Linearly sized induced odd subgraphs

Michael Krivelevich Tel Aviv University

Joint with: Asaf Ferber (UC Irvine)

pictures: cliparts.co

A very classical stuff

<u>Gallai's Theorem</u> (60's): G = (V, E) – graph

 \exists partition $V = V_1 \cup V_2$ s.t. both induced subgraphs

 $G[V_1], G[V_2]$ have all degrees even

(see, e.g., CP&E of Lovász, Problem 5.17 for a proof by Pósa)

<u>Conclusion</u>: Can also partition $V = V_1 \cup V_2$

 $G[V_1]$ – all degrees even; $G[V_2]$ – all degrees odd

```
[ Proof: Add v to G, connect v to all of V(G), get G';
apply Gallai to G' to get V(G') = V'_1 \cup V'_2;
delete v from G']
```

<u>Conclusion</u>: $\forall G = (V, E)$ contains $V_1 \subseteq V(G), |V_1| \ge \frac{|V|}{2}$,

 $G[V_1]$ has all degrees even.

Let there be light...

<u>A riddle for you:</u>

- G = (V, E) graph
- each vertex $v \in V$ has a light and a button
- pressing button at v: switches the light status for v and all its neighbors
- start with all lights off

Prove: can push some buttons to get all lights on $\underline{Ex.}: G =$

Odd things are odd...

3

No: G = (V, E) – all degrees odd $\Rightarrow |V|$ – even

not every graph G has even # of vertices...

Odd things are odd... (cont.)

A side remark:

For which graph G = (V, E) can we partition

 $V = V_1 \cup \cdots \cup V_k$ (for some $k \ge 1$) s.t.

 $\forall 1 \leq i \leq k, G[V_i]$ has all degrees odd?

Scott'01: V(G) can be partitioned into induced odd subgraphs

 \Leftrightarrow every connected component of *G* has even order

(so called perfect forest theorem;

can require: $\forall V_i$ contains an induced spanning tree)

Odd things are odd... (cont.)

Also:

v is isolated in $G \implies v$ is never a part of any odd subgraph

 \Rightarrow should assume: $\delta(G) \ge 1$.

Notation:

 $f_o(G) := \max \{ |V_0| : V_0 \subseteq V(G), G[V_0] \text{ has all degrees odd} \}$ $f_o(n) := \min \{ f_o(G) : G = (V, E), |V| = n, \delta(G) \ge 1 \}$

5

So a conjecture...

Conjecture

(stated in Caro'94,

"certainly a part of the graph theory folklore"):

 \exists constant c > 0 s.t.

 $f_o(n) \ge cn, \forall n \in \mathbb{N}$

Previous results

- Caro'94 (+Alon): $f_o(n) \ge c\sqrt{n}$;
- Scott'92: $f_o(n) \ge \frac{cn}{\log n}$; $G \sim G(n, \frac{1}{2})$: whp $f_o(n) = (1 + o(1))cn$ for c = 0.7729 ...
- Bounds on $f_o(G)$ thru: max degree $\Delta(G)$;
 - independence number $\alpha(G)$;

7

- chromatic number $\chi(G)$;
- etc.

Main result

Th. 1: Every graph
$$G = (V, E), |V| = n, \delta(G) \ge 1$$
,

contains a subset $V_0 \subseteq V(G), |V_0| \ge \frac{n}{10,000}$

s.t. $G[V_0]$ has all degrees odd.

l.e.:

- settling the conjecture.

Application – covering by odd subgraphs

9

Scott'01:

 $t(G) \coloneqq \min\{t: \exists V_1, \dots, V_t \text{ (not necess. disjoint)},\$ $G[V_i] - \text{odd}, V(G) = \bigcup_{i=1}^t V_i\}$ $t(n) \coloneqq \max\{t(G): |V(G)| = n, \delta(G) \ge 1\}.$

Scott: $c \log n \le t(n) \le C \log^2 n$

Covering by odd subgraphs (cont.)

<u>Cor.</u>: $t(n) = \Theta(\log n)$

Proof: Upper bound: apply repeatedly Th. 1 to find

*V*₁, ..., *V*_t s.t.:

- $V_i \subseteq V \setminus \bigcup_{j=1}^{i-1} V_j;$
- $G[V_i]$ odd;
- V_i covers positive % of non-isolated vertices in $G[V \setminus \bigcup_{j=1}^{i-1} V_j]$.

Stop after $O(\log n)$ steps, with V^* , $G[V^*]$ – independent set Can cover V^* with further $O(\log n)$ sets (Scott; see later).

Covering by odd subgraphs (cont.)

11

Lower bound (Scott):

G := 1-subdivision of K_k ($|V(G)| = k + \binom{k}{2} = \Theta(k^2)$) (V_1, \ldots, V_t) – cover by odd subgraphs v – subdivision vertex ($d_G(v) = 2$) u_1, u_2 – neighbors of v $V_i \ni v \Rightarrow V_i$ contains exactly one of u_1, u_2 Conclusion: $(V_1, ..., V_t)$ separates [k] $\Rightarrow t = \Omega(\log k) = \Theta(\log |V(G)|).$

Proof ingredients 1

Lemma 1: $f_o(G) \ge \frac{\Delta(G)}{2}$.

<u>Proof</u>: $v \coloneqq$ vertex of max degree

 $\boldsymbol{U} \subseteq N_G(\boldsymbol{v}), |\boldsymbol{U}| - \mathsf{odd}, |\boldsymbol{U}| \ge \Delta(G) - 1$

Apply Gallai to G[U] to get $U = V_1 \cup V_2$,

```
G[V_1] – even, G[V_2] – odd
```

 $(\Rightarrow |V_2| - \text{even} \Rightarrow |V_1| - \text{odd})$

Then: $G[V_1 + v]$, $G[V_2]$ – both odd, total size $|U| + 1 \ge \Delta(G)$

$$\Rightarrow f_o(G) \ge \frac{\Delta(G)}{2}$$
.

Proof ingredients 2

<u>Lemma 2</u>: $\delta(G) \ge 1 \Rightarrow f_0(G) \ge \frac{\alpha(G)}{2}$.

Proof: $I \subset V(G)$ – largest independent set, $|I| = \alpha(G)$ $D \subseteq V - I$ – minimal by inclusion set dominating I(exists as $\delta(G) \ge 1$) minimality of $D \Rightarrow \forall w \in D \exists u_w \in I, N(u_w) \cap D = \{w\}$ $(u_w - \text{private neighbor of } w)$

 $I_D \coloneqq$ set of private neighbors, $|I_D| = D, I_D \subseteq I$

Proof ingredients 2 (cont.)

Choose: $D' \subseteq D$ uniformly <u>at random</u>

 $I_0 \subseteq I \setminus I_D$ -vertices with odd degrees into D' $I_1 = \{ u_w \in I_D : w \in D', w \text{ has even degree into } D' \cup I_0 \}$ $G[I_0 \cup I_1 \cup D']$ - all degrees odd

 $\mathbb{E}[|I_0 \cup I_1 \cup D'|] = \mathbb{E}[|I_0|] + \mathbb{E}[|I_1|] + \mathbb{E}[|D'|] \ge \frac{|I \setminus D|}{2} + \frac{|D|}{2} = \frac{\alpha(G)}{2}.$ $\Rightarrow \exists \text{ odd subgraph on} \ge \frac{\alpha(G)}{2} \text{ vertices.}$

<u>**Remark:**</u> $\alpha(G) \cdot (\Delta(G) + 1) \ge n \Rightarrow$ recover Caro's estimate $f_o(G) = \Omega(\sqrt{n})$.

Proof ingredients 3

Lemma 3: G = (V, E)

M - matching in G with sides U, W $\forall w \in W \text{ has only one neighbor in } U \cup W \text{ (=its mate in } M\text{)}$ [M - semi-induced matching]Suppose: $|N_G(U) - (W \cup N_G(W))| \ge k$ $\Rightarrow f_o(G) \ge \frac{k}{4}.$

<u>Proof</u>: similar to previous lemmas.

<u>Proof idea for the theorem</u>: keep growing such a matching *M*/parameter *k*, or else...

Proof ingredients 4

Lemma 4: $G = (A \cup B, E)$ – bipartite graph, $d(b) > 0 \forall b \in B$

$$\Rightarrow \exists (a,b) \in E(G), \ \frac{d(a)}{d(b)} \ge \frac{|B|}{|A|}.$$

<u>Proof</u>: (in this formulation – due to Alex Scott)

Choose a random $e = (a, b) \in E(G)$ in two ways:

1. Choose a random $a \in A$, d(a) > 0;

then choose a random $e = (a, b) \in E$; $p_1(e) := \Pr[e \text{ is chosen}] \ge \frac{1}{|A| \cdot d(a)}$

2. Choose a random $b \in B$;

then choose a random $e = (a, b) \in E$; $p_2(e) := \Pr[e \text{ is chosen}] = \frac{1}{|B| \cdot d(b)}$

Obviously $\sum_{e} p_1(e) = \sum_{e} p_2(e) = 1 \implies \exists e, p_1(e) \le p_2(e)$

For this
$$e = (a, b), \frac{1}{|A| \cdot d(a)} \le \frac{1}{|B| \cdot d(b)}.$$

Key Lemma

Helpful: edge $e = (u, v) \in E(G)$ s.t. $|N(u) \setminus N(v)| = \Theta(|N(u) \cup N(v)|)$

Then: can add *e* to matching *M* from Lemma 3

\Rightarrow

Notation:

$$L(G;\beta) = \{v \in V : \exists u \in V, (u,v) \in E(G), |N(u) \setminus N(v)| \ge \beta |N(u) \cup N(v)|\}$$

 $(\beta > 0 - \text{small constant})$

Large $L(G; \beta) \Rightarrow$ room to operate.

Key Lemma (cont.)

Lemma 5: $G = (V, E), |V| = n, \delta(G) > 0; \beta = \frac{1}{20}$ $|L(G;\beta)| \leq \frac{n}{14} \Rightarrow f_o(G) \geq \frac{n}{61}.$ <u>Proof</u>: relatively complicated/involved ($\approx 2.5 \text{ pp}$) Main challenge: Graphs with $|L(G;\beta)|$ small? **Ex.**: G = union of disjoint cliques $L(G;\beta) = \emptyset$ <u>Proof idea</u>: $|L(G;\beta)|$ small $\Rightarrow G \approx$ union of disjoint nearly cliques U_i \Rightarrow can apply Lemma 1 to each $G[U_i]$, collect odd pieces from U_i together.

Plan of attack:

Grow a matching M_i with sides U_i, W_i s.t. $|N_G(U_i) \setminus (W_i \cup N_G(W_i))|$ is substantial: $\frac{|N_G(U_i) \setminus (W_i \cup N_G(W_i))|}{|N_G(U_i \cup W_i)|} = \Theta(1)$

<u>Th.</u>: Every graph $G = (V, E), |V| = n, \delta(G) \ge 1$, contains a subset $V_0 \subseteq V(G), |V_0| \ge \frac{n}{10,000}$ s.t. $G[V_0]$ has all degrees odd.

If get to: $|N_G(U_i) \setminus (W_i \cup N_G(W_i))| = \Theta(n)$ – can apply Lemma 3, done

Otherwise: look at $V_i = V \setminus N_G(U_i \cup W_i)$ $G[V_i]: L(G([V_i]; \beta) - \text{small} \Rightarrow \text{apply Key Lemma, done;}$ $L(G([V_i]; \beta) - \text{large} \Rightarrow \text{find an edge } e \text{ to add to } M_i$

19

Initialize: $M_0 = \emptyset$

 M_i – current matching with sides U_i, W_i

Define: $X_i \coloneqq N(U_i) \setminus (W_i \cup N(W_i))$

Maintain: $\frac{|X_i|}{|N(U_i \cup W_i)|} \ge \frac{1}{40}.$

Can assume: $|X_i| \le \frac{n}{2,500}$ – otherwise done by Lemma 3

$$V_i \coloneqq V \setminus N(U_i \cup W_i); |V_i| \ge \frac{n}{2}.$$

Look at $G[V_i]$:

 $V'_i \coloneqq$ non-isolated vertices in V_i

Can assume: $|V'_i| \ge \frac{n}{4}$ – otherwise large indep. set, done by Lemma 2

Set: $\beta = \frac{1}{20}$

Look at $L \coloneqq L(G[V'_i]; \beta)$

 $(L(G;\beta) = \{v \in V : \exists u \in V, (u,v) \in E(G), |N_G(u) \setminus N_G(v)| \ge \beta |N_G(u) \cup N_G(v)|\})$

Can assume: $|L| \ge \frac{n}{56}$ – otherwise done by Key Lemma

<u>Case 1</u>: $\forall v \in L, d(v, X_i) \ge \frac{d(v, V_i)}{40}$

Look at the bipartite graph (X_i, L)

 $|X_i| \le \frac{n}{2,500}$; $|L| \ge \frac{n}{56} \Rightarrow$ apply Lemma 4 to find: edge $e = (x, v), x \in X_i, v \in L$; $d(x, L) \ge 44 d(v, X_i) \ge 1.1 d(v, V_i)$

Then: add e to M_i

 $\begin{array}{ll} \text{Gain to } X_{i} \colon & \geq d(x,V_{i}) - d(v,X_{i}) - d(v,V_{i}) \\ & \geq d(x,V_{i}) \left(1 - \frac{1}{44} - \frac{10}{11}\right) = \frac{3}{44} d(x,V_{i}) \\ \text{Add to } V \setminus V_{i} \colon & \leq d(x,V_{i}) + d(v,V_{i}) \leq d(x,V_{i}) \left(1 + \frac{10}{11}\right) = \frac{21}{11} d(x,V_{i}) \\ & \Rightarrow \text{ maintain } \frac{|X_{i}|}{|V \setminus V_{i}|} = \Theta(1) \ . \end{array}$

<u>Case 2</u>: $\exists v \in L, d(v, X_i) \leq \frac{d(v, V_i)}{40}$ $v \in L \Rightarrow \exists e = (u, v) \in E(G[V'_i]) \text{ witnessing } v \in L$: $|N(u, V'_i) \setminus N(v, V'_i)| \geq \frac{1}{20} |N(\{u, v\}, V'_i)|$

Then: add e to M_i

Gain to X_i : $\geq |N(u, V'_i) \setminus N(v, V'_i)| - |N(v, X_i)|$ $\geq \frac{1}{20} |N(\{u, v\}, V'_i)| - \frac{1}{40} |N(v, V'_i)| \geq \frac{1}{40} |N(\{u, v\}, V'_i)|$ Add to $V \setminus V_i$: $|N(\{u, v\}, V'_i)|$

23

 \Rightarrow maintain $\frac{|X_i|}{|V \setminus V_i|} = \Theta(1)$.

Open Problems

• $f_o(n) \ge cn$ (here proved: $c \ge \frac{1}{10,000}$)

Better bounds on c?

Conditions on graphs G with $f_o(G)$ relatively small?

• <u>Partitioning</u> into induced odd subgraphs?

- Scott'01

- Other moduli/residues?
 - Need: a large subset $V_0 \subseteq V(G)$
 - s.t. all degrees in $G[V_0] \equiv i \mod k$?
 - Some results: Caro'94; Scott'01

random variant ($G \sim G(n, \frac{1}{2})$): Ferber, Hardiman,K.'21+;

Balister, Powierski, Scott, Tan'21+

Let there be light...

Solving the riddle:

Looking for a subset $S \subset V$ (= buttons to press) s.t.

- $\forall v \in S$ has even degree into *S*;
- $\forall v \in V \setminus S$ has odd degree into S.

G = (V, E) - graph

each vertex $v \in V$ has a light and a button pressing button at v: switches the light status for v and all its neighbors start with all lights off

Prove: can push some buttons to get all lights on

25

- > Add a new vertex u to V, connect u to all even degree vertices in G =: G'
- > Apply Gallai to G', get two even subgraphs $G'[V_1], G'[V_2]$, assume wlog $u \in V_2$
- > $S := V_1$ satisfies the required condition.

