Size-Ramsey numbers of powers of tight paths
Shoham Letzter
University College Londen
joirt wark with Alexey Pokrovsking and Liana Yepremyan Waresick

Merch $20 a 4$

Write $G \rightarrow H$ if in every red-blue edge-colouring of G there is a monochromatic (red or blue) copy of H .

Ramsey numbers
Write $G \rightarrow H$ if in every red-blue edge-colouring of G there is a monochromatic (red or blue) copy of H .
E.g. $k_{5} \nrightarrow k_{3}$
 but $K_{6} \rightarrow K_{3}$.

Ramsey numbers
Write $G \rightarrow H$ if in every red-blue edge-colouring of G there is a monochromatic (red or blue) copy of H .
E.g. $k_{5} \nrightarrow K_{3}$
 but $K_{6} \rightarrow K_{3}$.

The Ramsey number $r(H)$ of H is

$$
r(H)=\min \left\{n: K_{n} \rightarrow H\right\} .
$$

Ramsey numbers
Write $G \rightarrow H$ if in every red-blue edge-colouring of G there is a monochromatic (red or blue) copy of H .
E.g. $k_{5} \nrightarrow k_{3}$
 but $K_{6} \rightarrow K_{3}$. So $r\left(K_{3}\right)=6$.

The Ramsey number $r(H)$ of H is

$$
r(H)=\min \left\{n: K_{n} \rightarrow H\right\} .
$$

Ramsey numbers
Write $G \rightarrow H$ if in every red-blue edge-colouring of G there is a monochromatic (red or blue) copy of H .
E.g. $k_{5} \nrightarrow k_{3}$
 but $K_{6} \rightarrow K_{3}$. So $r\left(K_{3}\right)=6$.

The Ramsey number $r(H)$ of H is

$$
r(H)=\min \left\{n: K_{n} \rightarrow H\right\} .
$$

Equivalently, $r(H)=\min \{|G|: G \rightarrow H\}$.

$$
\text { \#vs in } G
$$

Size -Ramsey numbers
Gerencsér-Gyarfás '67: $\quad r\left(P_{n+1}\right)=\left\lfloor\frac{3 n+1}{2}\right\rfloor$.
path of length n

Gerencsér-Gyarfás '67: $\quad r\left(P_{n+1}\right)=\left\lfloor\frac{3 n+1}{2}\right\rfloor$.
path of length n

Definition (Erdös-Fandree-Rousseau-Schelp ${ }^{172}$).
The size-Ramsey number $\hat{r}(H)$ of H is

$$
\hat{r}(H)=\min \{e(G): G \rightarrow H\} .
$$

Gerencsér-Gyarfás '67: $\quad r\left(P_{n+1}\right)=\left\lfloor\frac{3 n+1}{2}\right\rfloor$.
path of length n

Definition (Erdös-Fandree - Ron sseau-Schelp '72).
The size-Ramsey number $\vec{r}(H)$ of H is

$$
\hat{r}(H)=\min \{e(G): G \rightarrow H\} .
$$

Erdös '81: Is $\hat{r}\left(P_{n}\right)=0\left(n^{2}\right)$? Is $\hat{r}\left(P_{n}\right)=\omega(n)$?

Size-Ramsey numbers
Gerencsér-Gyarfás '67: $\quad r\left(P_{n+1}\right)=\left\lfloor\frac{3 n+1}{2}\right\rfloor$.
path of length n

Definition (Erdös-Faudree - Rousseau-Schelp 172).
The size-Ramsey number $\hat{r}(H)$ of H is

$$
\hat{r}(H)=\min \{e(G): G \rightarrow H\} .
$$

Erdös ' 81 : Is $\hat{r}\left(P_{n}\right)=0\left(n^{2}\right)$? Is $\hat{r}\left(P_{n}\right)=\omega(n)$?
Beck '83: $\hat{r}\left(P_{n}\right)=O(n)$!

Size-Ramsey numbers
Gerencsér-Gyarfás '67: $\quad r\left(P_{n+1}\right)=\left\lfloor\frac{3 n+1}{2}\right\rfloor$.
path of length n

Definition (Erdös-Faudree - Rousseau-Schelp 172).
The size-Ramsey number $\hat{r}(H)$ of H is

$$
\hat{r}(H)=\min \{e(G): G \rightarrow H\} .
$$

Erdös ' 81 : Is $\hat{r}\left(P_{n}\right)=0\left(n^{2}\right)$? Is $\hat{r}\left(P_{n}\right)=\omega(n)$?
Beck '83: $\hat{r}\left(P_{n}\right)=O(n)$!
Best bounds: $3.75 n \lesssim \hat{r}\left(P_{n}\right) \leqslant 74 n$.
Bal-DeBiasio '20 ${ }^{7}$ ' Dudek_Prałat '17

Powers of paths
Clemens-Jenssen-Kohayakawa - Morrison - Mota-Reding-Roberts 19':

$$
\left.\begin{array}{ll}
\forall \ell: & \hat{r}\left(P_{n}^{l}\right. \\
\text { (fixed) }
\end{array}\right)=O(n)
$$

Powers of paths
Clemens-Jenssen-Kohayakawa - Morrison - Mot - Reding-Roberts 19':
$\forall \ell: \quad \hat{r}\left(P_{n}^{\ell}\right)=O(n)$.
(fixed)

$$
\ell^{\text {th }} \text { power of } P_{n}
$$

(H^{ℓ} is the graph on $V(H)$ with edges $\left\{u v: \operatorname{dist}_{H}(u, v) \leq \ell\right\}$.)

Powers of paths
Clemens-Jenssen-Kohayakawa - Morrison - Mota-Reding-Roberts 19':
$\forall \ell: ~ \hat{r}\left(P_{n}^{\ell}\right)=O(n)$.
(fixed)

$$
l^{\text {th }} \text { power of } P_{n}
$$

(H^{l} is the graph on $V(H)$ with edges $\left\{u v: \operatorname{dist}_{H}(u, v) \leq \ell\right\}$.)
$\underline{\underline{s}} H:$ in every s-colouring of G there is a mono H. edge-colouring with s colours
The s-colour size-Ramsey number $\vec{r}_{s}(H)$ of H is:

$$
\min \{e(G): G \xrightarrow{s} H\} .
$$

Powers of paths
Clemens-Jenssen-Kohayakawa - Morrison - Mot - Reding-Roberts 19':
$\forall \ell: ~ \hat{r}\left(P_{n}^{\ell}\right)=O(n)$.
(fixed)

$$
l^{\text {th }} \text { power of } P_{n}
$$

(H^{l} is the graph on $V(H)$ with edges $\left\{u v: \operatorname{dist}_{H}(u, v) \leq \ell\right\}$.)
$G \xrightarrow{s} H$: in every s-colouring of G there is a mono H.
edge-colouring with s colours
The s-colour size-Ramsey number $\hat{r}_{s}(H)$ of H is:

$$
\min \{e(G): G \xrightarrow{s} H\}
$$

Han-Jenssen-Kohayakawa-Mota-Roberts '20: $\forall l, s: \hat{r}_{s}\left(p_{n}^{l}\right)=O(n)$.

Kamčev-Liebenau-Wood-Yepremyan '19:
$\forall \ell, \Delta:$ for every tree T on n vs with max $\operatorname{deg} \leqslant \Delta: \hat{r}\left(T^{\ell}\right)=O(n)$.

Kamčev-Liebenau-Wood-Yepremyan '19:
$\forall \ell, \Delta$: for every tree T on n vs with max $\operatorname{deg} \leqslant \Delta: \hat{r}\left(T^{\ell}\right)=O(n)$.
Berger-Kohayakawa-Maesaka-Martins -Mendonça-Mota-Parczyk '19:
$\forall l, s, \Delta:$ for every tree T on n vs with max $\operatorname{deg} \leqslant \Delta: \hat{r}_{s}\left(T^{l}\right)=O(n)$.

Bounded degree trees
Kamčev-Liebenan-Wood-Yepremyan '19:
$\forall \ell, \Delta:$ for every tree T on n vs with max $\operatorname{deg} \leqslant \Delta: \vec{r}\left(T^{\ell}\right)=O(n)$.
Berger-Kohayakawa-Maesaka-Martins -Mendonça-Mota-Parczyk '19:
$\forall \ell, s, \Delta:$ for every tree T on n vs with max $\operatorname{deg} \leqslant \Delta: \vec{r}_{s}\left(T^{\ell}\right)=O(n)$.
The above results do not generalise to bounded degree graphs.
Rödl-Szemerédi '00: there is a family $\left\{H_{n}\right\}$ where H_{n} is an $n-v x$ graph with max deg 3 and $\hat{r}\left(H_{n}\right)=\Omega\left(n(\log n)^{1 / 60}\right)$.

The q-subdivision of a graph F is the graph obtained from F by replacing each edge by a path of length q.

The q-subdivision of a graph F is the graph obtained from F by replacing each edge by a path of length q.

F

3 -subdivision of F

The q-subdivision of a graph F is the graph obtained from F by replacing each edge by a path of length q.

$$
F
$$

3 -subdivision of F

Draganić- Krivelevich-Nenadov 'zo:

* $\forall s, \Delta, q$: for every q-subdivision H of a graph with max degree $\leq \Delta$ s.t. $|H|=n: \vec{r}_{s}(H)=O\left(n^{1+1 / 2}\right)$.

The q-subdivision of a graph F is the graph obtained from F by replacing each edge by a path of length q.

Draganić- Rrivelevich-Nenadov 'so:
 of F

* $\forall s, \Delta, q$: for every q-subdivision H of a graph with max degree $\leqslant \Delta$ s.t. $|H|=n: \hat{r}_{s}(H)=O\left(n^{1+1 / 2}\right)$.
* $\forall s, \Delta \exists c$: for every L-subdivision H of a graph with max degree $\leqslant \Delta$ s.t. $|H|=n$ and $L \geqslant c \cdot \log n: \widehat{r}_{s}(H)=O(n)$.

Dudek-La Fleur-Mubayi-Rödl '17:
iniated the study of size-Ramsey numbers of hypergraphs. ($G \stackrel{S}{\rightarrow} H$ and $\vec{r}_{S}(H)$ naturally extend to hypergraphs.)

Dudek-La Fleur-Mubayi-Rödl 17:
iniated the study of size-Ramsey numbers of hypergraphs. ($G \stackrel{s}{\rightarrow} H$ and $\vec{r}_{s}(H)$ naturally extend to hypergraphs.)

The tight r-uniform path $P_{n}^{(r)}$ on n vs is the r-uniform graph on $\left\{u_{1},-, u_{n}\right\}$ whose edges are sets of r consecutive vs.

Hypergraphs
Dudek-La Fleur-Mubayi-Rödl 17:
iniated the study of size-Ramsey numbers of hypergraphs.
($G \leqslant S H$ and $\hat{r}_{s}(H)$ naturally extend to hypergraphs.)
The tight r-uniform path $P_{n}^{(r)}$ on n vs is the r-uniform graph on $\left\{u_{1},-, u_{n}\right\}$ whose edges are sets of r consecutive vs.

Dudek-La Fleur-Mubayi-Rödl '17: Is $\hat{r}\left(P_{n}^{(r)}\right)=O(n)$?

Hypergraphs
Dudek-La Fleur-Mubayi-Rödl 17:
iniated the study of size-Ramsey numbers of hypergraphs.
($G \leqslant H$ and $\hat{r}_{s}(H)$ naturally extend to hypergraphs.)
The tight r-uniform path $P_{n}^{(r)}$ on n vs is the r-uniform graph on $\left\{u_{1},-, u_{n}\right\}$ whose edges are sets of r consecutive vs.

Dudek-La Fleur-Mubayi-Rödl 17: Is $\hat{r}\left(P_{n}^{(r)}\right)=O(n)$?
Lu-Wang 17: $\hat{r}\left(P_{n}^{(r)}\right)=O\left((n \log n)^{r / 2}\right)$.

Hypergraphs
Dudek-La Fleur-Mubayi-Rödl 17:
iniated the study of size-Ramsey numbers of hypergraphs.
($G \leqslant S$, and $\hat{r}_{s}(H)$ naturally extend to hypergraphs.)
The tight r-uniform path $P_{n}^{(r)}$ on n vs is the r-uniform graph on $\left\{u_{1},-, u_{n}\right\}$ whose edges are sets of r consecutive vs.

Dudek-La Fleur-Mubayi-Rödl 17: Is $\hat{r}\left(P_{n}^{(r)}\right)=O(n)$?
Lu-Wang '17: $\hat{r}\left(P_{n}^{(r)}\right)=O\left((n \log n)^{r / 2}\right)$.
Han-Kohayakawa-L.-Mota-Parczyk '20: $\hat{r}\left(P_{n}^{(3)}\right)=O(n)$.

Our results

Our results
The $\underline{Q}^{\text {th }}$ power $\left(P_{n}^{(r)}\right)^{\ell}$ of $P_{n}^{(r)}$ is the r-graph on $\left\{u_{1,}, u_{n}\right\}$ whose edges are r-subsets of $r+l-1$ consecutive vs.

$$
\begin{aligned}
& r=3 \\
& l=2
\end{aligned}
$$

Our results
The $\underline{Q}^{\text {th }}$ power $\left(P_{n}^{(r)}\right)^{l}$ of $P_{n}^{(r)}$ is the r-graph on $\left\{u_{1},-, u_{n}\right\}$ whose edges are r-subsets of $r+l-1$ consecutive vs.
$r=3$
$\ell=2$
ohm (L., Pokrovskiy, Yepremyan '21+). $\forall r, s, l: \widehat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.

Our results
The $l^{\text {th }}$ power $\left(P_{n}^{(r)}\right)^{l}$ of $P_{n}^{(r)}$ is the r-graph on $\left\{u_{1,},, u_{n}\right\}$ whose edges are r-subsets of $r+l-1$ consecutive vs.

Thy (L., Pokrovskiy, Yepremyan '21+). $\forall r, s, l: \hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Thy (L., Pokrovskiy, Yepremyan '21+) , $\forall r, s, l, \Delta$: for every tree T on n vs with max degree $\leq \Delta: \quad \hat{r}_{s}(\underbrace{}_{r}\left(T^{\ell}\right))=O(n)$.

Our results
The $\underline{l}^{\text {th }}$ power $\left(P_{n}^{(r)}\right)^{\ell}$ of $P_{n}^{(r)}$ is the r-graph on $\left\{u_{1}, \ldots, u_{n}\right\}$ whose edges are r-subsets of $r+l-1$ consecutive vs.

Chm (L., Pokrovskiy, Yepremyan '21+). $\forall r, s, l: \widehat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Thy (L., Pokrovskiy, Yepremyan '21+) . $\forall r, s, l, \Delta$: for every tree T on n vs with max degree $\leqslant \Delta: \quad \hat{r}_{s}(\underbrace{}_{r}\left(T^{\ell}\right))=O(n)$. r-cliques in $T^{\text {R }}$
 which is the L-subdivision, where $L \geqslant c \log n$, of a graph with max $\operatorname{deg} \leqslant \Delta$: $\hat{r}_{s}\left(H^{l}\right)=O(n)$.

Setup for previous proofs
Pick G an expander on $\theta(n)$ vs with max $\operatorname{deg} O(1)$.
$\tau_{\text {for us: }}$ there is an edge between every two large sets

Setup for previous proofs
Pick G an expander on $\theta(n)$ vs with $\max \operatorname{deg} O(1)$.
$\tau_{\text {for us: there is an edge between every two large sets }}$
(Such G can be obtained by removing large deg vs from $G(N, p)$ with $p=\theta\left(\frac{1}{n}\right)$ and $N=\theta(n)$.)

Setup for previous proofs
Pick G an expander on $\theta(n)$ vs with $\max \operatorname{deg} O(1)$.
$\tau_{\text {for us: there is an edge between every two large sets }}$
(Such G can be obtained by removing large deg vs from $G(N, p)$ with $p=\theta\left(\frac{1}{n}\right)$ and $N=\theta(n)$.)
Consider $G^{k}(B)=$ the graph obtained from G^{k} by blowing up each $v x u$ by a clique on B vs denoted $B(u)$.

G

G^{2}

$G^{2}(B)$

Size-Ramsey numbers of powers of tight paths
8 March 2021

Overview of previous proofs
Fix an s-colouring of $G^{k}(B)$.

Overview of previous proofs
Fix an s-colouring of $G^{k}(B)$.
By Ramsey, each $B(u)$ has a large mono subclique $B^{\prime}(u) \subseteq B(u)$.

Overview of previous proofs
Fix an s-colouring of $G^{k}(B)$.
By Ramsey, each $B(u)$ has a large mono subclique $B^{\prime}(u) \subseteq B(u)$.
$W \log , B^{\prime}(u)$ is blue for $\geqslant \frac{1}{s}$ of $u \in V(G)$.

Overview of previous proofs
Fix an s-colouring of $G^{k}(B)$.
By Ramsey, each $B(u)$ has a large mono subclique $B^{\prime}(u) \subseteq B(u)$.
$W \log , B^{\prime}(u)$ is blue for $\geqslant \frac{1}{s}$ of $u \in V(G)$.

Remove all vs except those in $B^{\prime}(u)$ where $B^{\prime}(u)$ is blue.

Overview of previous proofs
Fix an s-colouring of $G^{k}(B)$.
By Ramsey, each $B(u)$ has a large mono subclique $B^{\prime}(u) \subseteq B(u)$.
W log, $B^{\prime}(u)$ is blue for $\geqslant \frac{1}{s}$ of $u \in V(G)$.

Remove all vs except those in $B^{\prime}(u)$ where $B^{\prime}(u)$ is blue.
Try to connect the $B^{\prime}(u)$ to form required mono path / tree/ power of path or tree.

Overview of previous proofs
Fix an s-colouring of $G^{k}(B)$.
By Ramsey, each $B(u)$ has a large mono subclique $B^{\prime}(u) \subseteq B(u)$.
$W \log , B^{\prime}(u)$ is blue for $\geqslant \frac{1}{s}$ of $u \in V(G)$.

Remove all vs except those in $B^{\prime}(u)$ where $B^{\prime}(u)$ is blue.
Try to connect the $B^{\prime}(u)$ to form required mono path / tree/ power of path or tree.

If fail, aim to exploit the sparsity of blue edges...

Consider $K_{r}\left(G^{k}(B)\right)$.
the ${ }^{7}$-cliques in $G^{k}(B)$

some edges of $K_{3}\left(G^{k}(B)\right)$

New ingredient: stronger Ramsey lemma
Consider $K_{r}\left(G^{k}(B)\right)$.
the ${ }^{r} r$-cliques in $G^{k}(B)$
Lemma. H hypergraph, $\Delta(H)=O(1) . B \gg$ b.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$
the clique corresponding to x^{5}
with $\left|B^{\prime}(u)\right|=b$ s.t. in $U B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\left|f \cap B^{\prime}(u)\right|$
$\forall u$ then exp have the same colour.

New ingredient: stronger Ramsey lemma
Consider $K_{r}\left(G^{k}(B)\right)$.
the ${ }^{7} r$-cliques in $G^{k}(B)$
Lemma. H hypergraph, $\Delta(H)=O(1) . B \gg$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$
the clique corresponding to x^{5}
with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\left|f \cap B^{\prime}(u)\right|$
$\forall u$ then $e x f$ have the same colour.
Proof. Apply a Ramsey-type result to each "edge-type". Each B(u) is involved in O(1) applications, so wont shrink too much. \square

some edges of $K_{3}\left(G^{k}(B)\right)$

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1) . B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then $e x f$ have the same colour.

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1) . B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then e eff have the same colour.

Want to show: $\hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1)$. $B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then exp have the same colour.

Want to show: $\hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Enough to find r-uniform H with $\theta(n)$ edges and max $\operatorname{deg} O(1)$ whose every s-colouring has a $l^{\text {th }}$ power of a tight walk on n vs where each $v x$ repeats $O(i)$ times.

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1)$. $B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then exp have the same colour.

Want to show: $\hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Enough to find r-uniform H with $\theta(n)$ edges and max $\operatorname{deg} O(1)$ whose every s-colouring
 has a $l^{\text {th }}$ power of a tight walk on n vs where each $v x$ repeats $O(i)$ times.

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1)$. $B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then exp have the same colour.

Want to show: $\hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Enough to find r-uniform H with $\theta(n)$ edges and max $\operatorname{deg} O(1)$ whose every s-colouring has a $l^{\text {th }}$ power of a tight walk on n vs where each $v x$ repeats $O(i)$ times.

subgraph of $H(B)$ with b vs from each $B(h)$ and edges of same type
have same colour.

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1)$. $B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then exp have the same colour.

Want to show: $\hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Enough to find r-uniform H with $\theta(n)$ edges and max $\operatorname{deg} O(1)$ whose every s-colouring has a $l^{\text {th }}$ power of a tight walk on n vs where each $v x$ repeats $O(i)$ times.

subgraph of $H(B)$ with b vs from each $B(h)$ and edges of same type
have same colour.

Looking for tight walks
Lemma. H hypergraph, $\Delta(H)=O(1)$. $B \gg b$.
For every s-colouring of $H(B) \exists B^{\prime}(u) \subseteq B(u)$ with $\left|B^{\prime}(u)\right|=b$ sit. in $\cup B^{\prime}(u)$ if $\left|e \cap B^{\prime}(u)\right|=\mid f \cap B^{\prime}(u)$ $\forall u$ then exp have the same colour.

Want to show: $\hat{r}_{s}\left(\left(P_{n}^{(r)}\right)^{l}\right)=O(n)$.
Enough to find r-uniform H with $\theta(n)$ edges and max $\operatorname{deg} O(1)$ whose every s-colouring has a $l^{\text {th }}$ power of a tight walk on n vs where each $v x$ repeats $O(i)$ times.

subgraph of $H(B)$ with b vs from each $B(n)$ and edges of same type
have same colour.

Sketch of our proof for $r=2$
Consider an s-colouring of $G^{k}(B)$.
By Ramsey lemma from previous slide, may assume that the us in $B(a)$ are twins.

Sketch of our proof for $r=2$
Consider an s-colouring of $G^{k}(B)$.
By Ramsey lemma from previous slide, may assume that the us in $B(u)$ are twins.

Define auxiliary colouring of G^{k} :

* colour uv by c if J"short" c-coloured $l^{\text {th }}$ power of a path starting with l vs in $B(u)$ and ending with l vs in $B(v)$.

* ow, colour uv grey.

Long mono path
Suppose $\left(u_{1}\right.$ - $\left.u_{n}\right)$ is a red path in the auxiliary colouring of G^{k}.

Suppose $\left(u_{1}\right.$ _ $\left.u_{n}\right)$ is a red path in the auxiliary colouring of G^{k}.
\Rightarrow J short red $l^{\text {th }}$ powers of paths Q_{i} starting with l vs in $B\left(u_{i}\right)$ and ending with ℓ vs in $B\left(u_{i+1}\right)$.

Long mono path
Suppose $\left(u_{1}\right.$ _ $\left.u_{n}\right)$ is a red path in the auxiliary colouring of G^{k}.
\Rightarrow J short red $l^{\text {th }}$ powers of paths Q_{i} starting with l vs in $B\left(u_{i}\right)$ and ending with ℓ vs in $B\left(u_{i+1}\right)$.

Because all vs in $B\left(u_{i}\right)$ are identical, may assume that the last ℓ vs in Q_{i} are the first vs in Q_{i+1}.

Long mono path
Suppose $\left(u_{1}\right.$ _ $\left.u_{n}\right)$ is a red path in the auxiliary colouring of G^{k}.
\Rightarrow short red $l^{\text {th }}$ powers of paths Q_{i} starting with l vs in $B\left(u_{i}\right)$ and ending with ℓ vs in $B\left(u_{i+1}\right)$.

Because all vs in $B\left(u_{i}\right)$ are identical, may assume that the last ℓ vs in Q_{i} are the first vs in Q_{i+1}.

$\Rightarrow \exists l^{\text {th }}$ power of a red walk on n vs, with few repetitions. $\left(\begin{array}{l}\text { If } v \in Q_{i} \text { then dist }\left(u_{i}, v\right)=O(1){ }_{i} \\ \text { This can happen for } O(i) \\ u_{i} s_{s}\end{array}\right)$

Many grey cliques
Lemma. If there is no non-grey mono P_{n} in the auxiliary colouring, then there are disjoint grey K_{t} 's target constant most vs.

Many grey cliques
Lemma. If there is no non-grey mono P_{n} in the auxiliary colouring, then there are disjoint grey K_{t} 's that cover most vs.

no short mono $\ell^{\text {th }}$ powers
of paths between small blolos

Many grey cliques
Lemma. If there is no non-grey mono P_{n} in the auxiliary colouring, then there are disjoint grey K_{t} 's that cover constant most vs.
large constant
By a variant of Ramsey lemma, may assume:

* all "2-level blobs" look like this: (colours between and in small blobs are distinct, otherwise there would be a mono $l^{\text {th }}$ power of path between small blobs).

Many grey cliques
Lemma. If there is no non-grey mono P_{n} in the auxiliary colouring, then there are disjoint grey K_{t} 's that cover most vs. large constant
By a variant of Ramsey lemma, may assume:

* all "2-level blobs" look like this: (colours between and in small blobs are distinct, otherwise there would be a mono $l^{\text {th }}$ power of path between small blobs).
* all edges between any two "2-level blobs" have the same colour.

Similarly, find

* mono $l^{\text {th }}$ power of a walk on n vs (with few repetitions), or

Similarly, find

* mono $l^{\text {th }}$ power of a walk on n vs (with few repetitions), or
* "3-level blobs" as follows covering most vs.

no mono $\&^{\text {th }}$ power of path starting and ending in a small blob or starting and ending in distinct small blobs but same medium blob

Similarly, find

* mono $l^{\text {th }}$ power of a walk on n vs (with few repetitions), or
* "3-level blobs" as follows covering most vs.

no mono $l^{\text {th }}$ power of path starting and ending in a small blob or starting and ending in distinct small blobs but same medium blob

By a variant of the Ramsey lemma, may assume all "3-level blobs" look like this (all colours are distinct):

Next iterations
Similarly, find

* mono $l^{\text {th }}$ power of a walk on n vs (with few repetitions), or
* "3-level blobs" as follows covering most vs.

no mono $\&^{\text {th }}$ power of path starting and ending in a small blob or starting and ending in distinct small blobs but same medium blob

By a variant of the Ramsey lemma, may assume all "3-level blobs" look like this (all colours are distinct):

After ss+1 iterations, find required power of a walk. \square

Ordered trees
A d-ary ordered tree of height h is a complete d-arg tree of height h, along with an ordering of its leaves obtained from a planar drawing of the tree with all leaves on a line.
ordered 3-ary tree of height 3:
(leaves ordered left-to-right)

not an ordered tree

Using ordered trees to model leveled blobs
We model "h-level blobs" by the leaves of ordered d-ary trees of height h,

Using ordered trees to model leveled blobs
We model "h-level blobs" by the leaves of ordered deary trees of height h,

and use the natural correspondence between t-sets of leaves and ordered subtrees with t leaves.

Using ordered trees to model leveled blobs
We model "h-level blobs" by the leaves of ordered deary trees of height h,

and use the natural correspondence between t-sets of leaves and ordered subtrees with t leaves.

Using ordered trees to model leveled blobs
We model "h-level blobs" by the leaves of ordered deary trees of height h,

and use the natural correspondence between t-sets of leaves and ordered subtrees with t leaves.

Sketch of our proof for $r \geqslant 3$

In step j:

$$
* U_{j} \subseteq V(G) \text { large, }
$$

Sketch of our proof for $r \geqslant 3$

In step j:

* $U_{j} \subseteq V(G)$ large,
* $T_{j}(u)$ is a d_{j}-ary ordered tree of height j, rooted at u,

Sketch of our proof for $r \geqslant 3$

In step j:

* $U_{j} \subseteq V(G)$ large,
* $T_{j}(u)$ is a d_{j}-ary ordered tree of height j, rooted at u,

* no short mono $\ell^{\text {th }}$ power of tight path starting and ending at disjoint ℓ-sets of leaves in $T_{j}(u)$ corresponding to isomorphic ordered trees (in the r-graph whose edges are r-sets of leaves whose roots are cliques in $G^{k j}$).

Ramsey lemma for ordered trees
Lemma. T ordered D-arg tree of height $h, D \gg d$.
For every s-colouring of r-sets of leaves of T, there is a d-ary subtree $T^{\prime} \subseteq T$ of height h, s.t. r-sets of leaves of T^{\prime} corresponding to isomorphic ordered trees have the same colour.

Ramsey lemma for ordered trees
Lemma. T ordered D-arg tree of height $h, D \gg d$.
For every s-colouring of r-sets of leaves of T, there is a d-ary subtree $T^{\prime} \subseteq T$ of height h, s.t. r-sets of leaves of T^{\prime} corresponding to isomorphic ordered trees have the same colour.

Ramsey lemma for ordered trees
Lemma. T ordered D-arg tree of height $h, D \gg d$.
For every s-colouring of r-sets of leaves of T, there is a d-ary subtree $T^{\prime} \subseteq T$ of height h, s.t. r-sets of leaves of T^{\prime} corresponding to isomorphic ordered trees have the same colour.

Ramsey lemma for ordered trees
Lemma. T ordered D-arg tree of height $h, D \gg d$.
For every s-colouring of r-sets of leaves of T, there is a d-ary subtree $T^{\prime} \subseteq T$ of height h, s.t. r-sets of leaves of T^{\prime} corresponding to isomorphic ordered trees have the same colour.

Ramsey lemma for ordered trees
Lemma. T ordered D-arg tree of height $h, D \gg d$.
For every s-colouring of r-sets of leaves of T, there is a d-ary subtree $T^{\prime} \subseteq T$ of height h, s.t. r-sets of leaves of T^{\prime} corresponding to isomorphic ordered trees have the same colour.

Ramsey lemma for ordered trees
Lemma. T ordered D-arg tree of height $h, D \gg d$.
For every s-colouring of r-sets of leaves of T, there is a d-ary subtree $T^{\prime} \subseteq T$ of height h, s.t. r-sets of leaves of T^{\prime} corresponding to isomorphic ordered trees have the same colour.

By this lemma:
may assume that edges corresponding to isomorphic ordered forests have the same colour.

Auxiliary colouring
Define auxiliary colouring of $G^{k_{j+1}}$:
colour q ordered tree on ℓ leaves

* colour uv (c, s) if there is a short c-coloured $\ell^{\text {th }}$ power of path from an S-copy in $T_{j}(u)$ to an S-copy in $T_{j}(v)$.
* ow colour un grey.

Auxiliary colouring
Define auxiliary colouring of $G^{k_{j+1}}$:
colour $2 r$ ordered tree on ℓ leaves

* colour uv (C, S) if there is a short c-coloured $l^{\text {th }}$ power of path from an S-copy in $T_{j}(u)$ to an S-copy in $T_{j}(v)$.
* ow colour us grey.

Suppose Jnon grey mono P_{n}, in colour (red, S).

Auxiliary colouring
Define auxiliary colouring of $G^{k_{j+1}}$:
colour 2 s ordered tree on $\&$ leaves

* colour uv (c, S) if there is a short c-coloured $l^{\text {th }}$ power of path from an S-copy in $T_{j}(u)$ to an S-copy in $T_{j}(u)$.
* ow colour uv grey.

Suppose anon grey mono P_{n}, in colour (red, S).

using assumption that edges corresponding to isomorphic ordered forests have same colour

If Ind non -grey mono P_{n}, then there are many disjoint grey $K_{d_{j+1}+1}$'s.

If Inv non-grey mono P_{n}, then there are many disjoint grey $K_{d_{j+1}+1}$'s.
\Rightarrow I many structures like this:
no short mono $l^{\text {th }}$ power of tight path between copies of S in different trees, $\forall S$

If \exists no non -grey mono P_{m}, then there are many disjoint grey $K_{d_{j w+1}}$'s.
\Rightarrow I many structures like this:
no short mono $l^{\text {th }}$ power of tight path between copies of S in different trees, $\forall S$

No long non-grey path
If $\mathrm{Ino}_{\text {non -grey mono }} P_{n}$, then there are many disjoint grey $K_{d_{j n+1}}$'s.
\Rightarrow I many structures like this:
no short mono $l^{\text {th }}$ power of tight path between copies of S in different trees, $\forall S$

Lemma. T ordered d-arg tree of height $h . h_{1} d \gg r_{1}, s, l$.
For every s-colouring of resets of leaves \exists mono $\ell^{\text {th }}$ power of tight path on 3ℓ us starting and ending at disjoint copies of some ordered tree S on l leaves.

No long non-grey path
If Ind non -grey mono $_{n}$, then there are many disjoint grey $K_{d_{j+1}+1}$'s.
$\Rightarrow \exists$ many structures like this:
no short mono $l^{\text {th }}$ power of
tight path between copies
of S in different trees, $\forall S$

Lemma. Tordered d-arg tree of height $h . h, d \gg r, s, l$.
For every s-colouring of resets of leaves \exists mono $l^{\text {th }}$ power of tight path on 3ℓ us starting and ending at disjoint copies of some ordered tree S on l leaves.
\Rightarrow After $\leqslant h$ steps find the required power of a walk.

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \hat{r}\left(P_{n}\right) \leqslant 74 n$.

Improve these bounds.

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \hat{r}\left(P_{n}\right) \leqslant 74 n$.

Improve these bounds.
Dudek-Pratat ' 16 krivelevich ' 19

* Best bounds for s colours: $\Omega\left(s^{2} n\right)^{\downarrow}=\widehat{r}_{s}\left(P_{n}\right) \stackrel{\downarrow}{=} O\left(s^{2} \log s n\right)$. Which bound is closer to the truth?

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \hat{r}\left(P_{n}\right) \leqslant 74 n$.

Improve these bounds.
Dudek-Pratat 'll krivelevich '19

* Best bounds for s colours: $\Omega\left(s^{2} n\right)^{\downarrow}=\widehat{r}_{s}\left(P_{n}\right) \stackrel{\downarrow}{=} O\left(s^{2} \log s n\right)$. Which bound is closer to the truth?
* Conj (Rödl-Szemerédi ' 00): $\forall \Delta \geqslant 3$ j $\varepsilon>0$:

$$
n^{1+\varepsilon} \leqslant \max \{\hat{r}(H):|H|=n, \Delta(H) \leq \Delta\} \leqslant n^{2-\varepsilon} .
$$

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \widehat{r}\left(P_{n}\right) \leqslant 74 n$. Improve these bounds.

Dudek-Pratat ${ }^{16}$ krivelevich '19

* Best bounds for s colours: $\Omega\left(s^{2} n\right)^{\downarrow} \widehat{r}_{s}\left(P_{n}\right) \stackrel{\downarrow}{=} O\left(s^{2} \log s n\right)$. Which bound is closer to the truth?
* Conj (Rödl-Szemerédi ' 00): $\forall \Delta \geqslant 3$ j $\varepsilon>0$: $n^{1+\varepsilon} \leqslant \max \{\hat{r}(H):|H|=n, \Delta(H) \leqslant \Delta\} \leqslant n^{2-\varepsilon}$.
open ${ }^{\ell}$ proved by Kohayakawa-Rödll-Schact-Szemerédi ill for $\varepsilon<\frac{1}{\Delta}$

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \widehat{r}\left(P_{n}\right) \leqslant 74 n$. Improve these bounds.

Dudek-Pratat ${ }^{16}$ krivelevich '19

* Best bounds for s colours: $\Omega\left(s^{2} n\right)^{\downarrow} \widehat{r}_{s}\left(P_{n}\right) \stackrel{\downarrow}{=} O\left(s^{2} \log s n\right)$. Which bound is closer to the truth?
* Conj (Rödl-Szemerédi ' 00): $\forall \Delta \geqslant 3$ j $\varepsilon>0$:

$$
n^{1+\varepsilon} \leq \max \{\hat{r}(H):|H|=n, \Delta(H) \leq \Delta\} \leq n^{2-\varepsilon} .
$$

open
proved by Kohayakawa-Rödl-Schact-Szemerédi 'Il for $\varepsilon<\frac{1}{\Delta}$ (best lower bound: Rödl-Szemerédi '00: $n(\log n)^{\varepsilon}$).

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \hat{r}\left(P_{n}\right) \leqslant 74 n$. Improve these bounds.

Dudek-Pratat ' 16 krivelevich ' 19

* Best bounds for s colours: $\Omega\left(s^{2} n\right)^{\downarrow}=\widehat{r}_{s}\left(P_{n}\right) \stackrel{\downarrow}{=} O\left(s^{2} \log s n\right)$. Which bound is closer to the truth?
* Conj (Rödl-Szemerédi ' 00): $\forall \Delta \geqslant 3$ j $\varepsilon>0$:

$$
n^{n^{1+\varepsilon}} \leqslant \max \{\hat{r}(H):|H|=n, \Delta(H) \leqslant \Delta\} \leqslant n^{2-\varepsilon} .
$$

open proved by Kohayakawa-R̈̈dl_Schact-Szemerédi ill for $\varepsilon<\frac{1}{\Delta}$ (best lower bound: Rödl-Szemerédi '00: $\left.n(\operatorname{logn})^{\varepsilon}\right)$).

$$
\text { Is } \hat{r}(n \times n \text { grid })=O\left(n^{2}\right) \text { ? Clemens-Miralaei-Reding-Schacht-Taraz '19: } O\left(n^{3+0(11)}\right. \text {. }
$$

Open problems

* Best bounds on $\hat{r}\left(P_{n}\right): 3.75 n \leqslant \hat{r}\left(P_{n}\right) \leqslant 74 n$. Improve these bounds.

Dudek-Pratat 116 krivelevich 19

* Best bounds for s colours: $\Omega\left(s^{2} n\right)^{\downarrow}=\widehat{r}_{s}\left(P_{n}\right) \stackrel{\downarrow}{=} O\left(s^{2} \log s n\right)$. Which bound is closer to the truth?
* Conj (Rödl-Szemerédi ' 00): $\forall \Delta \geqslant 3$ j $\varepsilon>0$:

$$
n^{1+\varepsilon} \leqslant \max \{\hat{r}(H):|H|=n, \Delta(H) \leq \Delta\} \leqslant n^{2-\varepsilon}
$$

open proved by Kohayakawa-R̈̈dl_Schact-Szemerédi ill for $\varepsilon<\frac{1}{\Delta}$ (best lower bound: Rödl-Szemerédi '00: $\left.n(\operatorname{logn})^{\varepsilon}\right)$).
Is $\hat{r}(n \times n$ grid $)=O\left(n^{2}\right)$? Clemens - Miralaei-Reding-Schacht-Taraz '19: $O\left(n^{3+0(11)}\right.$).
Thank yow For listening! !

