# Positive spectrahedra: Invariance principles and PRGs 

Srinivasan Arunachalam (IBM Research)
joint with Penghui Yao (Nanjing University)

## Linear programs

- Optimizing a linear function over a polytope
- A general LP has the form: $w^{1}, \ldots, w^{k}, c \in \mathbb{R}^{n}$ and $\theta^{i} \in \mathbb{R}$

$$
\mathrm{OPT}=\max _{x \in \mathbb{R}^{n}}\left\{c^{T} x: w^{1} \cdot x \leq \theta^{1}, \ldots, w^{k} \cdot x \leq \theta^{k}\right\}
$$

- Efficiently solvable!

- Halfspace in $\mathbb{R}^{n}$ is a constraint that divides the space, i.e., $h_{1}: \mathbb{R}^{n} \rightarrow\{0,1\}$
- Let $w \in \mathbb{R}^{n}$ and $x \in\{-1,1\}^{n}$, then a halfspace $h_{1}(x)=1$ iff $w \cdot x \leq \theta$, or $h_{1}(x)=[w \cdot x \leq \theta]$

- Polytope is an intersection of halfspaces
- Let $w^{i} \in \mathbb{R}^{n}, \theta^{i} \in \mathbb{R}$, a $k$-facet polytope is

$$
P=\left\{x: h_{1}(x) \wedge h_{2}(x) \wedge \cdots \wedge h_{k}(x)\right\}
$$

where $h_{i}=\left[w^{i} \cdot x \leq \theta^{i}\right]$
Applications: Optimization, combinatorics, geometry, computational complexity, ...

## Semi-definite programs

What is an SDP?

- Optimizing a linear function over a spectrahedron
- A general SDP has the form: $W^{1}, \ldots, W^{k}, B \in \operatorname{Sym}_{n}$

$$
\mathrm{OPT}=\max _{x \in \mathbb{R}^{n}}\left\{c^{T} x: x_{1} W^{1}+\cdots+x_{n} W^{n} \preceq B\right\},
$$

where $C \preceq D$ means $D-C$ is PSD (i.e., all eigenvalues are $\geq 0$ )

How does it look?


- Generalizes linear programs and still efficiently solvable!
- Unfortunately, spectrahedra are not very well understood!
- But SDPs have found applications in approximation theory, SoS heirarchy, quantum computing


## Pseudorandom generators

A PRG is a function that "expands" randomness


## PRGs for a class of functions

An $\varepsilon$-PRG for $\mathcal{C} \subseteq\left\{F:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$ is a function $G:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$ such that

$$
\text { for every } F \in \mathcal{C}, \quad\left|\underset{x \sim \mathcal{U}_{r}}{\mathbb{E}}[F(G(\boldsymbol{x}))]-\underset{\boldsymbol{u} \sim \mathcal{U}_{n}}{\mathbb{E}}[F(\boldsymbol{u})]\right| \leq \varepsilon .
$$

The seed length of $G$ is $r$. Goal is to have $r=\operatorname{polylog}(\cdot)$ in all relevant parameters
Holy grail. Can we design a PRG against the class of polynomial sized circuits unconditionally? If so, would imply $\mathrm{BPP}=\mathrm{P}$

PRGs for geometric objects. Constructing PRGs using geometric properties has been a rich area of study this work.

## Some PRGs for geometric objects

## Halfspaces

- Diakonikolas et al.'09
- Meka, Zuckerman'09
- Karnin, Rabani, Shpilka'11
- Kothari, Meka'15
- Gopalan, Kane, Meka'15


## Polytopes

- Harsha, Klivans, Meka'13
- Gopalan et al.'13
- Servedio, Tan'17
- O'Donnell, Servedio, Tan'19


## Polynomial Threshold function


$T(x)=\operatorname{sign}\left(p\left(x_{1}, \ldots, x_{n}\right)\right)$ where $p$ is a polynomial

- Meka, Zuckerman'09
- Diakonikolas'10
- Kane'11, Kane'12, Kane'13
- Kane, Meka'14
- O'Donnell, Servedio, Tan'20

Spectrahedra: generalization of halfspaces, polytopes and PTFs in one framework

In this work: Can we construct PRGs for spectrahedra?

## Results

Recall. Spectrahedron is the set $S=\left\{x \in\{-1,1\}^{n}: \sum_{i} x_{i} A^{i} \preceq B\right\}$.
(1) Positive: $A^{1}, \ldots, A^{n}, B$ are $k \times k$ PSD matrices
(2) Bounded width: $\mathbb{I} \preceq \sum_{i}\left(A^{i}\right)^{2} \preceq M \cdot \mathbb{I}$
(3) Regular: $\left(A^{i}\right) \preceq \tau \cdot \mathbb{I}$ for every $i$

## Main Theorem

There exists a PRG $G:\{0,1\}^{r} \rightarrow\{-1,1\}^{n}$ with seed length

$$
r=(\log n) \cdot \operatorname{poly}(\log k \cdot M \cdot 1 / \delta)
$$

that $\delta$-fools the class of positive bounded width regular spectrahedron $S$, i.e.,

$$
\left|\underset{x \sim \mathcal{U}_{r}}{\mathbb{E}}[G(x) \in S]-\underset{\boldsymbol{u} \sim \mathcal{U}_{n}}{\mathbb{E}}[\boldsymbol{u} \in S]\right| \leq \delta
$$

Main technical contributions: Rest of this talk

> An invariance principle for positive regular spectrahedra

## How to fool: Meka-Zuckerman Invariance principles

Punchline: Invariance principles give pseudorandom generators.
What is an invariance principle? Generalization of Berry-Esseen theorem
Standard central limit theorem states: suppose $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ are random variables satisfying $\mathbb{E}[x]=0$ and $\operatorname{Var}\left[x^{2}\right]=1$, then

$$
\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}} \longrightarrow \boldsymbol{g}(0,1)
$$

where $\boldsymbol{g}(0,1)$ is a Gaussian
But what about convergence? Berry-Esseen states that for every $u \in \mathbb{R}$

$$
\operatorname{Pr}\left[\frac{\boldsymbol{x}_{1}+\cdots+\boldsymbol{x}_{n}}{\sqrt{n}} \leq u\right]-\operatorname{Pr}[\boldsymbol{g}(0,1) \leq u] \leq \frac{C}{\sqrt{n}},
$$

for "C-nice" $x_{1}, \ldots, x_{n}$. Proved using the Lindeberg method'22 (aka hybrid method)

Invariance principles: understanding in the Gaussian space is similar to Boolean space

## How was M-Z used so far?



Halfspace (Meka-Zuckerman'09)

- Halfspace is

$$
\left\{x \in\{-1,1\}^{n}: \sum_{i} w_{i} x_{i} \leq \theta\right\}
$$

- For smooth $w \in \mathbb{R}^{n}$

$$
\sum_{i} w_{i} \boldsymbol{x}_{i} \rightarrow \boldsymbol{g}(0,1)
$$

Polytope (Harsha-Klivans-Meka'13)

- Polytope is

$$
\left\{x \in\{-1,1\}^{n}: w^{1} \cdot x \leq \theta_{1}, \ldots, w^{k} \cdot x \leq \theta_{k}\right\}
$$

- Let $w^{1}, \ldots, w^{k} \in \mathbb{R}^{n}$ all be smooth, then

$$
\left[\begin{array}{ccc}
- & w^{1} & - \\
- & w^{2} & - \\
- & \vdots & - \\
- & w^{k} & -
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x}_{1} \\
\boldsymbol{x}_{2} \\
\vdots \\
\boldsymbol{x}_{n}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\boldsymbol{g}_{1} \\
\boldsymbol{g}_{2} \\
\vdots \\
\boldsymbol{g}_{k}
\end{array}\right]
$$

- Recently OST'19 removed regularity


## Establishing the invariance principle

$$
\text { Recall: Polytope } F(x)=\left[w^{1} \cdot x \leq \theta_{1} \wedge \cdots \wedge w^{k} \cdot x \leq \theta_{k}\right] \text { or } W \cdot x \leq \vec{\theta}
$$

Main result of HKM'13 Invariance principle for $\tau$-regular polytopes (i.e., $\left\|w^{i}\right\| \leq \tau$ )

$$
\begin{equation*}
\left|\underset{x}{\sim} \sim \mathcal{U}_{n}[W \boldsymbol{x} \leq \vec{\theta}]-\underset{\boldsymbol{g} \sim \mathcal{G}^{n}}{\mathbb{E}}[W \boldsymbol{g} \leq \vec{\theta}]\right| \leq \tau \text { polylog } k \tag{1}
\end{equation*}
$$

How to prove this?

1. Smooth invariance. Establish (1) for smooth functions $\mathcal{O}: \mathbb{R}^{k} \rightarrow \mathbb{R}$, i.e.,

$$
\left|\underset{x \sim \mathcal{U}_{n}}{\mathbb{E}}[\mathcal{O}(W \boldsymbol{x})]-\underset{\boldsymbol{g} \sim \mathcal{G}^{n}}{\mathbb{E}}[\mathcal{O}(W \boldsymbol{g})]\right| \leq \tau \log k \cdot\left\|\mathcal{O}^{(3)}\right\|_{1}
$$

- Lindeberg method: Write out Taylor series for $\mathcal{O}: \mathbb{R}^{k} \rightarrow \mathbb{R}$, since $\mathcal{U}_{n}$ and $\mathcal{G}^{n}$ have matching first and second moments, we get 3rd derivatives, hence $\left\|\mathcal{O}^{(3)}\right\|_{1}$
- Since $O$ is smooth, all derivatives are "small" so $\left\|O^{(3)}\right\|_{1}$ is also "small"


## Establishing the invariance principle

Main result of HKM'13 Invariance principle for $\tau$-regular polytopes

$$
\begin{equation*}
\left|\underset{x \sim \mathcal{U}_{n}}{\mathbb{E}}[W x \leq \vec{\theta}]-\underset{\boldsymbol{g} \sim \mathcal{G}^{n}}{\mathbb{E}}[W \boldsymbol{g} \leq \vec{\theta}]\right| \leq \tau \text { polylog } k \tag{2}
\end{equation*}
$$

How to prove this?

1. Smooth invariance. Establish (2) for smooth mollifiers $\mathcal{O}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, i.e.,

$$
\begin{equation*}
\left|\underset{x \sim \mathcal{U}_{n}}{\mathbb{E}}[\mathcal{O}(W \boldsymbol{x})]-\underset{\boldsymbol{g} \sim \mathcal{G}^{n}}{\mathbb{E}}[\mathcal{O}(W \boldsymbol{g})]\right| \leq \tau \log k \cdot\left\|\mathcal{O}^{(3)}\right\|_{1} \tag{3}
\end{equation*}
$$

2. Bentkus mollifier. Care about $[W x \leq \theta]$ not $\mathcal{O}(W x)$. Bentkus' 90 established a mollifier $\mathcal{B}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ that approximates the orthant function, i.e.,

$$
\mathcal{B}\left(z_{1}, \ldots, z_{k}\right) \approx\left[\max _{i} z_{i} \leq \theta\right] \quad \text { and }\left\|\mathcal{B}^{\ell}\right\|_{1} \leq \log ^{\ell / 2} k
$$

3. Anti-concentration. From above $\mathcal{B}$ "approximately agrees" with $\mathcal{O}$.

- Around the "boundary" of the polytope is where $\mathcal{B}$ and $\mathcal{O}$ disagree
- If probability of $x \in \mathcal{G}^{n}$ lying in boundary is "small", maybe it is ok? YES
- Gaussian surface area! Nazarov'03 showed GSA of $k$-facet polytopes is $\sqrt{\log k}$

Putting everything together. All dependence are logarithmic factors, so $(3) \Longrightarrow$ (2).

## Let's quantize everything!

A halfspace $F(x)=\left[\sum_{i} w_{i} x_{i} \leq \theta\right]$. Spectrahedron is $F(x)=\left[x_{1} A^{1}+\cdots+x_{n} A^{n} \preceq B\right]$



## 1. Hybrid method?

(1) Spectrahedron naturally deals with eigenvalues of matrices
(2) Unknown if Lindeberg-type argument works for spectral mollifiers (i.e., smooth functions acting on the eigenspectrum of matrices)

An invariance principle for the Bentkus mollifier of arbitrary regular spectrahedra
2. Anti-concentration? Even if GSA of spectrahedra are small, they are "funky" geometric objects, not clear how to go from mollifier-closeness to CDF closeness

Prove a Littlewood-Offord theorem for positive regular spectrahedra

## Invariance principle: two new definitions

(1) Spectral function $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ acts on the eigenvalues of matrices:

$$
f(M)=g \circ \lambda(M)=g\left(\lambda_{1}(M), \ldots, \lambda_{n}(M)\right)
$$

for some $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Examples include determinants, trace, matrix norms
(2) Derivatives of matrix-valued functions $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m \times m}$.

Taylor series. Let $h: \mathbb{R} \rightarrow \mathbb{R}$, then Taylor series of $h$ is

$$
h(x)=h(a)+\frac{h^{\prime}(a)}{1!}(x-a)+\frac{h^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{h^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots,
$$

where

$$
h^{\prime}(a)=\lim _{s \rightarrow 0} \frac{1}{s} \cdot(h(a+s)-h(a))
$$

Fréchet derivatives. Derivatives in Banach spaces. "Similar" to standard calculus. For $A, B \in \mathbb{R}^{n \times n}$, we have

$$
\begin{aligned}
& D f(A)[B]=\lim _{s \rightarrow 0} \frac{1}{s} \cdot(f(A+s B)-f(A)), \\
& D^{t} f(A)[B]=\lim _{s \rightarrow 0} \frac{1}{s} \cdot\left(D^{t-1} f(A+s B)[B]-D^{t-1} f(A)[B]\right)
\end{aligned}
$$

Fréchet derivatives are hard to compute. Poorly understood: basic properties as continuity, Lipschitz continuity, differentiability proven in last 2 decades.

## Invariance principle: Part I

Goal: Invariance principle for Bentkus mollifier $\mathcal{B}$

$$
\left|\operatorname{Pr}_{\boldsymbol{x} \sim \mathcal{U}_{n}}\left[(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{x}_{i} A^{i}-B\right)\right]-\underset{\boldsymbol{g} \sim \mathcal{G}^{n}}{\operatorname{Pr}}\left[(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{g}_{i} A^{i}-B\right)\right]\right| \leq \tau \text { polylog } k
$$

1. Hybrid method. Hash the sum over $[n]$ into $t$ blocks: let $Q_{x}=\sum_{i=1}^{n / t} \boldsymbol{x}_{i} A^{i}$,

$$
\begin{equation*}
\left|\underset{x, g}{\mathbb{E}}\left[(\mathcal{B} \circ \lambda)\left(Q_{x}+P_{x, g}\right)\right]-\underset{x, g}{\mathbb{E}}\left[(\mathcal{B} \circ \lambda)\left(Q_{g}+P_{x, g}\right)\right]\right| \tag{4}
\end{equation*}
$$

2. Taylor expansion. Write out Fréchet series for both these terms.

$$
\begin{aligned}
& \mathcal{B}_{\lambda}\left(Q_{x}+P_{x, g}\right)=\mathcal{B}_{\lambda}\left(P_{x, g}\right)+D \mathcal{B}_{\lambda}\left(P_{x, g}\right)\left[Q_{x}\right]+\frac{1}{2} D^{2} \mathcal{B}_{\lambda}\left(P_{x, g}\right)\left[Q_{x}, Q_{x}\right]+\frac{1}{6} D^{3} \mathcal{B}_{\lambda}\left(P_{x, g}^{\prime}\right)\left[Q_{x}, Q_{x}, Q_{x}\right] \\
& \mathcal{B}_{\lambda}\left(Q_{g}+P_{x, g}\right)=\mathcal{B}_{\lambda}\left(P_{x, g}\right)+D \mathcal{B}_{\lambda}\left(P_{x, g}\right)\left[Q_{g}\right]+\frac{1}{2} D^{2} \mathcal{B}_{\lambda}\left(P_{x, g}\right)\left[Q_{g}, Q_{g}\right]+\frac{1}{6} D^{3} \mathcal{B}_{\lambda}\left(R_{x, g}^{\prime}\right)\left[Q_{g}, Q_{g}, Q_{g}\right]
\end{aligned}
$$

Same colour terms are equal in expectation
So bounding Eq (4) amounts to proving. Goal: upper bound

$$
\left|\underset{x, g}{\mathbb{E}}\left[D^{3} \mathcal{B}_{\lambda}\left(P_{x, g}^{\prime}\right)\left[Q_{x}, Q_{x}, Q_{x}\right]-D^{3} \mathcal{B}_{\lambda}\left(R_{x, g}^{\prime}\right)\left[Q_{\mathbf{g}}, Q_{\mathbf{g}}, Q_{\boldsymbol{g}}\right]\right]\right| \leq \tau \text { polylog } k
$$

3. Sendov to the rescue. For us, Sendov provided a tensorial representation of Fréchet series for spectral functions

## Invariance principle: Part II

Recall: Goal is to upper bound

$$
\left|\underset{x, g}{\mathbb{E}}\left[D^{3} \mathcal{B}_{\lambda}\left(P_{x, g}^{\prime}\right)\left[Q_{x}, Q_{x}, Q_{x}\right]-D^{3} \mathcal{B}_{\lambda}\left(R_{x, g}^{\prime}\right)\left[Q_{g}, Q_{g}, Q_{g}\right]\right]\right|
$$

Hope: use Sendov's tensor-result. BUT, if you write it out, we get:
$H=V Q V^{T}$. Then $D^{3} F(P)[Q, Q, Q]$ is the summation of the following terms.

1. $\sum_{i_{1}} \nabla_{i_{1}, i_{1}, i_{1}}^{3} f(x) H_{i_{1}, i_{1}}^{3}$
2. $\sum_{i_{1} \neq i_{2}} \nabla_{i_{1}, i_{2}, i_{1}}^{3} f(x) H_{i_{1}, i_{1}}^{2} H_{i_{2}, i_{2}}$

## DIAGONAL ELEMENTS

3. $\sum_{i_{1} \neq i_{2} \neq i_{3}}\left(\nabla_{i_{1}, i_{2}, i_{2}}^{3} f(x)\right) \cdot H_{i_{1}, i_{1}} H_{i_{2}, i_{2}} H_{i_{3}, i_{3}}$
4. $\sum_{i_{1} \neq i_{2}}\left(\frac{\nabla_{i_{2}, i_{2}}^{2}-\nabla_{i_{1}, i_{2}}^{2}}{x_{i_{2}}-x_{i_{1}}}-\frac{\nabla_{i_{2}}-\nabla_{i_{1}}}{\left(x_{i_{2}}-x_{i_{1}}\right)^{2}}\right) f(x) H_{i_{2}, i_{2}} H_{i_{2}, i_{1}}^{2}$
5. $\sum_{i_{1} \neq i_{2} \neq i_{3}} \frac{\nabla_{i_{2}, i_{3}}^{2}-\nabla_{i_{1}, i_{3}}^{2}}{x_{i_{2}}-x_{i_{1}}} f(x) H_{i_{1}, i_{2}}^{2} H_{i_{3}, i_{3}}$
6. $\sum_{i_{1} \neq i_{2} \neq i_{3}}\left(\frac{\nabla_{i_{3}}-\nabla_{i_{1}}}{\left(x_{i_{3}}-x_{i_{2}}\left(x_{i_{3}}-x_{i_{1}}\right)\right.}-\frac{\nabla_{i_{2}}-\nabla_{i_{1}}}{\left(x_{i_{3}}-x_{i_{2}}\right)\left(x_{i_{2}}-x_{i_{1}}\right)}\right) f(x) H_{i_{1}, i_{2}} H_{i_{2}, i_{3}} H_{i_{3}, i_{1}}$
7. $\sum_{i_{1} \neq i_{2} \neq i_{3}}\left(\frac{\nabla_{i_{2}}-\nabla_{i_{3}}}{\left(x_{i_{3}}-x_{i_{1}}\right)\left(x_{i_{9}}-x_{i_{3}}\right)}-\frac{\nabla_{i_{2}}-\nabla_{i_{1}}}{\left(x_{i_{3}}-x_{i_{1}}\right)\left(x_{i_{2}}-x_{i_{1}}\right)}\right) f(x) H_{i_{1}, i_{3}} H_{i_{2}, i_{1}} H_{i_{3}, i_{2}}$,

## Invariance principle: Part II

Recall: Goal is to upper bound

$$
\left|\underset{x, g}{\mathbb{E}}\left[D^{3} \mathcal{B}_{\lambda}\left(P_{x, g}^{\prime}\right)\left[Q_{x}, Q_{x}, Q_{x}\right]-D^{3} \mathcal{B}_{\lambda}\left(R_{x, g}^{\prime}\right)\left[Q_{g}, Q_{g}, Q_{g}\right]\right]\right|
$$

Technical contribution.

- Bound each of the 7 terms by polylog $k$ times norms of $Q_{g}, Q_{x}, P_{x, g}^{\prime}, R_{x, g}^{\prime}$.
- Completely open up the Bentkus mollifier (prior works used it as a blackbox)

4. Final step. Understand $\mathbb{E}_{x}\left[\left\|Q_{x}\right\|_{4}^{4}\right]$ and similar quantities.

- We use matrix Rosenthal's inequality (proved "recently") gives good concentration for Schatten norms of $\left\|\sum_{i} \boldsymbol{x}_{i} A^{i}\right\|_{p}^{p}$
- Also matrix Rosenthal is true when $\left(x_{1}, \ldots, \boldsymbol{x}_{n}\right)$ is $p$-wise independent

Putting everything together.

$$
\left|\operatorname{Pr}_{\boldsymbol{x} \sim \mathcal{U}_{n}}\left[(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{x}_{i} A^{i}-B\right)\right]-\underset{\boldsymbol{g} \sim \mathcal{G}^{n}}{\operatorname{Pr}^{n}}\left[(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{g}_{i} A^{i}-B\right)\right]\right| \leq \tau \cdot \text { polylog } k
$$

## Anticoncentration

Recall: positive spectrahedron $\mathcal{S}=\left\{x: x_{1} A^{1}+\cdots+x_{n} A^{n} \preceq B\right\}$ where $A^{i}, B \succeq 0$
So far.

$$
\begin{equation*}
|\operatorname{Pr}_{x \sim \mathcal{U}_{n}}[\underbrace{(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{x}_{i} A^{i}-B\right)}_{\approx\left[\sum_{i} x_{i} A^{i} \preceq B\right]}]-\operatorname{Pr}_{\boldsymbol{g} \sim \mathcal{G}^{n}}[\underbrace{(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{g}_{i} A^{i}-B\right)}_{\approx\left[\sum_{i} \boldsymbol{g}_{i} A^{i} \preceq B\right]}]| \leq \text { polylog } k \tag{5}
\end{equation*}
$$

But we care about CDF distance

$$
\begin{equation*}
\left|\operatorname{Pr}_{x \sim \mathcal{U}_{n}}\left[\sum_{i} \boldsymbol{x}_{i} A^{i} \preceq B\right]-\operatorname{Pr}_{\boldsymbol{g} \sim \mathcal{G}^{n}}\left[\sum_{i} \boldsymbol{g}_{i} A^{i} \preceq B\right]\right| \leq \text { polylog } k \tag{6}
\end{equation*}
$$

Intuition for this approximation: What $\approx$ means?

$$
\text { If } \lambda_{1}, \ldots, \lambda_{k} \in[-1 / 100,1 / 100] \text {, then }(\mathcal{B} \circ \lambda)\left(\sum_{i} x_{i} A^{i}-B\right) \not \approx\left[\sum_{i} x_{i} A^{i} \preceq B\right]
$$

Else $\lambda_{1}, \ldots, \lambda_{k} \notin[-1 / 100,1 / 100]$, then $(\mathcal{B} \circ \lambda)\left(\sum_{i} x_{i} A^{i}-B\right) \approx\left[\sum_{i} x_{i} A^{i} \preceq B\right]$

$$
\text { For uniform } \boldsymbol{x}, \lambda_{\max }\left(\sum_{i} \boldsymbol{x}_{i} A^{i}-B\right) \in\left[-\frac{1}{100}, \frac{1}{100}\right] \text { with tiny probability }
$$

## Anticoncentration

Recall: positive spectrahedron $\mathcal{S}=\left\{x: x_{1} A^{1}+\cdots+x_{n} A^{n} \preceq B\right\}$ where $A^{i}, B \succeq 0$
So far.

$$
\begin{equation*}
|\operatorname{Pr}_{x \sim \mathcal{U}_{n}}[\underbrace{(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{x}_{i} A^{i}-B\right)}_{\approx\left[\sum_{i} x_{i} A^{i} \preceq B\right]}]-\operatorname{Pr}_{\boldsymbol{g} \sim \mathcal{G}^{n}}[\underbrace{(\mathcal{B} \circ \lambda)\left(\sum_{i} \boldsymbol{g}_{i} A^{i}-B\right)}_{\approx\left[\sum_{i} \boldsymbol{g}_{i} A^{i} \preceq B\right]}]| \leq \text { polylog } k \tag{7}
\end{equation*}
$$

But we care about CDF distance

$$
\begin{equation*}
\left|\operatorname{Pr}_{x \sim \mathcal{U}_{n}}\left[\sum_{i} \boldsymbol{x}_{i} A^{i} \preceq B\right]-\operatorname{Pr}_{\boldsymbol{g} \sim \mathcal{G}^{n}}\left[\sum_{i} \boldsymbol{g}_{i} A^{i} \preceq B\right]\right| \leq \text { polylog } k \tag{8}
\end{equation*}
$$

Our result: Littlewood-Offord for spectrahedra
Let $A^{1}, \ldots, A^{n}$ be positive matrices s.t. $\sum_{i}\left\|A^{i}\right\|^{2} \geq 1$. For every $\Lambda$

$$
\operatorname{Pr}_{x \sim \mathcal{U}_{n}}\left[\lambda_{\max }\left(\sum_{i} x_{i} A^{i}-B\right) \in[-\Lambda, \Lambda]\right] \leq O(\Lambda)
$$

Prior: Littlewood-Offord'43, Erdős'45 proved it for halfspaces, OST'19 for polytopes
Hence (7) implies (8) except tiny probability. Done!

## Conclusion and open questions

Recall: positive spectrahedron $F(x)=\left[x_{1} A^{1}+\cdots+x_{n} A^{n} \preceq B\right]$ where $A^{i}, B \succeq 0$
A PRG that $\delta$-fools the class of positive width- $M$ spectrahedra with seed length poly $(\log n, \log k, M, 1 / \delta)$

Open questions:
(1) Remove regularity?
(2) Remove positivity?
(3) What is the Gaussian surface area of spectrahedron?
(4) Improve the $1 / \delta$ dependence?
(6) A general invariance principle for spectral functions?

## THANK YOU

