '04]: Every LOP has a corner peeling.
corner peelings yield proper unlabeled compression

$$
\begin{array}{lr}
\alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} & \beta: \alpha(\downarrow \mathcal{C}) \rightarrow \overrightarrow{\mathcal{C}} \\
\text { compressor } & \text { reconstructor } \\
\underline{\alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S))}} & \mid \underline{\alpha(S) \mid \leq k}
\end{array}
$$

corners and unlabeled sample compression computational learing theory

corners and unlabeled sample compression computational learing theory

corner peelings yield proper unlabeled compression

$$
\begin{aligned}
& \alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\
& \text { compressor } \\
& \alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S))})
\end{aligned}
$$

$$
\beta: \underset{\text { reconstructor }}{\alpha}
$$

$$
|\underline{\alpha(S)}| \leq k
$$

\rightsquigarrow generalize corner peelings to COMs

corners and unlabeled sample compression computational learing theory

Conj|Kuzmin. Varmmmerner peeling.
corner peelings yield proper unlabeled compression

$$
\begin{aligned}
& \alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\
& \text { compressor } \\
& \underline{\alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S)})} .
\end{aligned}
$$

$\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$
$|\alpha(S)| \leq k$
\rightsquigarrow generalize corner peelings to COMs

corners and unlabeled sample compression computational learing theory

Conj|Kuzmin. Varmumarner peeling.
corner peelings yield proper unlabeled compression

$$
\begin{aligned}
& \alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\
& \text { compressor } \\
& \underline{\alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\alpha(S))}
\end{aligned}
$$

$\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$ $|\alpha(S)| \leq k$
\rightsquigarrow generalize corner peelings to COMs

corners and unlabeled sample compression computational learing theory

corner peelings yield proper unlabeled compression

$$
\begin{aligned}
& \alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\
& \text { compressor } \\
& \alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S))})
\end{aligned}
$$

$\beta: \underset{\text { reconstructor }}{\alpha}$

$$
|\underline{\alpha(S)}| \leq k
$$

\rightsquigarrow generalize corner peelings to COMs

corners and unlabeled sample compression computational learing theory

corner peelings yield proper unlabeled compression

$$
\begin{aligned}
& \alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\
& \text { compressor } \\
& \alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S))})
\end{aligned}
$$

$\beta: \underset{\text { reconstructor }}{\alpha}$

$$
|\underline{\alpha(S)}| \leq k
$$

corners and unlabeled sample compression computational learing theory

Conj/Kuzmin. Warmminnernerner peeling.
corner peelings yield proper unlabeled compression

$$
\begin{aligned}
& \alpha: \downarrow \mathcal{C} \rightarrow \downarrow \mathcal{C} \\
& \text { compressor } \\
& \alpha(S) \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S))})
\end{aligned}
$$

$\beta: \underset{\text { reconstructor }}{\alpha}$

$$
|\underline{\alpha(S)}| \leq k
$$

\rightsquigarrow generalize corner peelings to COMs

corners and unlabeled sample compressior computational learing theory

corner peelings yield proper unlabeled compression
$\alpha: \downarrow \mathcal{C} \rightarrow \underset{\text { compressor }}{\rightarrow}$

$$
\underline{\alpha(S)} \subseteq \underline{S} \text { and } S \leq \beta(\underline{\alpha(S)})
$$

$\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$ reconstructor $|\alpha(S)| \leq k$
\rightsquigarrow generalize corner peelings to COMs
Thm[K, Marc '20]: corner peelings for:

- rank 2 COMs
\Rightarrow rank 2 AMPs [Chalopin et al '18]
- hypercellular graphs
\Rightarrow bip. cellular graphs [Bandelt, Chepoi '96]
- realizable COMs
\Rightarrow realizable AMPs [Tracy Hall '04]

corners and unlabeled sample compressior computational learing theory

ConjKKzmin. Varmumerner peeling.
corner peelings yield proper unlabeled compression
$\alpha: \downarrow \mathcal{C} \rightarrow \underset{\mathcal{C}}{ } \rightarrow \underset{\mathcal{C}}{ }$
compressor
$\alpha(S) \subseteq \underline{S}$ and $S \leq \beta(\alpha(S))$
$\beta: \alpha(\downarrow \mathcal{C}) \rightarrow \mathcal{C}$ reconstructor $|\alpha(S)| \leq k$
\rightsquigarrow generalize corner peelings to COMs
Thm[K, Marc '20]: corner peelings for:

- rank 2 COMs
\Rightarrow rank 2 AMPs [Chalopin et al '18]
- hypercellular graphs
\Rightarrow bip. cellular graphs [Bandelt, Chepoi '96]
- realizable COMs
\Rightarrow realizable AMPs [Tracy Hall '04]
do corner peelings of COMs yield unlabeled compression schemes of COMs?

last slide

proper labelled sample compression

- partial cubes
- OM-polyhedra (Bland '74)
- bouquets of oriented matroids (Deza, Fukuda '86)
- CW-left-regular bands (Margolis, Saliola, Steinberg '18)
improper labelled sample compression by completion set system $\stackrel{\imath}{ }$ partial cube $\stackrel{\imath}{ }$ COM $\stackrel{\imath}{ }$ AMP
corner peelings of $\mathrm{COMs} \stackrel{\text { corners }}{?}$ unlabeled compression schemes

last slide

proper labelled sample compression

- partial cubes
- OM-polyhedra (Bland '74)
- bouquets of oriented matroids (Deza, Fukuda '86)
- CW-left-regular bands (Margolis, Saliola, Steinberg '18)
improper labelled sample compression by completion set system $\stackrel{\sim}{\imath}$ partial cube $\stackrel{\imath}{\rightsquigarrow}$ COM $\stackrel{\imath}{\rightsquigarrow}$ AMP
corners
corner peelings of $\mathrm{COMs} \xrightarrow{?}$ unlabeled compression schemes
thank you

