Linearly sized induced odd subgraphs

 Michael Krivelevich Tel Aviv UniversityJoint with: Asaf Ferber (UC Irvine)

A very classical stuff

Gallai's Theorem (60's): $G=(V, E)$ - graph \exists partition $V=V_{1} \cup V_{2}$ s.t. both induced subgraphs $G\left[V_{1}\right], G\left[V_{2}\right]$ have all degrees even
(see, e.g., CP\&E of Lovász, Problem 5.17 for a proof by Pósa)

Conclusion: Can also partition $V=V_{1} \cup V_{2}$ $G\left[V_{1}\right]$ - all degrees even; $G\left[V_{2}\right]$ - all degrees odd
[Proof: \quad Add v to G, connect v to all of $V(G)$, get G^{\prime}; apply Gallai to G^{\prime} to get $V\left(G^{\prime}\right)=V_{1}^{\prime} \cup V_{2}^{\prime}$; delete v from G^{\prime}]
Conclusion: $\forall G=(V, E)$ contains $V_{1} \subseteq V(G),\left|V_{1}\right| \geq \frac{|V|}{2}$, $G\left[V_{1}\right]$ has all degrees even.

Let there be light...

A riddle for you:

$$
G=(V, E)-\text { graph }
$$

- each vertex $v \in V$ has a light and a button
- pressing button at v : switches the light status for v and all its neighbors
- start with all lights off

Prove: can push some buttons to get all lights on

Odd things are odd...

$\begin{array}{ll} & e+e \\ & e+o\end{array}$
? Can we do o+o?

No: $G=(V, E)$ - all degrees odd $\Rightarrow|V|$ - even not every graph G has even \# of vertices...

Odd things are odd... (cont.)

A side remark:

For which graph $G=(V, E)$ can we partition
$V=V_{1} \cup \cdots \cup V_{k}$ (for some $k \geq 1$) s.t. $\forall 1 \leq i \leq k, G\left[V_{i}\right]$ has all degrees odd?

Scott'01: $\mathrm{V}(G)$ can be partitioned into induced odd subgraphs \Leftrightarrow every connected component of G has even order (so called perfect forest theorem; can require: $\forall V_{i}$ contains an induced spanning tree)

Odd things are odd... (cont.)

Also:

v is isolated in $G \Rightarrow v$ is never a part of any odd subgraph
\Rightarrow should assume: $\delta(G) \geq 1$.

Notation:

$$
\begin{aligned}
& f_{o}(G):=\max \left\{\left|V_{0}\right|: V_{0} \subseteq V(G), G\left[V_{0}\right] \text { has all degrees odd }\right\} \\
& f_{o}(n):=\min \left\{f_{o}(G): G=(V, E),|V|=n, \delta(G) \geq 1\right\}
\end{aligned}
$$

So a conjecture...

Conjecture

(stated in Caro'94,
"certainly a part of the graph theory folklore"):
\exists constant $c>0$ s.t.

$$
f_{o}(n) \geq c n, \forall n \in \mathbb{N}
$$

Previous results

- Caro'94 (+Alon): $f_{o}(n) \geq c \sqrt{ } n$;
- Scott'92: $f_{o}(n) \geq \frac{c n}{\log n}$;

$$
G \sim G\left(n, \frac{1}{2}\right): \underline{\operatorname{whp}} f_{o}(n)=(1+o(1)) c n \text { for } c=0.7729 \ldots
$$

- Bounds on $f_{o}(G)$ thru: - max degree $\Delta(G)$;
- independence number $\alpha(G)$;
- chromatic number $\chi(G)$;
- etc.

Main result

Th. 1: Every graph $G=(V, E),|V|=n, \delta(G) \geq 1$, contains a subset $V_{0} \subseteq V(G),\left|V_{0}\right| \geq \frac{n}{10,000}$ s.t. $G\left[V_{0}\right]$ has all degrees odd.
I.e.:

$$
f_{o}(n) \geq \frac{n}{10,000}
$$

- settling the conjecture.

Application - covering by odd subgraphs

Scott'01:
$t(G):=\min \left\{t: \exists V_{1}, \ldots, V_{t}\right.$ (not necess. disjoint),

$$
\left.G\left[V_{i}\right]-\text { odd, } V(G)=\bigcup_{i=1}^{t} V_{i}\right\}
$$

$t(n):=\max \{t(G):|V(G)|=n, \delta(G) \geq 1\}$.

Scott: $c \log n \leq t(n) \leq C \log ^{2} n$

Covering by odd subgraphs (cont.)

Cor.: $t(n)=\Theta(\log n)$
Proof: Upper bound: apply repeatedly Th. 1 to find

$$
V_{1}, \ldots, V_{t} \text { s.t.: }
$$

- $V_{i} \subseteq V \backslash \cup_{j=1}^{i-1} V_{j}$;
- $G\left[V_{i}\right]$ odd;
- V_{i} covers positive \% of non-isolated vertices in $\mathrm{G}\left[V \backslash \cup_{j=1}^{i-1} V_{j}\right]$.

Stop after $O(\log n)$ steps, with $V^{*}, G\left[V^{*}\right]$ - independent set Can cover V^{*} with further $O(\log n)$ sets (Scott; see later).

Covering by odd subgraphs (cont.)

Lower bound (Scott):

$G:=1$-subdivision of $K_{k}\left(|V(G)|=k+\binom{k}{2}=\Theta\left(k^{2}\right)\right)$
(V_{1}, \ldots, V_{t}) - cover by odd subgraphs
v - subdivision vertex $\left(d_{G}(v)=2\right)$
u_{1}, u_{2} - neighbors of v
$V_{i} \ni v \Rightarrow V_{i}$ contains exactly one of u_{1}, u_{2}
Conclusion: $\left(V_{1}, \ldots, V_{t}\right)$ separates $[k]$

$$
\Rightarrow t=\Omega(\log k)=\Theta(\log |V(G)|) .
$$

Proof ingredients 1

Lemma 1: $f_{o}(G) \geq \frac{\Delta(G)}{2}$.
Proof: $\quad v:=$ vertex of max degree
$U \subseteq N_{G}(v),|U|$ - odd, $|U| \geq \Delta(G)-1$
Apply Gallai to $G[U]$ to get $U=V_{1} \cup V_{2}$,
$G\left[V_{1}\right]$ - even, $G\left[V_{2}\right]$ - odd
$\left(\Rightarrow\left|V_{2}\right|\right.$ - even $\Rightarrow\left|V_{1}\right|$ - odd)
Then: $G\left[V_{1}+v\right], \mathrm{G}\left[\mathrm{V}_{2}\right]$ - both odd, total size $|U|+1 \geq \Delta(G)$
$\Rightarrow f_{o}(G) \geq \frac{\Delta(G)}{2}$.

Proof ingredients 2

Lemma 2: $\delta(G) \geq 1 \Rightarrow f_{o}(G) \geq \frac{\alpha(G)}{2}$.
Proof: $I \subset V(G)$ - largest independent set, $|I|=\alpha(G)$
$D \subseteq V-I$ - minimal by inclusion set dominating I (exists as $\delta(G) \geq 1$)
minimality of $D \Rightarrow \forall w \in D \exists u_{w} \in I, N\left(u_{w}\right) \cap D=\{w\}$
(u_{w} - private neighbor of w)
$I_{D}:=$ set of private neighbors, $\left|I_{D}\right|=D, I_{D} \subseteq I$

Proof ingredients 2 (cont.)

Choose: $D^{\prime} \subseteq D$ uniformly at random

$$
\begin{aligned}
& I_{0} \subseteq I \backslash I_{D} \text {-vertices with odd degrees into } D^{\prime} \\
& I_{1}=\left\{u_{w} \in I_{D}: w \in D^{\prime}, w \text { has even degree into } D^{\prime} \cup I_{0}\right\} \\
& G\left[I_{0} \cup I_{1} \cup D^{\prime}\right]-\text { all degrees odd }
\end{aligned}
$$

$\mathbb{E}\left[\left|I_{0} \cup I_{1} \cup D^{\prime}\right|\right]=\mathbb{E}\left[\left|I_{0}\right|\right]+\mathbb{E}\left[\left|I_{1}\right|\right]+\mathbb{E}\left[\left|D^{\prime}\right|\right] \geq \frac{|\backslash \backslash|}{2}+\frac{|D|}{2}=\frac{\alpha(G)}{2}$.
$\Rightarrow \exists$ odd subgraph on $\geq \frac{\alpha(G)}{2}$ vertices.

Remark: $\alpha(G) \cdot(\Delta(G)+1) \geq n \Rightarrow$ recover Caro's estimate $f_{o}(G)=\Omega(\sqrt{n})$.

Proof ingredients 3

Lemma 3: $\quad G=(V, E)$
M - matching in G with sides U, W
$\forall w \in W$ has only one neighbor in $U \cup W$ (=its mate in M)
[M - semi-induced matching]
Suppose: $\left|N_{G}(U)-\left(W \cup N_{G}(W)\right)\right| \geq k$
$\Rightarrow f_{o}(G) \geq \frac{k}{4}$.
Proof: similar to previous lemmas.

Proof idea for the theorem: keep growing such a matching $M /$ parameter k, or else...

Proof ingredients 4

Lemma 4: $G=(A \cup B, E)$ - bipartite graph, $d(b)>0 \forall b \in B$

$$
\Rightarrow \exists(a, b) \in E(G), \frac{d(a)}{d(b)} \geq \frac{|B|}{|A|} .
$$

Proof: (in this formulation - due to Alex Scott)
Choose a random $e=(a, b) \in E(G)$ in two ways:

1. Choose a random $a \in A, d(a)>0$;
then choose a random $e=(a, b) \in E ; p_{1}(e):=\operatorname{Pr}[e$ is chosen $] \geq \frac{1}{|A| \cdot d(a)}$
2. Choose a random $b \in B$;
then choose a random $e=(a, b) \in E ; p_{2}(e):=\operatorname{Pr}[e$ is chosen $]=\frac{1}{|B| \cdot d(b)}$

Obviously $\sum_{e} p_{1}(e)=\sum_{e} p_{2}(e)=1 \Rightarrow \exists e, p_{1}(e) \leq p_{2}(e)$
For this $e=(a, b), \frac{1}{|A| \cdot d(a)} \leq \frac{1}{|B| \cdot d(b)}$.

Key Lemma

Helpful: edge $e=(u, v) \in E(G)$ s.t. $|N(u) \backslash \mathrm{N}(v)|=\Theta(|N(u) \cup N(v)|)$
Then: can add e to matching M from Lemma 3
\Rightarrow
Notation:

$$
\begin{aligned}
L(G ; \beta)= & \{v \in V: \exists u \in V,(u, v) \in E(G) \\
& |N(u) \backslash N(v)| \geq \beta|N(u) \cup N(v)|\}
\end{aligned}
$$

($\beta>0-$ small constant $)$

Large $L(G ; \beta) \Rightarrow$ room to operate.

Key Lemma (cont.)

Lemma 5: $G=(V, E),|V|=n, \delta(G)>0 ; \beta=\frac{1}{20}$

$$
|L(G ; \beta)| \leq \frac{n}{14} \Rightarrow f_{o}(G) \geq \frac{n}{61} .
$$

Proof: relatively complicated/involved ($\approx 2.5 \mathrm{pp}$)
Main challenge:
Graphs with $|L(G ; \beta)|$ small?
Ex.: $G=$ union of disjoint cliques

$L(G ; \beta)=\varnothing$
Proof idea: $|L(G ; \beta)|$ small $\Rightarrow G \approx$ union of disjoint nearly cliques U_{i}
\Rightarrow can apply Lemma 1 to each $G\left[U_{i}\right]$, collect odd pieces from U_{i} together.

Proof of main theorem 1

Plan of attack:

Grow a matching M_{i} with sides U_{i}, W_{i} s.t. $\left|N_{G}\left(U_{i}\right) \backslash\left(W_{i} \cup N_{G}\left(W_{i}\right)\right)\right|$ is substantial:

Th.: Every graph $G=(V, E),|V|=n, \delta(G) \geq 1$, contains a subset $V_{0} \subseteq V(G),\left|V_{0}\right| \geq \frac{n}{10,000}$ s.t. $G\left[V_{0}\right]$ has all degrees odd.
$\frac{\left|N_{G}\left(U_{i}\right) \backslash\left(W_{i} \cup N_{G}\left(W_{i}\right)\right)\right|}{\left|N_{G}\left(U_{i} \cup W_{i}\right)\right|}=\Theta(1)$

If get to: $\left|N_{G}\left(U_{i}\right) \backslash\left(W_{i} \cup N_{G}\left(W_{i}\right)\right)\right|=\Theta(n)$ - can apply Lemma 3, done

Otherwise: look at $V_{i}=V \backslash N_{G}\left(U_{i} \cup W_{i}\right)$
$G\left[V_{i}\right]: \quad L\left(G\left(\left[V_{i}\right] ; \beta\right)-\right.$ small \Rightarrow apply Key Lemma, done;
$L\left(G\left(\left[V_{i}\right] ; \beta\right)-\right.$ large \Rightarrow find an edge e to add to M_{i}

Proof of main theorem 2

Initialize: $M_{0}=\emptyset$
$M_{i}-$ current matching with sides U_{i}, W_{i}
Define: $X_{i}:=N\left(U_{i}\right) \backslash\left(W_{i} \cup N\left(W_{i}\right)\right)$
Maintain: $\frac{\left|X_{i}\right|}{\left|N\left(U_{i} \cup W_{i}\right)\right|} \geq \frac{1}{40}$.
Can assume: $\left|X_{i}\right| \leq \frac{n}{2,500}$ - otherwise done by Lemma 3
$V_{i}:=V \backslash N\left(U_{i} \cup W_{i}\right) ;\left|V_{i}\right| \geq \frac{n}{2}$.
Look at $G\left[V_{i}\right]$:
$V_{i}^{\prime}:=$ non-isolated vertices in V_{i}
Can assume: $\left|V_{i}^{\prime}\right| \geq \frac{n}{4}$ - otherwise large indep. set, done by Lemma 2

Proof of main theorem 3

Set: $\beta=\frac{1}{20}$
Look at $L:=L\left(G\left[V_{i}^{\prime}\right] ; \beta\right)$
$\left(L(G ; \beta)=\left\{v \in V: \exists u \in V,(u, v) \in E(G),\left|N_{G}(u) \backslash N_{G}(v)\right| \geq \beta\left|N_{G}(u) \cup N_{G}(v)\right|\right\}\right)$
Can assume: $|L| \geq \frac{n}{56}$ - otherwise done by Key Lemma

Proof of main theorem 4

Case 1: $\forall v \in L, d\left(v, X_{i}\right) \geq \frac{d\left(v, V_{i}\right)}{40}$
Look at the bipartite graph (X_{i}, L)
$\left|X_{i}\right| \leq \frac{n}{2,500} ;|L| \geq \frac{n}{56} \Rightarrow$ apply Lemma 4 to find:
edge $e=(x, v), x \in X_{i}, v \in L ; d(x, L) \geq 44 d\left(v, X_{i}\right) \geq 1.1 d\left(v, V_{i}\right)$

Then: add e to M_{i}

Gain to $X_{i}: \quad \geq d\left(x, V_{i}\right)-d\left(v, X_{i}\right)-d\left(v, V_{i}\right)$

$$
\geq d\left(x, V_{i}\right)\left(1-\frac{1}{44}-\frac{10}{11}\right)=\frac{3}{44} d\left(x, V_{i}\right)
$$

Add to $V \backslash V_{i}: \leq d\left(x, V_{i}\right)+d\left(v, V_{i}\right) \leq d\left(x, V_{i}\right)\left(1+\frac{10}{11}\right)=\frac{21}{11} d\left(x, V_{i}\right)$
\Rightarrow maintain $\frac{\left|X_{i}\right|}{\left|V \backslash V_{i}\right|}=\Theta(1)$.

Proof of main theorem 5

Case 2: $\exists v \in L, d\left(v, X_{i}\right) \leq \frac{d\left(v, V_{i}\right)}{40}$
$v \in L \Rightarrow \exists e=(u, v) \in E\left(G\left[V_{i}^{\prime}\right]\right)$ witnessing $v \in L$:
$\left|N\left(u, V_{i}^{\prime}\right) \backslash N\left(v, V_{i}^{\prime}\right)\right| \geq \frac{1}{20}\left|N\left(\{u, v\}, V_{i}^{\prime}\right)\right|$

Then: add e to M_{i}

Gain to X_{i} :

$$
\begin{aligned}
& \geq\left|N\left(u, V_{i}^{\prime}\right) \backslash N\left(v, V_{i}^{\prime}\right)\right|-\left|N\left(v, X_{i}\right)\right| \\
& \geq \frac{1}{20}\left|N\left(\{u, v\}, V_{i}^{\prime}\right)\right|-\frac{1}{40}\left|N\left(v, V_{i}^{\prime}\right)\right| \geq \frac{1}{40}\left|N\left(\{u, v\}, V_{i}^{\prime}\right)\right|
\end{aligned}
$$

Add to $V \backslash V_{i}: \quad\left|N\left(\{u, v\}, V_{i}^{\prime}\right)\right|$
\Rightarrow maintain $\frac{\left|X_{i}\right|}{\left|V \backslash V_{i}\right|}=\Theta(1)$.

Open Problems

- $f_{o}(n) \geq c n$ (here proved: $c \geq \frac{1}{10,000}$)

Better bounds on c ?
Conditions on graphs G with $f_{o}(G)$ relatively small?

- Partitioning into induced odd subgraphs?
- Scott’01
- Other moduli/residues?

Need: a large subset $V_{0} \subseteq V(G)$
s.t. all degrees in $G\left[V_{0}\right] \equiv i \bmod k$?

Some results: Caro'94; Scott’01
random variant ($G \sim G\left(n, \frac{1}{2}\right)$): Ferber, Hardiman, K. '21+;
Balister, Powierski, Scott, Tan'21+

Let there be light...

Solving the riddle:

Looking for a subset $S \subset V$ (= buttons to press) s.t. $G=(V, E)-$ graph

- $\forall v \in S$ has even degree into S;
- $\quad \forall v \in V \backslash S$ has odd degree into S.
- each vertex $v \in V$ has a light and a button pressing button at v : switches the light status for v and all its neighbors start with all lights off
- Prove: can push some buttons to get all lights on
> Add a new vertex u to V, connect u to all even degree vertices in $G=: G^{\prime}$
$>$ Apply Gallai to G^{\prime}, get two even subgraphs $G^{\prime}\left[V_{1}\right], G^{\prime}\left[V_{2}\right]$, assume wlog $u \in V_{2}$
> $S:=V_{1}$ satisfies the required condition.

25

The toting

