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Shortest Paths

Single-Source Shortest Paths (SSSP)

Input: Undirected graph G = (V ,E ), source s ∈ V

Output: dist(s, v) for every v ∈ V
I Can also output shortest path tree

Classic Algorithm: Can solve SSSP in ∼ O(m) time.

e.g. BFS, Dijkstra, Thorup 97

m is the number of edges in the graph, n the number of vertices.
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Dynamic Shortest Paths

Dynamic Algorithms: Maintain information in a graph that is changing
over time.

Fully Dynamic SSSP

data structure that handles adversarial update and query operations

Update: insert or delete a single edge, or change an edge weight.

Query(v): return dist(s, v) or corresponding path π(s, v).

Goal: Minimize update time while keeping small query time.

Trivial Upper Bound: O(m) update time, O(1) query time.

Compute SSSP from scratch after every update.

Conditional Lower Bound: O(m) is best possible update time, even with
(1 + ε) approximation.
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Decremental Shortest Paths

Decremental SSSP: Each update only deletes an edge in G or increases
an edge weight.

So distances monotonically increasing.

Motivations for Decremental SSSP:

Natural relaxation of fully dynamic SSSP

Can hope for non-trivial results (unlike fully dynamic SSSP)

Used as a subroutine in many dynamic algorithms (both decremental
and fully dynamic)

Powerful data structure for static algorithms. This Talk!
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Existing Result for Decremental SSSP

Simplifying Assumption: G is unweighted

So each update deletes an edge.

Start with graph G , end with empty graph.

Existing work on Decremental SSSP

Trivial: O(m2) total update time over all deletions.
I O(m) amortized update time (reconstruction from scratch).

Classic: O(mn) total update time (O(n) amortized).
Even and Shiloach, 1981

Condition Lower Bound: O(mn) total update time is optimal

All recent work seeks to break through O(mn) barrier by allowing (1 + ε)
approximation.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 7 / 63



Existing Result for Decremental SSSP

Simplifying Assumption: G is unweighted

So each update deletes an edge.

Start with graph G , end with empty graph.

Existing work on Decremental SSSP

Trivial: O(m2) total update time over all deletions.
I O(m) amortized update time (reconstruction from scratch).

Classic: O(mn) total update time (O(n) amortized).
Even and Shiloach, 1981

Condition Lower Bound: O(mn) total update time is optimal

All recent work seeks to break through O(mn) barrier by allowing (1 + ε)
approximation.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 7 / 63



Existing Result for Decremental SSSP

Simplifying Assumption: G is unweighted

So each update deletes an edge.

Start with graph G , end with empty graph.

Existing work on Decremental SSSP

Trivial: O(m2) total update time over all deletions.
I O(m) amortized update time (reconstruction from scratch).

Classic: O(mn) total update time (O(n) amortized).
Even and Shiloach, 1981

Condition Lower Bound: O(mn) total update time is optimal

All recent work seeks to break through O(mn) barrier by allowing (1 + ε)
approximation.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 7 / 63



Adaptive vs. non-adaptive adversaries.
Decremental SSSP:

Update: delete an edge

Query(v): return shortest distance/path from s to v .

Stronger Model: Adaptive Adversary

Adversary can choose next update based on response to earlier queries

Example: adversary does query(v) and then deletes every edge on the
returned s − v path.

Deterministic algorithms always work against adaptive adversary.

Weaker Model: Non-Adaptive Adversary (aka oblivious adversary)

Entire sequence of updates and queries is fixed in advance.

Many randomized algorithms only work against non-adaptive.

Adaptive adversary can figure out algorithm’s random choices.

non-adaptive algorithm has zero information about random choices.
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Adaptivity and Randomness

The Two Adversarial Models

Adaptive Adversary (stronger): can typically figure out algorithm’s
random choices.

Non-Adaptive Adversary (weaker): has zero information about
random choices.

We say that an algorithm is adaptive if it works against adaptive
adversary

Deterministic algorithms automatically adaptive.

Some randomized algorithms also adaptive.

Non-adaptive algorithms are generally much easier to design because they
can use randomness to “hide” information from the adversary.
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Limitations of Non-adaptive Adversaries

First Limiation

In many natural applications, the adversary is adaptive.

Examples: traffic control, wear and tear.

Second Limitation – Crucial For This Talk

Non-adaptive algorithms cannot be used as black-box data structures.

Example: user might want to query a path and then delete every edge
on that path.

Bridging the gap between adaptive and non-adaptive algorithms is a
central focus of dynamic algorithms over the past decade.
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Back to Decremental SSSP
Decremental SSSP:

Each update deletes an edge

Query(v): return (1 + ε)-approximation to dist(s, v) or
shortest-path(s, v)

O(mn) total update time optimal for exact version.

Non-Adaptive algorithm: Can solve in Ô(m) total update time

[Forster, Henzinger, Nanongkai, 2014]

Optimal up to sub-polynomial factors.

Concludes long line of research

Deterministic (and hence adaptive) algorithms

Õ(n2) total update time [BC16,B17,CK19,CS20]

Õ(mn3/4) [BC17]

Ô(m
√
n) [GW20]

Õ(·) hides polylog factors; Ô(·) hides no(1) factors.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 11 / 63



Back to Decremental SSSP
Decremental SSSP:

Each update deletes an edge

Query(v): return (1 + ε)-approximation to dist(s, v) or
shortest-path(s, v)

O(mn) total update time optimal for exact version.

Non-Adaptive algorithm: Can solve in Ô(m) total update time
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Õ(n2) total update time [BC16,B17,CK19,CS20]
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Our Result

Previous Work (undirected graph)

Non-Adaptive: Ô(m) total update time.

Deterministic (and so adaptive): Ô(min(n2,m
√
n) total update

time.

Our Result (undirected graph)

Adaptive decremental SSSP in total update time Ô(m)

Closes the adaptive / non-adaptive gap.

Optimal update time up to sub-polynomial factors.

Generalizes to weighted graphs.

Concludes long line of research.
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Maximum Flow: Figure
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Edge-Capacitated Maximum Flow

Input:

Undirected graph G = (V ,E )

Fixed source s, sink t.
I Can also handle arbitrary demand vector

Capacity function u : E → R≥0

Output: maximum flow f from s to t such that f (e) ≤ u(e) ∀e ∈ E .
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Applications of Maximum Flow

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 17 / 63



Common Flow Variants

Edge-Capacitated Max Flow (standard)

Every edge has capacity u(e) ≥ 0

Flow f must satisfy f (e) ≤ u(e)

Vertex-Capacitated Max Flow

Every vertex has capacity u(v) ≥ 0

Flow through any vertex must satisfy in-flow(v) ≤ u(v).

Minimum Cost Flow

Every edge also has cost c(e)

Also given budget B as input

Cost of flow f is
∑

e∈E f (e) · c(e)

Goal is to compute maximum s − t flow with cost at most B.
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Existing Work on Maximum Flow

Exact Max-Flow: State-of-the-art

Ô(m + n1.5)
[van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang,2020]

Ô(m4/3) for unit capacities [Axiotis, Madri, Vlaud, 2020]

both extend to min-cost flow and vertex capacities.

Based on interior-point methods.

Approximate Max-Flow: State-of-the-art

(1 + ε)-approximation, limited to undirected graphs

Edge-Capacitated Max Flow: Õ(m) [Sherman13, KLOS14,Peng16]
I Does not extend to costs or vertex capacities

Special Case – Transshipment (costs but no capacities): Õ(m)
[Sherman17,Li20,ASZ20]

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 19 / 63



Existing Work on Maximum Flow

Exact Max-Flow: State-of-the-art
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Edge-Capacitated Max Flow: Õ(m) [Sherman13, KLOS14,Peng16]
I Does not extend to costs or vertex capacities

Special Case – Transshipment (costs but no capacities): Õ(m)
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Previous Work Summary

Exact Max Flow in Directed Graphs: Ô(m + n1.5)

Works for edge capacities, vertex capacities, costs.

(1 + ε)-Approximate Max Flow in Undirected Graphs

Edge-Capacitated Max Flow: Õ(m)

Vertex-Capacitated Max Flow: Ô(m + n1.5)

Min-Cost flow: Ô(m + n1.5)

Open Problem: Can we solve approximate min-cost flow in time Ô(m)?

our result: yes!
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Open Problem: Can we solve approximate min-cost flow in time Ô(m)?
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Our Result

Previous (1 + ε)-Approximate Max Flow in Undirected Graphs

Edge-Capacitated Max Flow: Õ(m)

Vertex-Capacitated Max Flow: Ô(m + n1.5)

Min-Cost flow: Ô(m + n1.5)

Our Result

(1 + ε)-approximation min-cost flow in Ô(m) time.

Can handle costs/capacities on both vertices/edges.

Completes the picture for approximate flow in undirected graphs.
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Faster Flow Algorithms via Dynamic Shortest Paths

MWU framework for maximum flow
1 Given: source s, sink t.

2 Algorithm introduces a weight function
w : E → R≥0

3 Start with initial w(e) (simple)

4 Repeat Many Times:
I Compute a (1 + ε)-approximate

shortest path π(s, t) w.r.t w .
I Send flow on π(s, t).
I Increase w(e) ∀e ∈ π(s, t).

Lemma: Above algorithm returns
(1 + ε)-approximation to max flow

Easily generalizes to min-cost flow and
vertex capacities.

[Garg and Koenneman, 1998]
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MWU and Dynamic SSSP

MWU framework for maximum flow
1 Given: source s, sink t.

2 Initialize weight function w : E → R≥0

3 Repeat Many Times:
I Compute a (1 + ε)-approximate shortest path π(s, t) w.r.t to w .
I Send flow on π(s, t)
I Increase w(e)∀e ∈ π(s, t).

Using Dynamic SSSP to speed up MWU [Madry 2010]

Must compute a new shortest path in every iteration of step 3.

Weights w(e) only increase between iterations.

Find the paths using decremental SSSP.

Total running time of MWU depends on total update time of
decremental SSSP
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Two Challenges of MWU

MWU framework: Repeatedly compute shortest path π(s, t) and update
every edge on the path.

Goal: Execute MWU framework in Ô(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time Ô(m)

Our first result

Our MWU algorithm uses our decremental SSSP algorithm as black
box.

Second Challenge: Total length of all the paths π(s, t) may be too long.

Known as flow decomposition barrier
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First Challenge: need an adaptive decremental SSSP algorithm with
total update time Ô(m)
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Flow Decomposition Barrier
Question: say we are given a
s − t flow f and we decompose f
into many s − t paths:
f =

∑
p(s, t). What is the

maximum value of
∑
|p(s, t)|?

unit-capacity edges:∑
|p(s, t)| = Θ(m)

general edge capacities:∑
|p(s, t)| = Θ(mn)

general vertex capacities:∑
|p(s, t)| = Θ(n2)

Known as flow
decomposition barrier

No previous MWU-based flow algorithm went beyond flow decomposition
barrier.
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Two Challenges of MWU
Goal: Execute MWU framework in Ô(m) time.

First Challenge: need an adaptive decremental SSSP algorithm with
total update time Ô(m).

long-standing open problem in dynamic shortest paths

Focus of this talk.

Second Challenge: Total length of all the paths π(s, t) may be too long.

Known as flow decomposition barrier

We make significant changes to MWU-framework.

Introduces randomization

Our min-cost flow result introduces the first solution to both above
challenges

Note: our solutions to the two challenges entirely unrelated

This Talk: first challenge only (dynamic SSSP)
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long-standing open problem in dynamic shortest paths

Focus of this talk.

Second Challenge: Total length of all the paths π(s, t) may be too long.

Known as flow decomposition barrier

We make significant changes to MWU-framework.

Introduces randomization

Our min-cost flow result introduces the first solution to both above
challenges

Note: our solutions to the two challenges entirely unrelated

This Talk: first challenge only (dynamic SSSP)

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 28 / 63



Outline
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Decremental SSSP review

Reviewing the model

Initial undirected graph G , fixed source s

This Talk: assume G unweighted

Each update deletes an edge (u, v) in G

Goal: maintain (1 + ε)-approximate shortest paths from s

Goal: deterministic (and hence adaptive) algorithm.

Our Result: Adaptive (1 + ε)-approximation in total update time Ô(m).
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High-Level Approach: Maintain Low Diameter Balls

Static Problem (easy-ish): cover V with low-diameter balls

Dynamic Problem (hard): maintain covering of low-diameter balls.

Key Dynamic Building Block: Start with low-diameter ball K init .
As edges in G are deleted, detect vertices in K init that are no longer
close to the rest of the ball.
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Definition

Recall: Ô(·) and Ω̂(·) hide polynomial factors.

Recall: We assume that G is unweighted

So each adversarial update deletes an edge in G

Definition: Weak Diameter Given graph G and set K ⊆ V (G ), define

diamG (K ) , min
x ,y∈K

dist(x , y)
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Defining Robust Core (Simplified Version)

Input: Graph G subject to edge deletions; initially diam(G ) = d = no(1).
Define |V (G ) = n|, |E (G ) = m|.

Simplified RobustCore(G )

Maintain a set K ⊆ V (G ) with the following properties:

Diameter Property: diamG (K ) = Ô(d) = no(1)

Scattering Property: For every v ∈ V (G ) \ K we have

|ball(v , 2d)| ≤ .99n

Termination: if at some point |K | ≤ n/2, can set K ← ∅.
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Robust Core and Decremental SSSP

First Task: Find a solution to RobustCore

Focus of this talk

Second Task: Show that RobustCore → decremental SSSP

Requires several new techniques

Borrows many ideas from existing work on dynamic SSSP (hopsets,
clustering, monotone even and Shiloach, etc.)
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Simplified Robust Core

Input: Graph G subject to edge deletions; initially diam(G ) = d = no(1).
Define |V (G ) = n|, |E (G ) = m|.

Simplified RobustCore(G )

Maintain a set K ⊆ V (G ) with the following properties:

Diameter Property: diamG (K ) = Ô(d) = no(1)

Scattering Property: For every v ∈ V (G ) \ K we have

|ball(v , 2d)| ≤ .99n

Termination: if at some point |K | ≤ |n/2|, can set K ← ∅.

Robust Core distills basic subroutine used by almost all previous algorithms
for Decremental SSSP.

Our Result: Solve RobustCore(G ) in total time Ô(m).
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Non-Adaptive Algorithms: Random Source
Recall: [initial diameter of G ] = d = no(1)

Scattering: If v ∈ V (G ) \ K then |ball(v , 2d)| ≤ .99n

RobustCore(G) via Random Source

Pick random source s ∈ V

Maintain ball(s, 5d): can do in total
time O(md) = Ô(m) (ES-tree).

Whenever v leaves ball(s, 5d),
remove v from K .

If at any point |ball(s, 2d)| ≤ n/2,
restart with new source.

Analysis:

If |ball(s, 2d)| ≤ n/2 then s is scattered.

s picked at random, so in expectation half of vertices scattered.

So w.h.p only O(log(n)) random sources before termination.
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time O(md) = Ô(m) (ES-tree).

Whenever v leaves ball(s, 5d),
remove v from K .

If at any point |ball(s, 2d)| ≤ n/2,
restart with new source.

Analysis:

If |ball(s, 2d)| ≤ n/2 then s is scattered.

s picked at random, so in expectation half of vertices scattered.

So w.h.p only O(log(n)) random sources before termination.

Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 37 / 63



Non-Adaptive Algorithms: Random Source
Recall: [initial diameter of G ] = d = no(1)

Scattering: If v ∈ V (G ) \ K then |ball(v , 2d)| ≤ .99n

RobustCore(G) via Random Source

Pick random source s ∈ V

Maintain ball(s, 5d): can do in total
time O(md) = Ô(m) (ES-tree).
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Random Source Useless Against Adaptive Adversaries
Random Source: Let s be a random source in G

Non-Adaptive Adversary:

Adversary has no access to randomness of algorithm.

To scatter s, must scatter (in expectation) half of V (G )

So only log(n) random sources.

Adaptive Adversary

Adversary can guess randomness of algorithm via queries

Can Show: easy for adversary to detect s.

Adversary can delete all edges of s while leaving rest of G intact.

Will need Ω(n) sources.

The random-source technique accounts for much of the gap between
adaptive and non-adaptive algorithms for dynamic shortest paths and

related problems.
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Previous Adaptive Approach: Many Sources

Non-adaptive Adversary: maintain shortest path tree from random
s ∈ G

Adaptive Adversary: maintain shortest path tree from all v ∈ V (G ).

Can somewhat limit sizes of trees with density arguments.

State-of-the art with many-source approach:
I Ô(mn3/4) Bernstein and Chechik, 2016
I Ô(mn1/2) Gutenberg and Wulff-Nilsen, 2016

Hard barrier to this approach: O(mn1/2).
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Defining Vertex Expanders

Definition: For any set L ⊂ V (G ), let
N(L) be the neighbors of L not in L.

So L ∩ N(L) = ∅

Vertex Expander

G = (V ,E ) is a vertex expander if for
any set L ⊂ V with |L| ≤ |V |/2:

|N(L)| ≥ O(|L|/ log(n)).

This Talk: Only vertex expanders,
expansion factor always 1/ log(n).

Key Property: expanders have diameter polylog
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Existing Technique: Expander Pruning

Key fact: expanders are robust to edge deletions.

Expander Pruning (slightly informal) [Saranurak, Wang]

Let G be an expander subject to edge deletions. Algorithm Prune(G )
can process up to O(n/ log(n)) edge deletions while maintaining a set
X ⊂ V (G ) such that

G [X ] is an expander.

|X | ≥ V (G )/2
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Idealized Scenario: G is initially an expander

Scattering Property: If v ∈ V (G ) \ K then |ball(v , 2d)| ≤ .99n

RobustCore(G )

Initially: K ← V (G )

Maintain X ← Prune(G )

Maintain ball(X , 2d).
Can do in Ô(m) time (ES-tree).

Whenever v leaves ball(X , 2d),
remove v from K

Terminate once |X | < n/2

I Can only happen after
n/ log(n) deletions.

Intuition: shortest path tree rooted
at expander instead of random
source.
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What if G is not an expander?
(Input to RobustCore only guarantees that G has small diameter.)

Note: unclear how to efficiently use expander decomposition

Our Result: expander tools without expander decomposition.
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What if G not an expander?

Criticality: vertex v is critical if deleting edge (u, v) can scatter many
vertices in G

1 G is expander: no vertices are critical

2 G is arbitrary graph: can have many very critical vertices

3 G has small diameter: total criticality is small.
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Capacitated Expander

Regular Expander

G = (V ,E ) is an expander if for any set L ⊂ V with |L| ≤ |V |/2:

|N(L)| ≥ O(|L|/ log(n)).

Capacitated Expander

G is a capacitated expander with respect to κ if for any set L ⊂ V with
|L| ≤ |V |/2: ∑

v∈N(L) κ(v) ≥ |L|/ log(n).
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Capacity Function Examples

Capacitated Expander

G is a capacitated expander with respect to κ if for any set L ⊂ V with
|L| ≤ |V |/2 we have:

∑
v∈N(L) κ(v) ≥ |L|/ log(n).
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Goal: Low Total Capacity

Capacitated Expander

G is a capacitated expander with respect to κ if for any set L ⊂ V with
|L| ≤ |V |/2 we have:

∑
v∈N(L) κ(v) ≥ |L|/ log(n).

Note: G automatically capacitated expander if κ(v) = n ∀v ∈ V

High-Level Goal

Given a graph G , compute a capacity function κ such that G is a
capacitated vertex expander and

∑
v∈V (G) κ(v) is small.

Question: Why do we want
∑

v∈V κ(v) to be small.

Answer: vertices with low κ(v) are not crucial, so adversarial deletions of
edges incident to v are easy to process.
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Capacitated Expander Pruning

Simplification: We assume that all vertices in G have constant degree.

Definition: For edge e = (u, v), let κ(u, v) = κ(u) + κ(v).

Note:
∑

v∈V (G) κ(v) = Θ(
∑

e∈E(G) κ(e))

Prune(G , κ)

Let G be a capacitated expander wr.t. to κ and say G subject to edge
deletions. Algorithm Prune(G , κ) can process edge deletions while
maintaining a set X ⊂ V (G ) such that

G [X ] is a capacitated expander.

|X | ≥ V (G )/2 as long as
∑

e∈Edel κ(e) ≤ O(n/ log(n)), where Edel is
the set of edges deleted by the adversary.
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Key Lemma

Small Diameter Implies Small Capacity Sum

Say that diam(G ) = d . Then, there exists a function κ such that:

G is a capacitated expander w.r.t κ.∑
v∈V κ(v) = Ô(nd)

Issue: Cannot compute above function κ in almost-linear time.

We actually compute slightly relaxed version of κ that only
guarantees expansion for balanced cuts: |L| ≥ εn
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Algorithm RobustCore(G )
Goal: given G with diam(G ) = d = no(1), maintain small-diam K ⊆ V .

1 Compute capacity function κ such that G is a capacitated expander
and

∑
v∈V (G) κ(v) = Ô(nd) = Ô(n).

2 X ← Prune(G , κ)
3 Maintain ball(X , 2d)
4 If a vertex v leaves ball(X , 2d), remove v from k
5 If at ant point |X | ≤ n/2: restart from scratch with current K

I We call this a new phase

Analysis

Each phase requires time Ô(nd) = Ô(n).

Each phase terminates only after adversary deletes n/ log(n) capacity.

Total capacity
∑

v∈V κ(v) = Ô(n)

So # phases = Ô( n
n/ log(n)) = no(1).

Technical Note: above analysis requires that κ(v) is monotonically
increasing between phases.
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2 X ← Prune(G , κ)

3 Maintain ball(X , 2d)
4 If a vertex v leaves ball(X , 2d), remove v from k
5 If at ant point |X | ≤ n/2: restart from scratch with current K

I We call this a new phase

Analysis

Each phase requires time Ô(nd) = Ô(n).
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Takeaway

Key Lemma

Say that diam(G ) = d . Then, there exists a function κ such that:

G is a capacitated expander w.r.t κ.∑
v∈V κ(v) = Ô(nd)

Takeaway: Can turn any low-diameter graph into an expander and apply
expander tools.
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Computing the Function κ via Congestion Balancing.

Capacitated Expander

G is a capacitated expander with respect to κ
if for any set L ⊂ V with |L| ≤ |V |/2 we have:∑

v∈N(L) κ(v) ≥ |L|/ log(n).

Key Lemma

Say that diam(G ) = d . Then there exists κ
such that G is a capacitated expander w.r.t κ
and

∑
v∈V κ(v) = Ô(nd).

Constructing Desired Function κ

1. Initially set κ(v) = 1 ∀v ∈ V (G ).
2. While there exists L such that∑

v∈N(L) κ(v) < |L|/ log(n)

Do ∀v ∈ N(L): κ(v)← 2κ(v)

Generalizes Congestion
Balancing Technique from
[BGS20]
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Analysis of Congestion Balancing

Defining the Potential Function

Define the cost of a vertex v to be c(v) , log(κ(v))

Let Π(G , κ) be the cost of the min-cost embedding (unbounded
capacities) of a constant-degree expander into G .

Key Facts

Π(G , κ) increases monotonically from 0 to Õ(nd)

Whenever
∑

v∈V κ(v) increases by ∆, Π(G , κ) increases by Ω̂(∆)

Thus, at the end,
∑

v∈V κ(v) = Ô(nd)
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Bernstein, Gutenberg, Saranurak Near-Optimal Algorithms for Approximate Min-Cost Flow and Dynamic Shortest PathsJanuary 17, 2021 57 / 63



Analysis of Congestion Balancing

Defining the Potential Function

Define the cost of a vertex v to be c(v) , log(κ(v))

Let Π(G , κ) be the cost of the min-cost embedding (unbounded
capacities) of a constant-degree expander into G .

Key Facts

Π(G , κ) increases monotonically from 0 to Õ(nd)
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Summary: Simplified RobustCore

Input: Graph G subject to edge deletions; initially diam(G ) = d = no(1).
Define |V (G ) = n|, |E (G ) = m|.
High-Level Goal: maintain small-diameter set K inside G .

Simplified RobustCore(G )

Maintain a set K ⊆ V (G ) with the following properties:

Diameter Property: diamG (K ) = Ô(d) = no(1)

Scattering Property: For every v ∈ V (G ) \ K we have

|ball(v , 2d)| ≤ .99n

Termination: if at some point |K | ≤ n/2, can set K ← ∅.

Result: Can maintain RobustCore(G ) in total time Ô(m) over all
deletions.
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Summary: Capacitated Expansion

Capacitated Expander

G is a capacitated expander with respect to κ is for every L ⊂ V with
L ≥ |V |/2 we have: ∑

v∈S
κ(s) ≥ |L|/ log(n)

.

Key Lemma

Say that diam(G ) = d . Then there exists κ such that G is a capacitated
expander w.r.t κ and

∑
v∈V κ(v) = Ô(nd).
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Summary: Dynamic Shortest Path Result

Previous Work (undirected graph)

Non-Adaptive: Ô(m) total update time.

Deterministic (and so adaptive): Ô(min(n2,m
√
n) total update

time.

Our Result (undirected graph)

Adaptive decremental SSSP in total update time Ô(m)

Closes the adaptive / non-adaptive gap.

Optimal update time up to sub-polynomial factors.

Generalizes to weighted graphs

Concludes long line of research.
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Summary: Flow Results

Previous (1 + ε)-Approximate Max Flow in Undirected Graphs

Edge-Capacitated Max Flow: Õ(m)

Vertex-Capacitated Max Flow: Ô(m + n1.5)

Min-Cost flow: Ô(m + n1.5)

Our Result

(1 + ε)-approximation min-cost flow in Ô(m) time.

can handle costs/capacities on both vertices/edges.

Completes the picture for approximate flow in undirected graphs.

Techniques:

New version of MWU framework for max flow

Uses decremental SSSP algorithm as black box.
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Open Problems

1) Decremental SSSP for directed graphs

2) Close adaptive/non-adaptive gaps for other dynamic algorithms.

3) Combine dynamic algorithms with MWU to develop faster static
algorithms.

Thanks!
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