

Adaptive Gradient Descent methods for Constrained Optimization

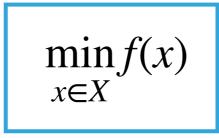
ALINA ENE

Joint work with:

Huy L. Nguyen (Northeastern University) Adrian Vladu (CNRF & IRIF, Universite de Paris)

Problem Definition

- $f: \mathbb{R}^n \to \mathbb{R}$ differentiable loss function
- $X \subseteq \mathbb{R}^n$ constraint set that is convex and "simple"



Computational model: function access via first-order oracle

$$x \in X$$
 Blackbox $f(x), \nabla f(x)$

Goal: minimize number of queries $x_1, x_2, ..., x_T$ to obtain

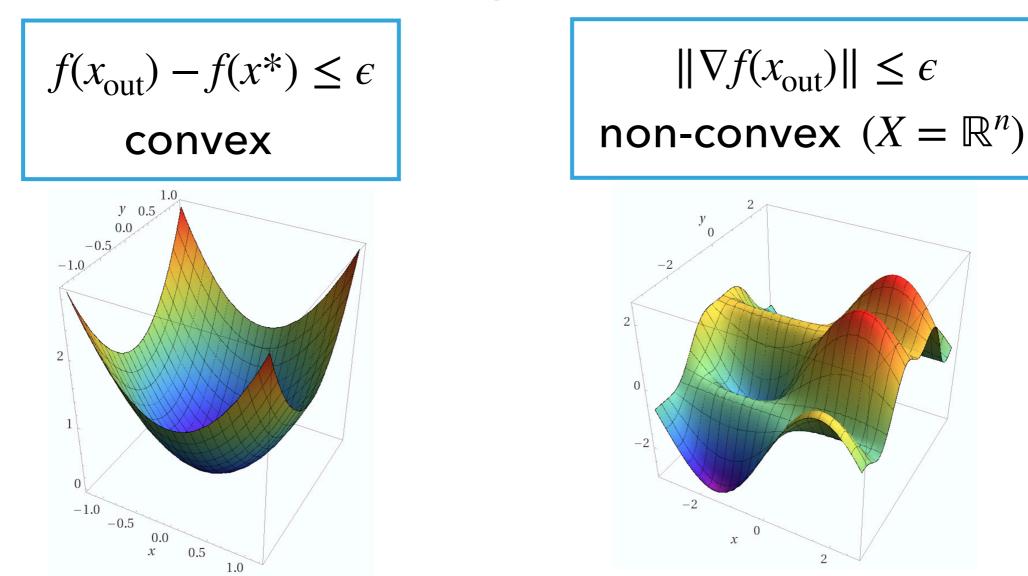
$$f(x_{\text{out}}) - f(x^*) \le \epsilon$$

Blackbox Model

 $\min_{x \in X} f(x)$

Computational model: function access via first-order oracle

Goal: minimize number of queries $x_1, x_2, ..., x_T$ to obtain



Blackbox Model

 $\min_{x \in X} f(x)$

Computational model: function access via first-order oracle

$$x \in X$$
 Blackbox $f(x), \nabla f(x)$

Goal: minimize number of queries $x_1, x_2, ..., x_T$ to obtain

$$f(x_{\text{out}}) - f(x^*) \le \epsilon$$

convex

 $\|\nabla f(x_{\text{out}})\| \le \epsilon$ non-convex (X = \mathbb{R}^n)

Theory: tight upper and lower bounds on complexity **Practice:** (stochastic) gradients are readily available

import torch
x = torch.randn(3, requires_grad=True)
... # setup model
out.backward() # backpropagation
gradient = x.grad

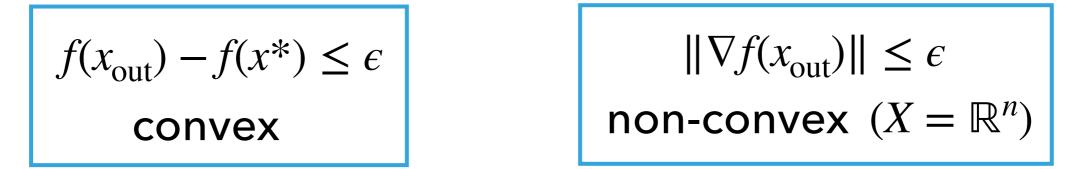
Blackbox Model

 $\min_{x \in X} f(x)$

Computational model: function access via first-order oracle

$$x \in X$$
 Blackbox $f(x), \nabla f(x)$

Goal: minimize number of queries $x_1, x_2, ..., x_T$ to obtain



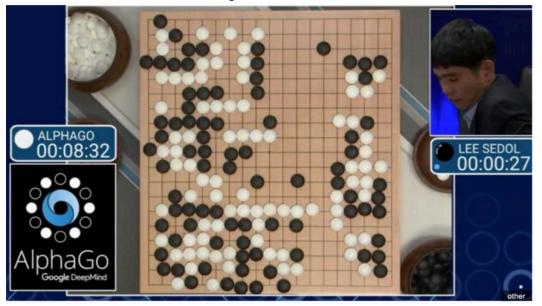
This Talk: Convergence guarantees for convex functions (We will show experimental results for non-convex problems)

Machine Learning Examples

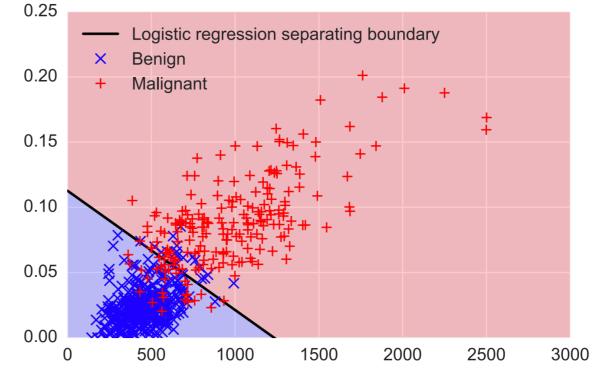
 $\min_{x \in X} f(x)$

ImageNet Classification

AlphaGo



Cancer Classification



Power Demand Regression

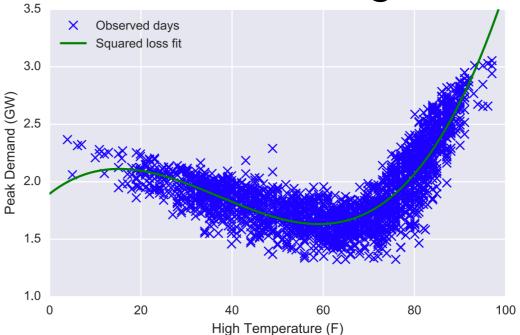


Image credits: Zico Kolter

How to Optimize

Gradient Descent

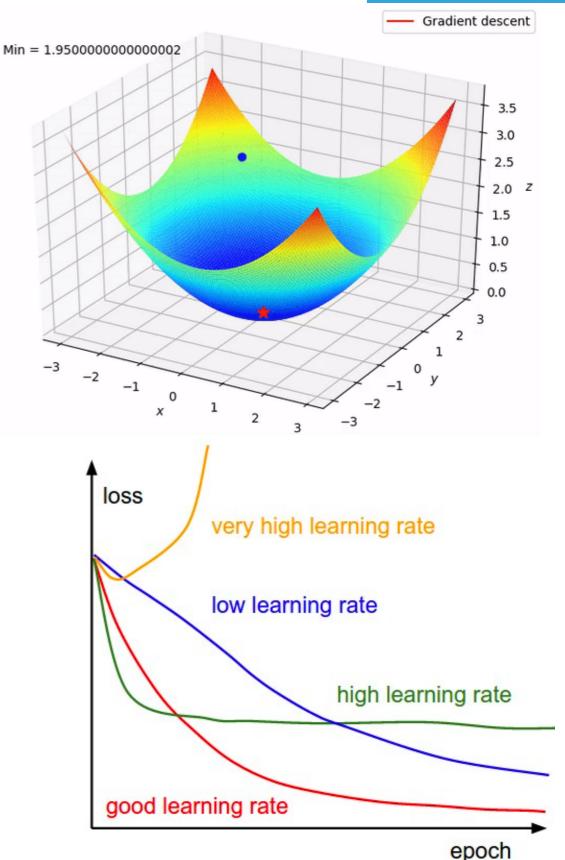
$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

 η_t : step size / learning rate

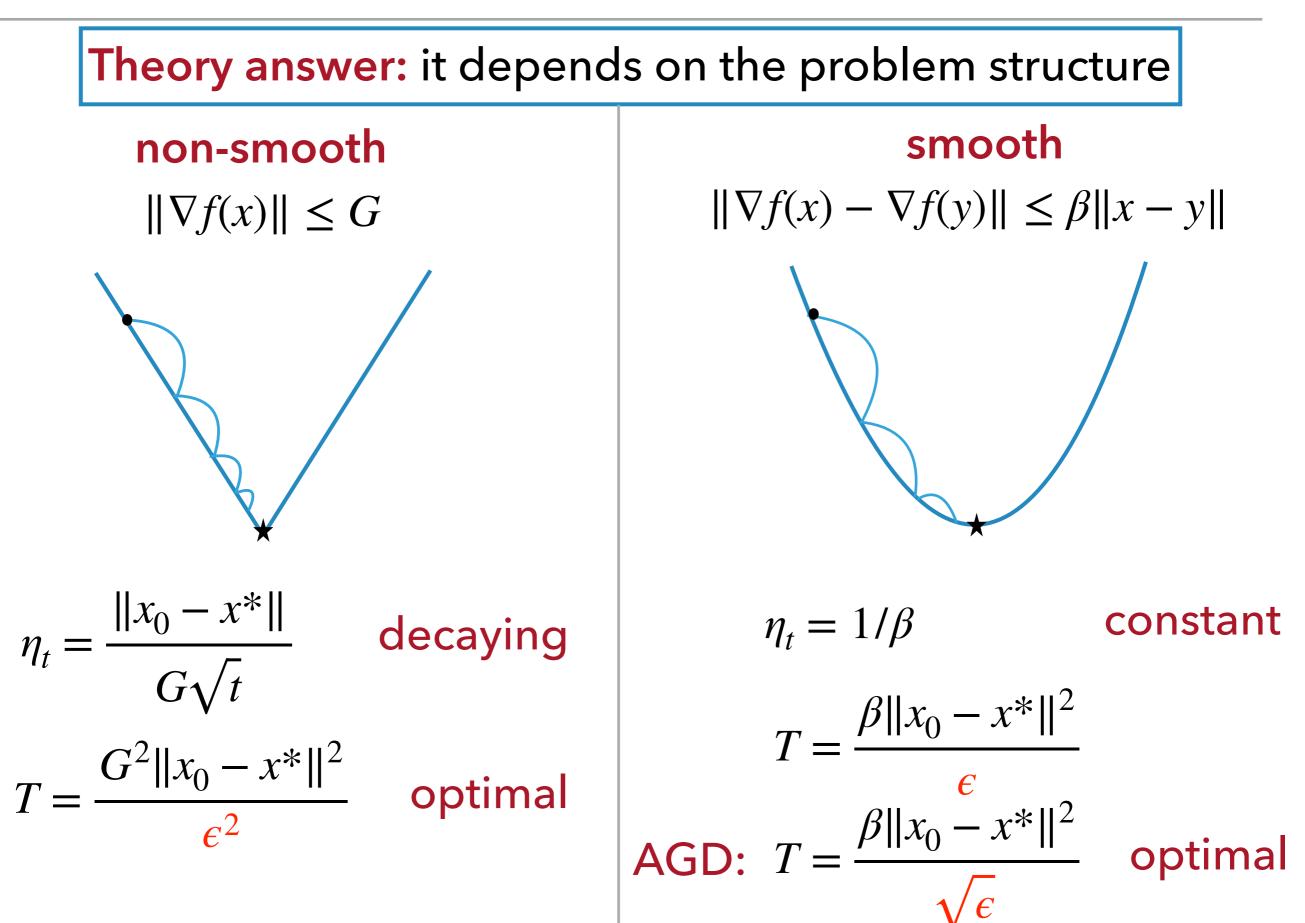
How to set the step size?

Theory answer: it depends ... Practice answer: manually tune

Gradient descent visualization credit: Sunil Jangir Step size cartoon credit: Stanford CS 231N



How to Set the Gradient Descent Step Size?



How to Set the Gradient Descent Step Size?

Theory answer: it depends on the problem structure

Caveats:

- Step sizes depend on several parameters
 (smoothness, gradient norm, distance to x*, ...)
- Parameters are often unknown and hard to tune

The dream:

Automatically learn the step size

- Adapt to (local or global) smoothness and convexity
- Universal algorithms that achieve optimal convergence in the smooth and non-smooth settings simultaneously

Adaptive Gradient Descent

[Duchi, Hazan, Singer; McMahan and Streeter 2010]

 $\begin{aligned} & \text{Scalar Adagrad} \\ & x_{t+1} = x_t - \eta_t \nabla f(x_t) \\ & 1 \\ & \eta_t = \frac{1}{\sqrt{\sum_{s=1}^t \|\nabla f(x_s)\|^2}} \end{aligned}$

Adagrad

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

$$\eta_{t,i} = \frac{1}{\sqrt{\sum_{s=1}^t (\nabla_i f(x_s))^2}}$$

 $\min_{x \to \infty} f(x)$

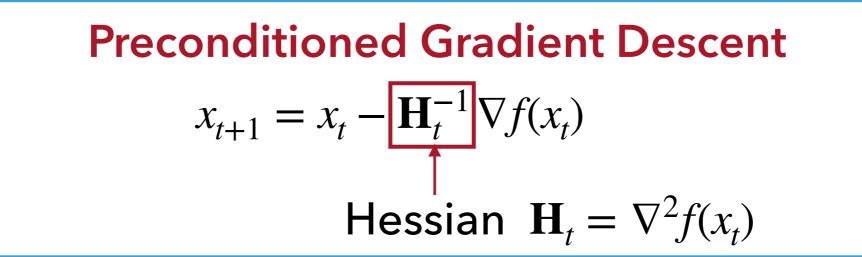
 $x \in \mathbb{R}^{k}$

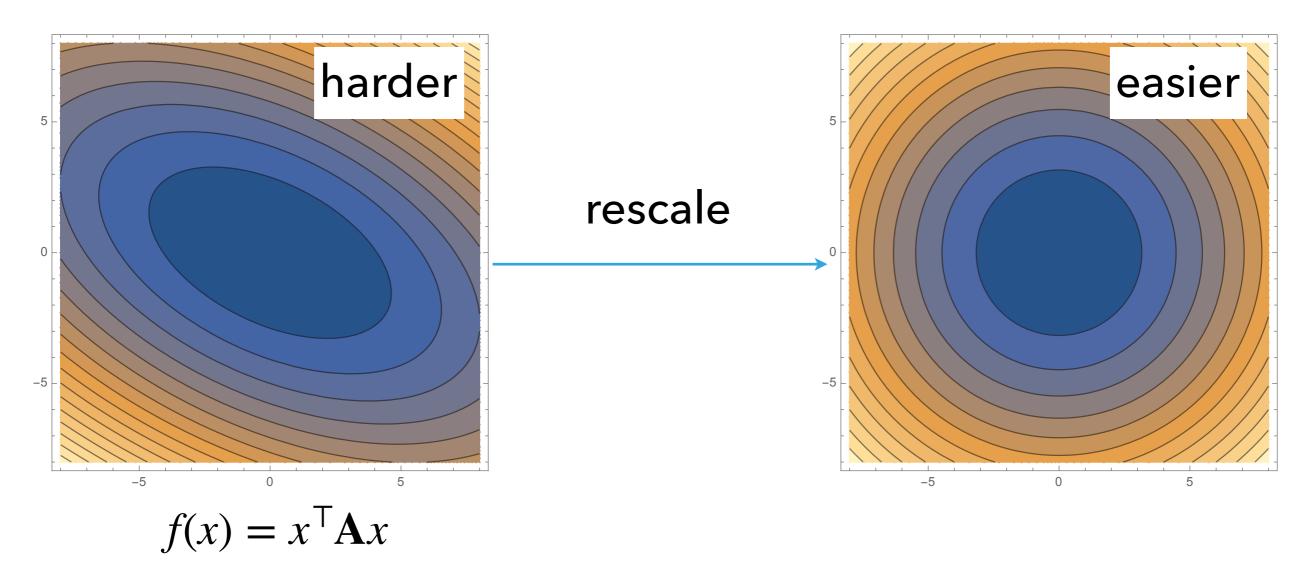
per-coordinate learning rates

Original motivation/use case:

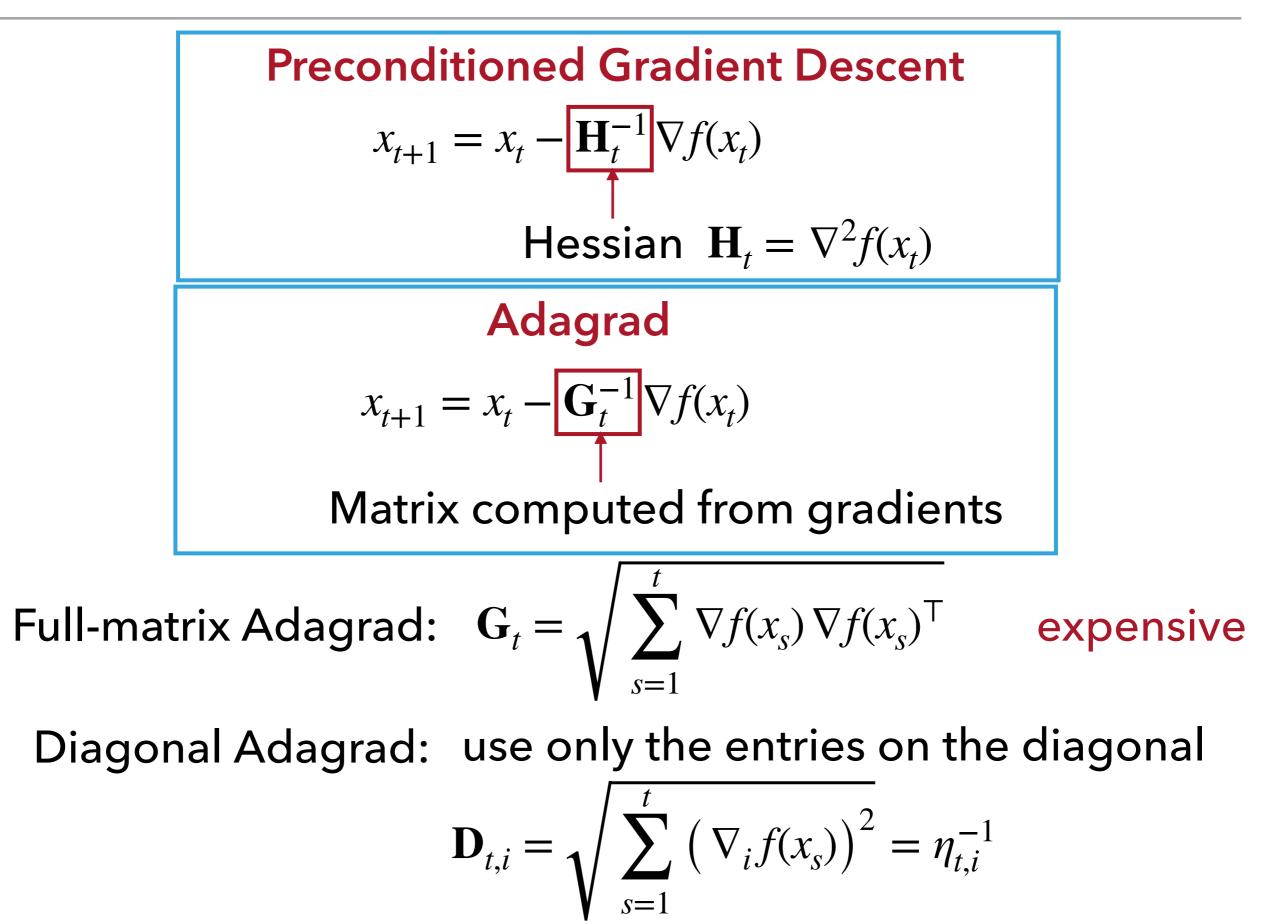
- Sparse and heavy-tailed data (e.g., text data)
- Infrequent features are informative and we want to use different learning rates for them

Preconditioning

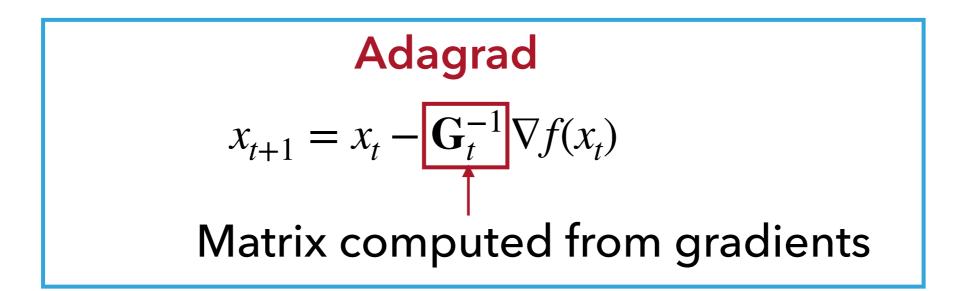




Adaptive Preconditioning



Second-order-like method but with only first-order information

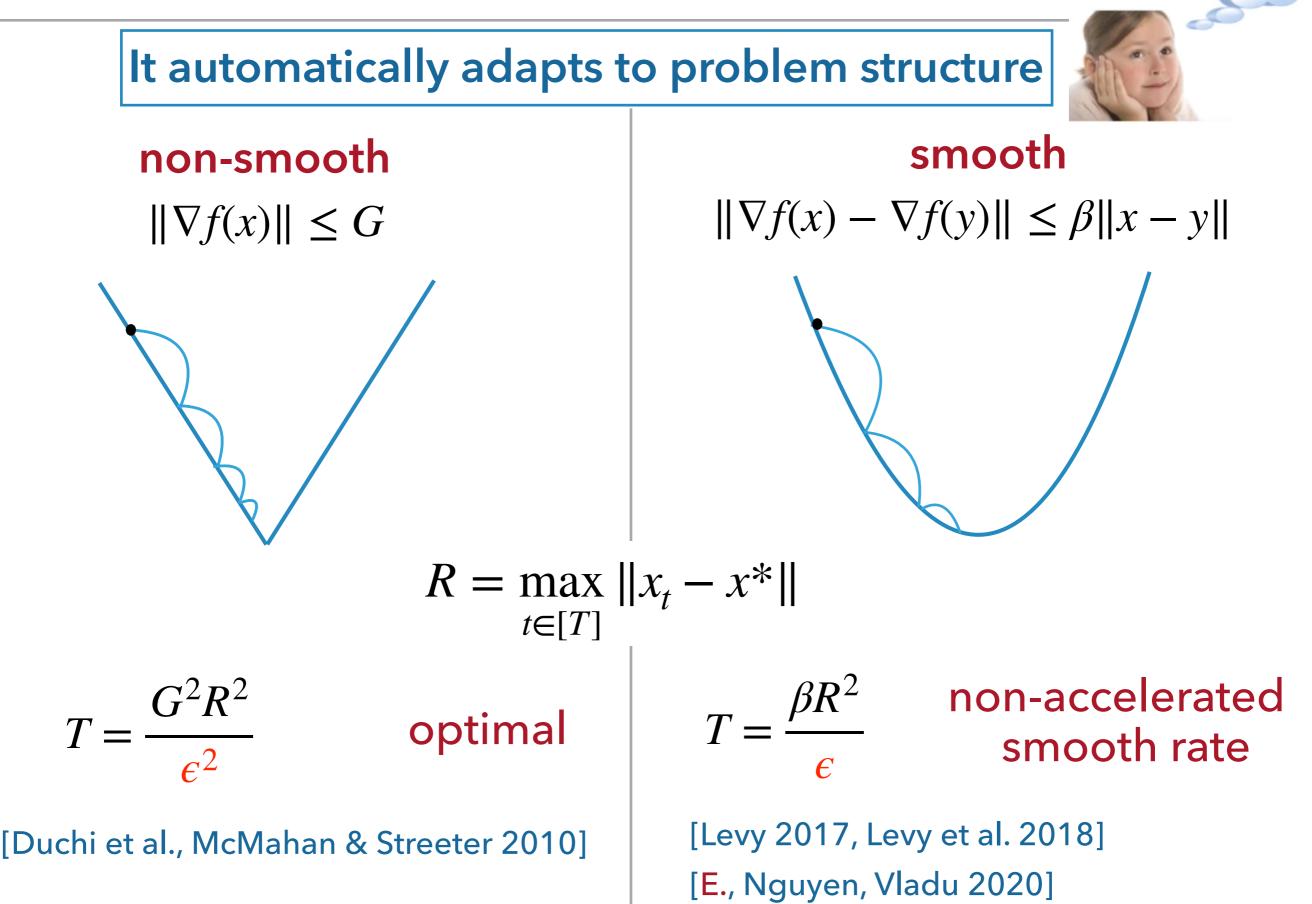


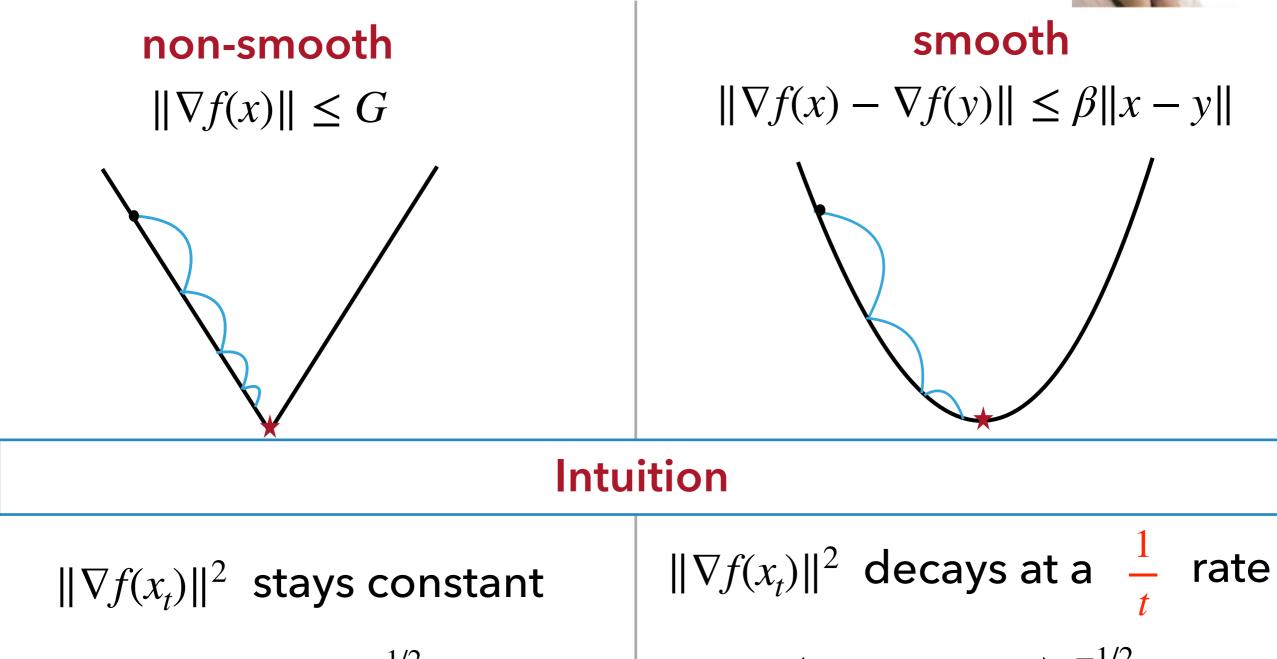
Full-matrix Adagrad:
$$\mathbf{G}_t = \sqrt{\sum_{s=1}^t \nabla f(x_s) \nabla f(x_s)^{\mathsf{T}}}$$
 expensive

Diagonal Adagrad: use only the entries on the diagonal

$$\mathbf{D}_{t,i} = \sqrt{\sum_{s=1}^{t} \left(\nabla_i f(x_s) \right)^2} = \eta_{t,i}^{-1}$$

The Unreasonable Effectiveness of Adagrad AutoML





$$\eta_t = \left(\sum_{s=1}^t \|\nabla f(x_s)\|^2\right)^{-1/2} = O\left(\frac{1}{\sqrt{t}}\right)$$

$$\eta_t = \left(\sum_{s=1}^t \|\nabla f(x_s)\|^2\right)^{-1/2} = O(1)$$

The Adagrad Family

Adaptive methods for deep learning optimization

- Adagrad (Adaptive Gradient)
 7067 citations
 [Duchi et al., McMahan and Streeter, 2010]
- Adadelta [Zeiler, 2012]
- RMSProp [Hinton, 2014]
- Adam (Adaptive Moment Estimation) 53803 citations [Kingma and Ba, 2015]
- AdaMax [Kingma and Ba, 2015]
- Nadam (Nesterov-accelerated Adaptive Moment Estimation)
 [Dozat, 2016]

Further Developments

Adaptive method for constrained optimization

Adagrad+ [E., Nguyen, Vladu 2020]

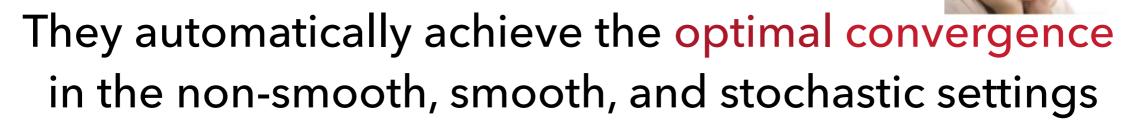
Accelerated adaptive methods with per-coordinate rates

- JRGS [Joulani et al., 2020]
- AdaACSA, AdaAGD+ [E., Nguyen, Vladu 2020]

(Above works are only the latest in a long line of work)

AutoML

The accelerated schemes are universal



Plan for today

Adaptive method for constrained optimization

Adagrad+ [E., Nguyen, Vladu 2020]

Accelerated adaptive methods with per-coordinate rates

JRGS

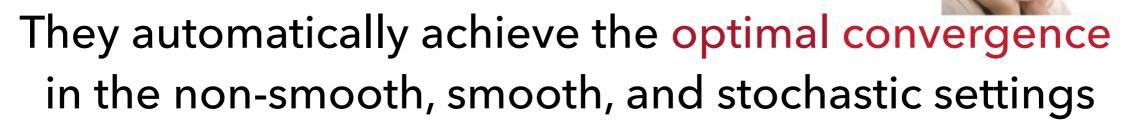
[Joulani et al., 2020]

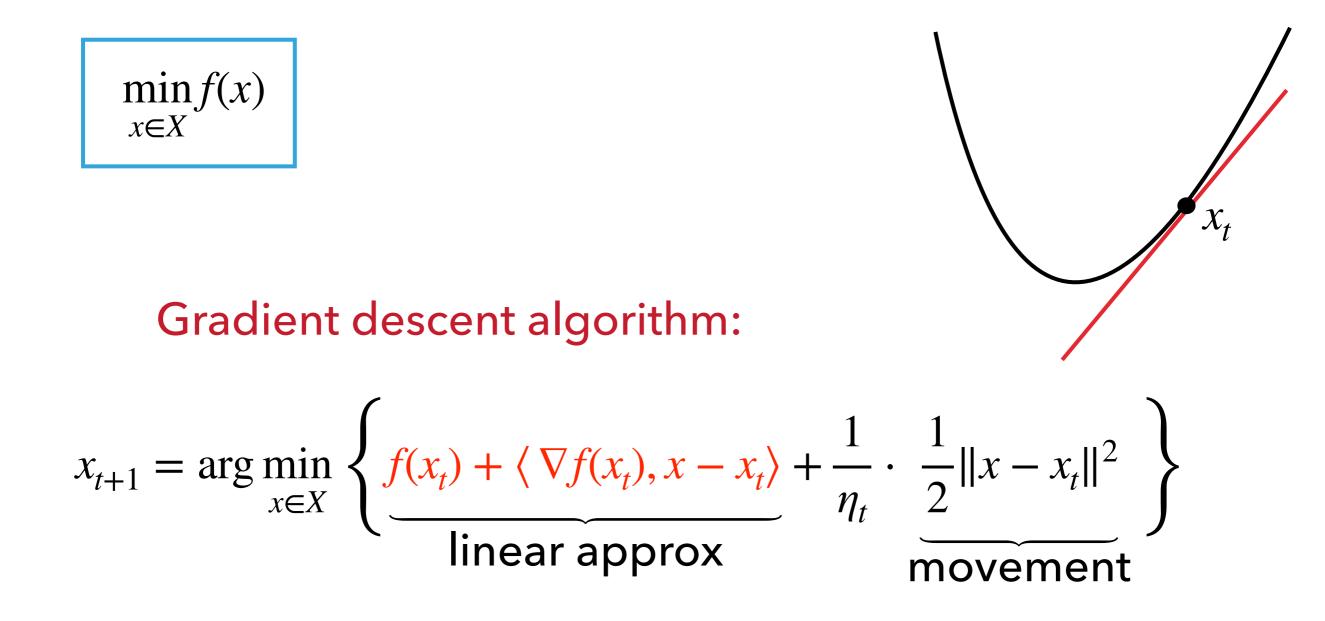
[E., Nguyen, Vladu 2020]

AutoML

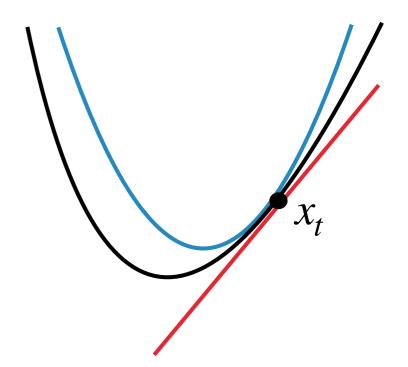
(Above works are only the latest in a long line of work)

The accelerated schemes are universal





small η_t : put more weight on movement large η_t : put more weight on linear approximation



smooth: $\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$

$$f(x) \le f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{\beta}{2} ||x - x_t||^2$$

quadratic upper obound on f

$$\begin{split} \min_{x \in X} f(x) \\ \text{smooth: } \|\nabla f(x) - \nabla f(y)\| \leq \beta \|x - y\| \\ x_{t+1} &= \arg\min_{x \in X} \left\{ \frac{f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{\beta}{2} \|x - x_t\|^2}{\text{quadratic upper obound on } f} \right\} \\ \text{quadratic step sizes } \eta_t &= \frac{1}{\beta} \end{split}$$

$$\begin{split} \min_{x \in X} f(x) \\ \text{non-smooth: } \|\nabla f(x)\| &\leq G \\ x_{t+1} &= \arg\min_{x \in X} \left\{ \underbrace{f(x_t) + \langle \nabla f(x_t), x - x_t \rangle}_{\text{linear approx}} + \frac{1}{\eta_t} \cdot \underbrace{\frac{1}{2} \|x - x_t\|^2}_{\text{movement}} \right\} \\ \text{decaying step sizes } \eta_t &= \frac{R}{G\sqrt{t}} \quad (R = \text{diameter of domain}) \end{split}$$

$$\min_{x \in \mathbb{R}^{n}} f(x)$$
Mahalanobis norm: $||x||_{\mathbf{A}}^{2} = \langle x, \mathbf{A}x \rangle$

$$x_{t+1} = \arg\min_{x \in \mathbb{R}^{n}} \left\{ \underbrace{f(x_{t}) + \langle \nabla f(x_{t}), x - x_{t} \rangle}_{\text{linear approx}} + \frac{1}{2} ||x - x_{t}||_{\mathbf{D}_{t}}^{2} \right\}$$

$$\mathbf{D}_{t,i} = \sqrt{\sum_{s=1}^{t} (\nabla_{i} f(x_{s}))^{2}}$$
per-coordinate step sizes

Adagrad for Constrained Optimization

unconstrained:
$$\nabla f(x^*) = 0$$

constrained: $\nabla f(x^*) \neq 0$

Intuition: as we approach x^* , the gradient does not decrease but the iterate movement $||x_{t+1} - x_t||$ does

min f(x)

 $x \in X$

Adagrad+ algorithm:

$$x_{t+1} = \arg\min_{x \in X} \left\{ f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{1}{2} ||x - x_t||_{\mathbf{D}_t}^2 \right\}$$

$$\mathbf{D}_{t+1,i}^2 = \mathbf{D}_{t,i}^2 \left(1 + \left(x_{t+1,i} - x_{t,i} \right)^2 \right) \quad \text{with} \quad \mathbf{D}_1 = \mathbf{I}$$

Adagrad for Constrained Optimization

unconstrained:
$$\nabla f(x^*) = 0$$

constrained: $\nabla f(x^*) \neq 0$

Intuition: as we approach x^* , the gradient does not decrease but the iterate movement $||x_{t+1} - x_t||$ does

min f(x)

 $x \in X$

Adagrad+ algorithm:

$$x_{t+1} = \arg\min_{x \in X} \left\{ f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{1}{2} \|x - x_t\|_{\mathbf{D}_t}^2 \right\}$$

$$\mathbf{D}_{t+1,i}^2 = \mathbf{D}_{t,i}^2 \left(1 + \frac{\left(x_{t+1,i} - x_{t,i}\right)^2}{R_{\infty}^2} \right) \quad \text{with} \quad \mathbf{D}_1 = \mathbf{I}$$

$$R_{\infty} = \max_{x,y \in X} \|x - y\|_{\infty}$$

AutoML

It automatically adapts to problem structure

non-smooth $\|\nabla f(x)\| \leq G$

$$T = \tilde{O}\left(\frac{1}{\epsilon^2}\right) \qquad \begin{array}{c} \text{optimal} \\ \text{(up to logs)} \end{array}$$

smooth $\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$

$$T = O\left(\frac{1}{\epsilon}\right)$$

non-accelerated smooth rate

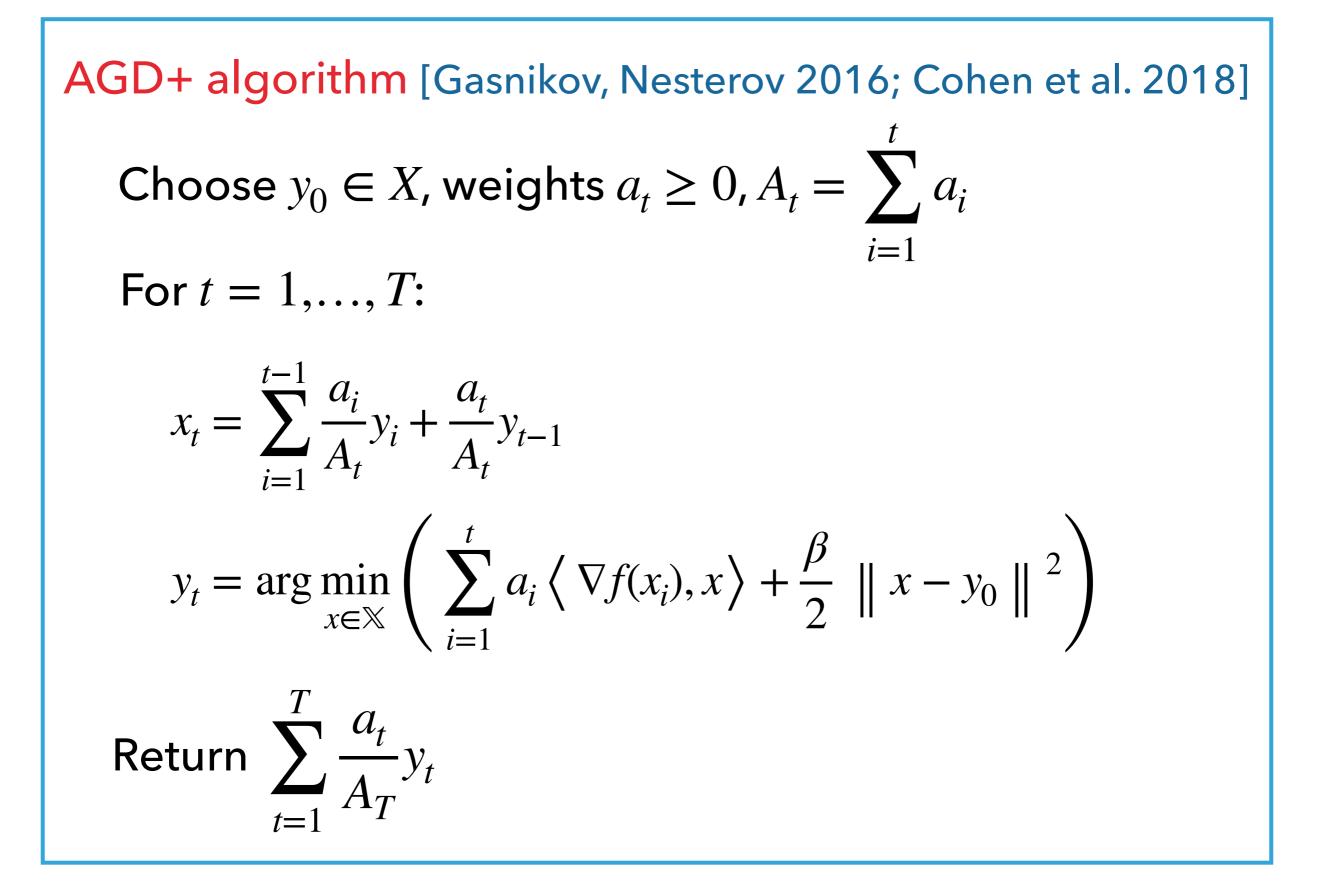
not optimal

In gradient descent, we use convexity to obtain a lower bound on f

A single lower bound is useful, but a combination of lower bounds is even better

At iteration *t*, use a convex combination of the lower bounds provided by $x_1, x_2, ..., x_t$

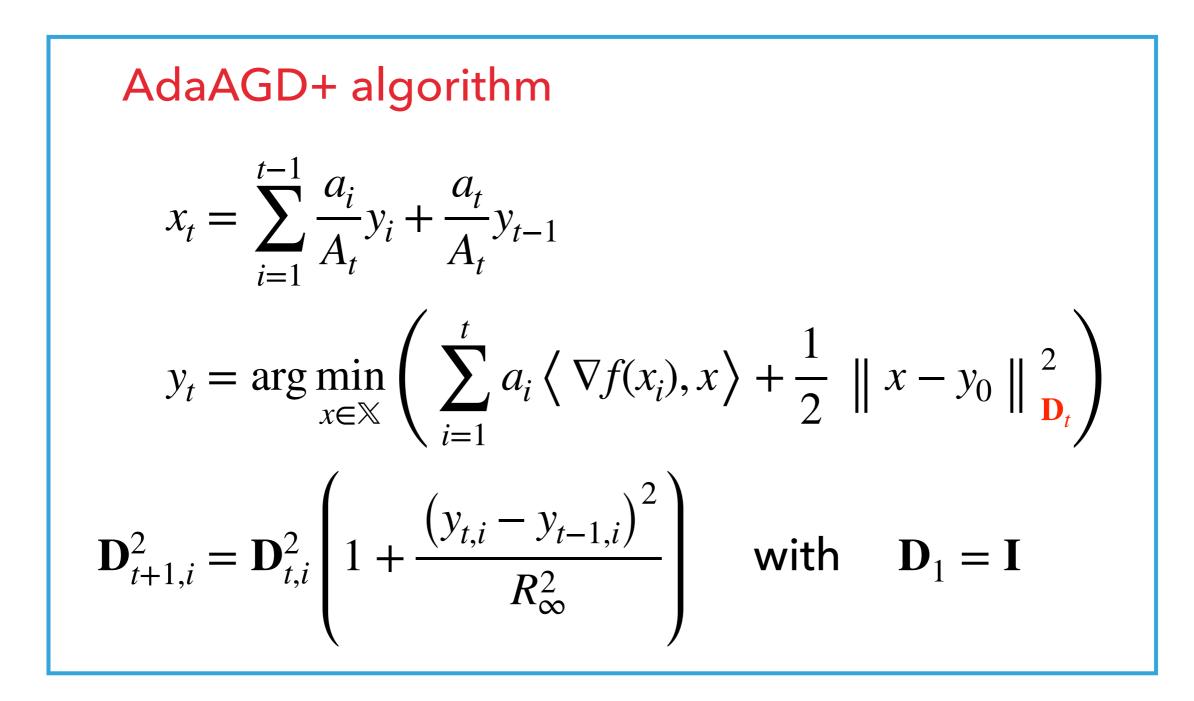
- At iteration *t*, use a convex combination of the lower bounds provided by $x_1, x_2, ..., x_t$
- Previously, the solutions x_t were both the main solutions as well as the points at which we construct lower bounds
- It is useful to decouple the construction of the solution from the construction of the lower bounds
- We will use the iterates x_t to construct lower bounds as before, but we will use a different sequence of iterates y_t to construct our main solution



AGD+ algorithm [Gasnikov, Nesterov 2016; Cohen et al. 2018] Choose $y_0 \in X$, weights $a_t = \Theta(t)$, $A_t = \sum a_i = \Theta(t^2)$ i=1For t = 1, ..., T: $T = O\left(\sqrt{\frac{1}{\epsilon}}\right) \text{optimal}$ $x_{t} = \sum_{i=1}^{t-1} \frac{a_{i}}{A_{t}} y_{i} + \frac{a_{t}}{A_{t}} y_{t-1}$ $y_t = \arg\min_{x \in \mathbb{X}} \left(\sum_{i=1}^t a_i \left\langle \nabla f(x_i), x \right\rangle + \frac{\beta}{2} \| x - y_0 \|^2 \right)$ Return $\sum_{t=1}^{T} \frac{a_t}{A_T} y_t$

Adaptive AGD+

Set the step size based on the iterate movement $||y_t - y_{t-1}||$



AdaAGD+

non-smooth $\|\nabla f(x)\| \le G$

$$T = \tilde{O}\left(\frac{1}{\epsilon^2}\right) \qquad \begin{array}{c} \text{optimal} \\ \text{(up to logs)} \end{array}$$

smooth $\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$ $T = O\left(\sqrt{\frac{1}{\epsilon}}\right) \quad \text{optimal}$

AutoML

Image Credits

Images on ML examples slide: Zico Kolter

http://www.cs.cmu.edu/~15780/

- Gradient descent visualization: <u>https://suniljangirblog.wordpress.com/2018/12/03/</u> <u>the-outline-of-gradient-descent/</u>
- Step size cartoon:

https://cs231n.github.io/neural-networks-3/

Google Images