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A very classical stuff

Gallai’s Theorem (60’s): 𝐺 = 𝑉, 𝐸 − graph 

∃ partition 𝑉 = 𝑉1 ∪ 𝑉2 s.t. both induced subgraphs

𝐺 𝑉1 , 𝐺 𝑉2 have all degrees even

(see, e.g., CP&E of Lovász, Problem 5.17 for a proof by Pósa)

Conclusion: Can also partition 𝑉 = 𝑉1 ∪ 𝑉2

𝐺[𝑉1] − all degrees even; 𝐺[𝑉2] − all degrees odd

[ Proof: Add 𝑣 to 𝐺, connect 𝑣 to all of 𝑉(𝐺), get 𝐺′;

apply Gallai to 𝐺′ to get 𝑉 𝐺′ = 𝑉1
′ ∪ 𝑉2

′;

delete 𝑣 from 𝐺′ ]

Conclusion: ∀𝐺 = 𝑉, 𝐸 contains 𝑉1 ⊆ 𝑉 𝐺 , 𝑉1 ≥
|𝑉|

2
,

𝐺 𝑉1 has all degrees even. 
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Let there be light…

A riddle for you:

𝐺 = 𝑉, 𝐸 − graph 

- each vertex 𝑣 ∈ 𝑉 has a light and a button

- pressing button at 𝑣: switches the light status for 𝑣 and all its neighbors

- start with all lights off

Prove: can push some buttons to get all lights on 

Ex.: 𝐺 =
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Odd things are odd…

• e + e

• e + o

Can we do o+o ?

No: 𝐺 = (𝑉, 𝐸) − all degrees odd ⇒ 𝑉 − even 

not every graph 𝐺 has even # of vertices…
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Odd things are odd… (cont.)

A side remark:

For which graph 𝐺 = (𝑉, 𝐸) can we partition 

𝑉 = 𝑉1 ∪⋯∪ 𝑉𝑘 (for some 𝑘 ≥ 1) s.t.

∀1 ≤ 𝑖 ≤ 𝑘, 𝐺[𝑉𝑖] has all degrees odd?

Scott’01: V(𝐺) can be partitioned into induced odd subgraphs

⟺ every connected component of 𝐺 has even order

(so called perfect forest theorem;

can require: ∀ 𝑉𝑖 contains an induced spanning tree)
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Odd things are odd… (cont.)

Also:

𝑣 is isolated in 𝐺 ⟹ 𝑣 is never a part of any odd subgraph

⟹ should assume: 𝛿 𝐺 ≥ 1.

Notation: 

𝑓𝑜 𝐺 ∶= max { 𝑉0 : 𝑉0 ⊆ 𝑉 𝐺 , 𝐺 𝑉0 has all degrees odd}

𝑓𝑜 𝑛 ∶= min {𝑓𝑜 𝐺 :𝐺 = 𝑉, 𝐸 , 𝑉 = 𝑛, 𝛿 𝐺 ≥ 1}
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So a conjecture…

Conjecture

(stated in Caro’94, 

“certainly a part of the graph theory folklore”):

∃ constant 𝑐 > 0 s.t.

𝑓𝑜 𝑛 ≥ 𝑐𝑛, ∀𝑛 ∈ ℕ
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Previous results

• Caro’94 (+Alon): 𝑓𝑜 𝑛 ≥ 𝑐√𝑛;

• Scott’92: 𝑓𝑜 𝑛 ≥
𝑐𝑛

log 𝑛
;

𝐺 ∼ 𝐺(𝑛,
1

2
): whp 𝑓𝑜 𝑛 = 1 + 𝑜 1 𝑐𝑛 for 𝑐 = 0.7729…

• Bounds on 𝑓𝑜 𝐺 thru: − max degree Δ 𝐺 ;

− independence number 𝛼(𝐺);

− chromatic number 𝜒(𝐺);

− etc.
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Main result

Th. 1: Every graph 𝐺 = 𝑉, 𝐸 , |𝑉| = 𝑛, 𝛿 𝐺 ≥ 1,

contains a subset 𝑉0 ⊆ 𝑉 𝐺 , 𝑉0 ≥
𝑛

10,000

s.t. 𝐺 𝑉0 has all degrees odd.

I.e.: 

𝑓𝑜 𝑛 ≥
𝑛

10,000

− settling the conjecture.
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Application − covering by odd subgraphs

Scott’01: 

𝑡 𝐺 ≔ min{𝑡: ∃ 𝑉1, … , 𝑉𝑡 (not necess. disjoint),

𝐺[𝑉𝑖] − odd, 𝑉 𝐺 = 𝑖=1ڂ
𝑡 𝑉𝑖}

𝑡 𝑛 ≔ max 𝑡 𝐺 : 𝑉 𝐺 = 𝑛, 𝛿 𝐺 ≥ 1 .

Scott: 𝑐log 𝑛 ≤ 𝑡 𝑛 ≤ 𝐶 log2 𝑛

9



Covering by odd subgraphs (cont.)

Cor.: 𝑡(𝑛) = Θ(log 𝑛)

Proof: Upper bound: apply repeatedly Th. 1 to find

𝑉1, … , 𝑉𝑡 s.t.:

• 𝑉𝑖 ⊆ 𝑉 ∖ 𝑗=1ڂ
𝑖−1 𝑉𝑗;

• 𝐺 𝑉𝑖 odd;

• 𝑉𝑖 covers positive % of non-isolated vertices in G[𝑉 ∖ 𝑗=1ڂ
𝑖−1 𝑉𝑗].

Stop after 𝑂(log 𝑛) steps, with 𝑉∗, 𝐺[𝑉∗] − independent set

Can cover 𝑉∗ with further 𝑂(log 𝑛) sets (Scott; see later).
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Covering by odd subgraphs (cont.)

Lower bound (Scott): 

𝐺 ∶= 1-subdivision of 𝐾𝑘 ( 𝑉 𝐺 = 𝑘 +
𝑘
2

= Θ(𝑘2))

(𝑉1, … , 𝑉𝑡) − cover by odd subgraphs

𝑣 − subdivision vertex (𝑑𝐺 𝑣 = 2)

𝑢1, 𝑢2 − neighbors of 𝑣

𝑉𝑖 ∋ 𝑣 ⇒ 𝑉𝑖 contains exactly one of 𝑢1, 𝑢2

Conclusion: (𝑉1, … , 𝑉𝑡) separates [𝑘]

⟹ 𝑡 = Ω(log 𝑘) = Θ(log |𝑉 𝐺 |) . ∎
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Proof ingredients 1

Lemma 1: 𝑓𝑜 𝐺 ≥
Δ(𝐺)

2
.

Proof: 𝑣 ≔ vertex of max degree

𝑈 ⊆ 𝑁𝐺 𝑣 , |𝑈| − odd, 𝑈 ≥ Δ 𝐺 − 1

Apply Gallai to 𝐺[𝑈] to get 𝑈 = 𝑉1 ∪ 𝑉2,

𝐺 𝑉1 − even, 𝐺 𝑉2 − odd

(⇒ |𝑉2| − even  ⇒ |𝑉1| − odd) 

Then: 𝐺 𝑉1 + 𝑣 , G[V2] − both odd, total size 𝑈 + 1 ≥ Δ 𝐺

⇒ 𝑓𝑜 𝐺 ≥
Δ 𝐺

2
. ∎
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Proof ingredients 2

Lemma 2: 𝛿 𝐺 ≥ 1 ⇒ 𝑓𝑜 𝐺 ≥
𝛼(𝐺)

2
.

Proof: 𝐼 ⊂ 𝑉(𝐺) − largest independent set, 𝐼 = 𝛼(𝐺)

𝐷 ⊆ 𝑉 − 𝐼 − minimal by inclusion set dominating 𝐼

(exists as 𝛿 𝐺 ≥ 1) 

minimality of 𝐷 ⇒ ∀𝑤 ∈ 𝐷 ∃𝑢𝑤 ∈ 𝐼, 𝑁 𝑢𝑤 ∩ 𝐷 = 𝑤

(𝑢𝑤 − private neighbor of 𝑤)

𝐼𝐷 ≔ set of private neighbors, 𝐼𝐷 = 𝐷, 𝐼𝐷 ⊆ 𝐼
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Proof ingredients 2 (cont.) 

Choose: 𝐷′ ⊆ 𝐷 uniformly at random

𝐼0 ⊆ 𝐼 ∖ 𝐼𝐷− vertices with odd degrees into 𝐷′

𝐼1 = { 𝑢𝑤 ∈ 𝐼𝐷: 𝑤 ∈ 𝐷′, 𝑤 has even degree into 𝐷′ ∪ 𝐼0} 

𝐺[𝐼0 ∪ 𝐼1 ∪ 𝐷′] − all degrees odd

𝔼[ 𝐼0 ∪ 𝐼1 ∪ 𝐷′| = 𝔼 𝐼0 + 𝔼[ 𝐼1 ] + 𝔼 𝐷′ ≥
𝐼∖𝐷

2
+

𝐷

2
=

𝛼(𝐺)

2
.

⇒ ∃ odd subgraph on ≥
𝛼(𝐺)

2
vertices. ∎

Remark: 𝛼 𝐺 ⋅ (Δ 𝐺 + 1) ≥ 𝑛 ⇒ recover Caro’s estimate 𝑓𝑜 𝐺 = Ω( 𝑛).
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Proof ingredients 3

Lemma 3: 𝐺 = 𝑉, 𝐸

𝑀 − matching in 𝐺 with sides 𝑈,𝑊

∀𝑤 ∈ 𝑊 has only one neighbor in 𝑈 ∪𝑊 (=its mate in 𝑀)

[𝑀 − semi-induced matching] 

Suppose: |𝑁𝐺(𝑈) − (𝑊 ∪ 𝑁𝐺 𝑊 )| ≥ 𝑘

⇒ 𝑓𝑜 𝐺 ≥
𝑘

4
.

Proof: similar to previous lemmas. ∎

Proof idea for the theorem: keep growing such a matching 𝑀/parameter 𝑘,

or else…
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Proof ingredients 4

Lemma 4: 𝐺 = 𝐴 ∪ 𝐵, 𝐸 − bipartite graph, 𝑑 𝑏 > 0 ∀𝑏 ∈ 𝐵

⇒ ∃ 𝑎, 𝑏 ∈ 𝐸 𝐺 ,
𝑑 𝑎

𝑑 𝑏
≥

|𝐵|

|𝐴|
.

Proof: (in this formulation − due to Alex Scott) 

Choose a random 𝑒 = 𝑎, 𝑏 ∈ 𝐸 𝐺 in two ways:

1. Choose a random 𝑎 ∈ 𝐴, 𝑑 𝑎 > 0;

then choose a random 𝑒 = 𝑎, 𝑏 ∈ 𝐸; 𝑝1 𝑒 : = Pr[𝑒 is chosen]≥
1

𝐴 ⋅𝑑(𝑎)

2. Choose a random 𝑏 ∈ 𝐵;

then choose a random 𝑒 = 𝑎, 𝑏 ∈ 𝐸; 𝑝2 𝑒 := Pr[𝑒 is chosen] =
1

𝐵 ⋅𝑑(𝑏)

Obviously σ𝑒 𝑝1 𝑒 = σ𝑒 𝑝2 𝑒 = 1 ⇒ ∃ 𝑒, 𝑝1 𝑒 ≤ 𝑝2 𝑒

For this 𝑒 = 𝑎, 𝑏 ,
1

𝐴 ⋅𝑑(𝑎)
≤

1

𝐵 ⋅𝑑 𝑏
. ∎
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Key Lemma

Helpful: edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 𝐺 s.t. 𝑁 𝑢 ∖ N 𝑣 = Θ( 𝑁 𝑢 ∪ 𝑁 𝑣 )

Then: can add 𝑒 to matching 𝑀 from Lemma 3

⇒

Notation:

𝐿 𝐺; 𝛽 = {𝑣 ∈ 𝑉: ∃𝑢 ∈ 𝑉, 𝑢, 𝑣 ∈ 𝐸 𝐺 ,

𝑁 𝑢 ∖ 𝑁 𝑣 ≥ 𝛽 𝑁 𝑢 ∪ 𝑁 𝑣 }

(𝛽 > 0 − small constant)

Large 𝐿 𝐺; 𝛽 ⇒ room to operate. 
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Key Lemma (cont.)

Lemma 5: 𝐺 = 𝑉, 𝐸 , 𝑉 = 𝑛, 𝛿 𝐺 > 0; 𝛽 =
1

20

|𝐿 𝐺; 𝛽 | ≤
𝑛

14
⇒ 𝑓𝑜 𝐺 ≥

𝑛

61
.

Proof: relatively complicated/involved (≈ 2.5 pp)

Main challenge: 

Graphs with |𝐿 𝐺; 𝛽 | small?

Ex.: 𝐺 = union of disjoint cliques

𝐿 𝐺; 𝛽 = ∅

Proof idea: |𝐿 𝐺; 𝛽 | small ⇒ 𝐺 ≈ union of disjoint nearly cliques 𝑈𝑖

⇒ can apply Lemma 1 to each 𝐺[𝑈𝑖],

collect odd pieces from 𝑈𝑖 together. ∎
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Proof of main theorem 1

Plan of attack:

Grow a matching 𝑀𝑖 with sides 𝑈𝑖 ,𝑊𝑖 s.t.

|𝑁𝐺 𝑈𝑖 ∖ 𝑊𝑖 ∪ 𝑁𝐺 𝑊𝑖 ) is substantial:

|𝑁𝐺 𝑈𝑖 ∖ 𝑊𝑖∪𝑁𝐺 𝑊𝑖 )

|𝑁𝐺 𝑈𝑖∪𝑊𝑖 |
= Θ(1)

If get to: |𝑁𝐺 𝑈𝑖 ∖ 𝑊𝑖 ∪ 𝑁𝐺 𝑊𝑖 ) = Θ 𝑛 − can apply Lemma 3, done

Otherwise: look at 𝑉𝑖 = 𝑉 ∖ 𝑁𝐺(𝑈𝑖 ∪𝑊𝑖)

𝐺 𝑉𝑖 :  𝐿(𝐺 𝑉𝑖 ; 𝛽 − small ⇒ apply Key Lemma, done;

𝐿(𝐺 𝑉𝑖 ; 𝛽 − large ⇒ find an edge 𝑒 to add to 𝑀𝑖
19

Th.: Every graph 𝐺 = 𝑉, 𝐸 , |𝑉| = 𝑛, 𝛿 𝐺 ≥ 1,

contains a subset 𝑉0 ⊆ 𝑉 𝐺 , 𝑉0 ≥
𝑛

10,000

s.t. 𝐺 𝑉0 has all degrees odd.



Proof of main theorem 2

Initialize: 𝑀0 = ∅

𝑀𝑖 − current matching with sides 𝑈𝑖 ,𝑊𝑖

Define: 𝑋𝑖 ≔ 𝑁 𝑈𝑖 ∖ (𝑊𝑖 ∪ 𝑁 𝑊𝑖 )

Maintain: 
|𝑋𝑖|

|𝑁 𝑈𝑖∪𝑊𝑖 |
≥

1

40
.

Can assume: 𝑋𝑖 ≤
𝑛

2,500
− otherwise done by Lemma 3

𝑉𝑖 ≔ 𝑉 ∖ 𝑁(𝑈𝑖 ∪𝑊𝑖); 𝑉𝑖 ≥
𝑛

2
.

Look at 𝐺[𝑉𝑖]:

𝑉𝑖
′ ≔ non-isolated vertices in 𝑉𝑖

Can assume: 𝑉𝑖
′ ≥

𝑛

4
− otherwise large indep. set, done by Lemma 2
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Proof of main theorem 3

Set: 𝛽 =
1

20

Look at 𝐿 ≔ 𝐿(𝐺 𝑉𝑖
′ ; 𝛽)

(𝐿 𝐺; 𝛽 = {𝑣 ∈ 𝑉: ∃𝑢 ∈ 𝑉, 𝑢, 𝑣 ∈ 𝐸 𝐺 , 𝑁𝐺 𝑢 ∖ 𝑁𝐺 𝑣 ≥ 𝛽 𝑁𝐺 𝑢 ∪ 𝑁𝐺 𝑣 })

Can assume: 𝐿 ≥
𝑛

56
− otherwise done by Key Lemma 
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Proof of main theorem 4

Case 1: ∀𝑣 ∈ 𝐿, 𝑑 𝑣, 𝑋𝑖 ≥
𝑑 𝑣,𝑉𝑖

40

Look at the bipartite graph (𝑋𝑖 , 𝐿)

𝑋𝑖 ≤
𝑛

2,500
; 𝐿 ≥

𝑛

56
⇒ apply Lemma 4 to find:

edge 𝑒 = 𝑥, 𝑣 , 𝑥 ∈ 𝑋𝑖 , 𝑣 ∈ 𝐿; 𝑑 𝑥, 𝐿 ≥ 44 𝑑 𝑣, 𝑋𝑖 ≥ 1.1 𝑑(𝑣, 𝑉𝑖)

Then: add 𝑒 to 𝑀𝑖

Gain to 𝑋𝑖: ≥ 𝑑 𝑥, 𝑉𝑖 − 𝑑 𝑣, 𝑋𝑖 − 𝑑 𝑣, 𝑉𝑖

≥ 𝑑 𝑥, 𝑉𝑖 1 −
1

44
−

10

11
=

3

44
𝑑(𝑥, 𝑉𝑖)

Add to 𝑉 ∖ 𝑉𝑖: ≤ 𝑑 𝑥, 𝑉𝑖 + 𝑑 𝑣, 𝑉𝑖 ≤ 𝑑 𝑥, 𝑉𝑖 1 +
10

11
=

21

11
𝑑 𝑥, 𝑉𝑖

⇒ maintain 
|𝑋𝑖|

|𝑉∖𝑉𝑖|
= Θ(1) .

22



Proof of main theorem 5

Case 2: ∃𝑣 ∈ 𝐿, 𝑑 𝑣, 𝑋𝑖 ≤
𝑑 𝑣,𝑉𝑖

40

𝑣 ∈ 𝐿 ⇒ ∃ 𝑒 = 𝑢, 𝑣 ∈ 𝐸 𝐺 𝑉𝑖
′ witnessing 𝑣 ∈ 𝐿:

𝑁 𝑢, 𝑉𝑖
′ ∖ 𝑁 𝑣, 𝑉𝑖

′ ≥
1

20
|𝑁 𝑢, 𝑣 , 𝑉𝑖

′ |

Then: add 𝑒 to 𝑀𝑖

Gain to 𝑋𝑖: ≥ |𝑁 𝑢, 𝑉𝑖
′ ∖ 𝑁 𝑣, 𝑉𝑖

′ | − |𝑁 𝑣, 𝑋𝑖 |

≥
1

20
𝑁 𝑢, 𝑣 , 𝑉𝑖

′ −
1

40
𝑁 𝑣, 𝑉𝑖′ ≥

1

40
𝑁 {𝑢, 𝑣}, 𝑉𝑖′

Add to 𝑉 ∖ 𝑉𝑖: 𝑁 𝑢, 𝑣 , 𝑉𝑖
′

⇒ maintain 
|𝑋𝑖|

|𝑉∖𝑉𝑖|
= Θ(1) . ∎
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Open Problems

• 𝑓𝑜 𝑛 ≥ 𝑐𝑛 (here proved: 𝑐 ≥
1

10,000
)

Better bounds on 𝑐?

Conditions on graphs 𝐺 with 𝑓𝑜(𝐺) relatively small?

• Partitioning into induced odd subgraphs?

− Scott’01

• Other moduli/residues?

Need: a large subset 𝑉0 ⊆ 𝑉(𝐺)

s.t. all degrees in 𝐺 𝑉0 ≡ 𝑖 mod 𝑘 ?

Some results: Caro’94; Scott’01

random variant (𝐺 ∼ 𝐺(𝑛,
1

2
)): Ferber, Hardiman,K.’21+;

Balister, Powierski, Scott, Tan’21+ 24



Let there be light…

Solving the riddle:

Looking for a subset 𝑆 ⊂ 𝑉 (= buttons to press) s.t.:

- ∀𝑣 ∈ 𝑆 has even degree into 𝑆;

- ∀𝑣 ∈ 𝑉 ∖ 𝑆 has odd degree into 𝑆.

 Add a new vertex 𝑢 to 𝑉, connect 𝑢 to all even degree vertices in 𝐺 =: 𝐺′

 Apply Gallai to 𝐺′, get two even subgraphs 𝐺′ 𝑉1 , 𝐺
′ 𝑉2 , assume wlog 𝑢 ∈ 𝑉2

 𝑆 ∶= 𝑉1 satisfies the required condition. 

25

𝐺 = 𝑉, 𝐸 − graph 

• each vertex 𝑣 ∈ 𝑉 has a light and a button

• pressing button at 𝑣: switches the light

status for 𝑣 and all its neighbors

• start with all lights off

• Prove: can push some buttons to get

all lights on




