Fair Division of Indivisible Goods

Jugal Garg
University of Illinois at Urbana-Champaign

ILLINOIS

Fair Division

Divide items among agents fairly

Applications

Vaccine distributions

Divorce settlements

Air traffic management

Household chores

Setup (Discrete Fair Division)

Given:

- Set [n] of n agents.
- Set M of m indivisible goods.
- Additive valuations $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$ for every agent i.

Setup (Discrete Fair Division)

Given:

- Set $[n]$ of n agents.
- Set M of m indivisible goods.
- Additive valuations $v_{i}(S)=\sum_{g \in S} v_{i}(g)$ for all $S \subseteq M$, for every agent i

Setup (Discrete Fair Division)

Given:

- Set $[n]$ of n agents.
- Set M of m indivisible goods.
- Additive valuations $v_{i}(S)=\sum_{g \in S} v_{i}(g)$ for all $S \subseteq M$, for every agent i

Find: Partition $X=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle$ of M, which is fair.

Fairness Notions

Fairness Notions

X is envy-free iff for all pairs $\left(i, i^{\prime}\right)$ we have $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}}\right)$.

Fairness Notions

X is envy-free iff for all pairs $\left(i, i^{\prime}\right)$ we have $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}}\right)$.

Question

Is it always possible to be fair? (notion being Envy-Freeness)

Fairness Notions

X is envy-free iff for all pairs $\left(i, i^{\prime}\right)$ we have $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}}\right)$.

Question

Is it always possible to be fair? (notion being Envy-Freeness)

Answer

NO! Consider two agents having positive valuation towards a single good.

Relaxation: Envy-Freeness up to Any Good (EFX)
(CKMPSW'16)
X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for every $g \in X_{i^{\prime}}$.

Relaxation: Envy-Freeness up to Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for every $g \in X_{i^{\prime}}$.

Laptop Bag Shoes

35

$10 \quad a_{2} \quad 20 \quad 10 \quad$| 10 |
| :--- |

Relaxation: Envy-Freeness up to Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for every $g \in X_{i^{\prime}}$.

Relaxation: Envy-Freeness up to Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for every $g \in X_{i^{\prime}}$.

Laptop Bag Shoes

a_{1}	25	10

a_{2}	20	10	10

$$
v_{2}\left(X_{2}\right)<v_{2}\left(X_{1} \backslash\{\text { Bag }\}\right)
$$

Relaxation: Envy-Freeness up to Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for every $g \in X_{i^{\prime}}$.

Laptop Bag Shoes

10

a_{2}	20	10	10

$$
v_{2}\left(X_{2}\right)<v_{2}\left(X_{1} \backslash\{\text { Bag }\}\right)
$$

Not an EFX allocation

Relaxation: Envy-Freeness up to Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for every $g \in X_{i^{\prime}}$.

Laptop Bag Shoes

25

An EFX allocation

Envy Freeness upto Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for all $g \in X_{i^{\prime}}$.

Question
Is it always possible to be fair? (notion being EFX)

Envy Freeness upto Any Good (EFX)

X is EFX iff for all $i, i^{\prime}, v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{i^{\prime}} \backslash\{g\}\right)$ for all $g \in X_{i^{\prime}}$.

Question
Is it always possible to be fair? (notion being EFX)

Answer- We do not know yet!

"Fair division’s biggest problem" - Procaccia (CACM'20)
"highly non-trivial" (even for 3 agents) - Plaut and Roughgarden (SODA' 18)

State of the Art (EFX)

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF'21, M'21)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR'18, ANM'20). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM ${ }^{\prime} 21$)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

State of the Art (EFX)

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF'21, M'21)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR'18, ANM'20). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM'21)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

Two Agents: Divide and Choose

- Agent 1 finds a partition $\left(Y, Y^{\prime}\right)$ of all goods such that

$$
v_{1}\left(Y^{\prime}\right) \geq v_{1}(Y) \geq v_{1}\left(Y^{\prime} \backslash g\right), \forall g \in Y^{\prime}
$$

- Agent 2 chooses her preferred bundle among Y and Y^{\prime}, and Agent 1 keeps the other bundle

Two Agents: Divide and Choose

- Agent 1 finds a partition $\left(Y, Y^{\prime}\right)$ of all goods such that

$$
v_{1}\left(Y^{\prime}\right) \geq v_{1}(Y) \geq v_{1}\left(Y^{\prime} \backslash g\right), \forall g \in Y^{\prime}
$$

- Agent 2 chooses her preferred bundle among Y and Y^{\prime}, and Agent 1 keeps the other bundle

Theorem
EFX exists when $n=2$

State of the Art (EFX)

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF'21, M'21)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR'18, ANM'20). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM'21)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

Concepts: Envy Graph E_{X}

- Vertices correspond to agents $[n]$. $\quad(i, j) \in E_{X}$ iff $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$.

Concepts: Envy Graph E_{X}

- Vertices correspond to agents $[n] . \quad \bullet(i, j) \in E_{X}$ iff $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$.

Concepts: Envy Graph E_{X}

- Vertices correspond to agents $[n] . \quad \bullet(i, j) \in E_{X}$ iff $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$.

Concepts: Envy Graph E_{X}

- Vertices correspond to agents $[n] . \quad \bullet(i, j) \in E_{X}$ iff $v_{i}\left(X_{i}\right)<v_{i}\left(X_{j}\right)$.

Concepts: Most Envious Agents $A_{X}(S)$

Given: $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and $S \subseteq M$ and agent i.

Concepts: Most Envious Agents $A_{X}(S)$

Given: $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and $S \subseteq M$ and agent i.

Let Y_{i} be the smallest subset of S such that $v_{i}\left(Y_{i}\right)>v_{i}\left(X_{i}\right)$.

Concepts: Most Envious Agents $A_{X}(S)$

Given: $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and $S \subseteq M$ and agent i.

Let Y_{i} be the smallest subset of S such that $v_{i}\left(Y_{i}\right)>v_{i}\left(X_{i}\right)$.
Define $\kappa_{X}(i, S)=\left|Y_{i}\right|$.

Concepts: Most Envious Agents $A_{X}(S)$

$$
A_{X}(S)=\text { agents with minimum } \kappa_{X}(i, S) .
$$

Concepts: Most Envious Agents $A_{X}(S)$

$$
A_{X}(S)=\text { agents with minimum } \kappa_{X}(i, S)
$$

Concepts: Most Envious Agents $A_{X}(S)$

$$
A_{X}(S)=\text { agents with minimum } \kappa_{X}(i, S)
$$

$$
A_{X}(S)=\left\{a_{1}\right\}
$$

Concepts: Most Envious Agents $A_{X}(S)$

$$
A_{X}(S)=\text { agents with minimum } \kappa_{X}(i, S) .
$$

Nobody envies $\mathbf{Y}_{\mathbf{1}}$ up to any good and $v_{1}\left(Y_{1}\right)>_{1} v_{1}\left(X_{1}\right)$!

Concepts: Champions and Champion-Cycle

Given allocation X, we say i champions the set S,

Concepts: Champions and Champion-Cycle

Given allocation X, we say i champions the set S, if i is a most envious agent for S.

Concepts: Champions and Champion-Cycle

Given: a partial EFX allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

```
EX
```


Concepts: Champions and Champion-Cycle

Given: a partial EFX allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

```
Pick any unallocated g
```


Concepts: Champions and Champion-Cycle

Given: a partial EFX allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

Concepts: Champions and Champion-Cycle

Given: a partial EFX allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

Concepts: Champions and Champion-Cycle

Given: a partial EFX allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

Concepts: Champions and Champion-Cycle

Given: a partial EFX allocation $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

Concepts: Champions and Champion-Cycle

```
Agents }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\mathrm{ and
goods g}\mp@subsup{g}{1}{},\mp@subsup{g}{2}{},\mp@subsup{g}{3}{}\mathrm{ form
a champion-cycle
```



```
ti}\mathrm{ belongs to the
component in EX
with }\mp@subsup{s}{i}{}\mathrm{ as source
```


Concepts: Champions and Champion-Cycle

```
Agents }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\mathrm{ and goods \(g_{1}, g_{2}, g_{3}\) form a champion-cycle
```

```
ti}\mathrm{ belongs to the component in \(E_{X}\) with \(s_{i}\) as source
```

```
t
```


Concepts: Champions and Champion-Cycle

```
Agents }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\mathrm{ and goods \(g_{1}, g_{2}, g_{3}\) form a champion-cycle
```

```
ti}\mathrm{ belongs to the
component in E E
with }\mp@subsup{s}{i}{}\mathrm{ as source
```

t_{2} champions $X_{s_{2}} \cup g_{2}$

Concepts: Champions and Champion-Cycle

Agents t_{1}, t_{2}, t_{3} and
goods g_{1}, g_{2}, g_{3} form
a champion-cycle

```
ti}\mathrm{ belongs to the
component in E E
with }\mp@subsup{s}{i}{}\mathrm{ as source
```

t_{3} champions $X_{s_{3}} \cup g_{3}$

Concepts: Champions and Champion-Cycle

```
Agents }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\mathrm{ and
goods \mp@subsup{g}{1}{},\mp@subsup{g}{2}{},\mp@subsup{g}{3}{}\mathrm{ form}
a champion-cycle
```

```
ti}\mathrm{ belongs to the
component in E E
with }\mp@subsup{s}{i}{}\mathrm{ as source
```


If the number of unallocated goods is at least n, then X admits champion-cycle

Concepts: Champions and Champion-Cycle

```
Agents }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\mathrm{ and
goods }\mp@subsup{g}{1}{},\mp@subsup{g}{2}{},\mp@subsup{g}{3}{}\mathrm{ form
a champion-cycle
```

```
ti
component in E}\mp@subsup{E}{X}{
with }\mp@subsup{s}{i}{}\mathrm{ as source
```


X admits champion-cycle \Longrightarrow there exists EFX allocation $X^{\prime}>_{P D} X$

State of the Art (EFX)

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF'21, M'21)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR'18, ANM'20). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM ${ }^{\prime} 21$)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

Three Agents - First Attempt

Invariant: X is EFX
1: For all $i \in[n]$ set $X_{i} \leftarrow \emptyset$
2: while there is an unallocated good g do
3: $\quad X \leftarrow U(X, g)$ by some update rule U
4: Return X

Three Agents - First Attempt

Invariant: X is EFX
1: For all $i \in[n]$ set $X_{i} \leftarrow \emptyset$
2: while there is an unallocated good g do
3: $\quad X \leftarrow U(X, g)$ by some update rule U
4: Return X
$X^{\prime}=U(X, g)$. Then

- X^{\prime} is EFX

Three Agents - First Attempt

Invariant: X is EFX
1: For all $i \in[n]$ set $X_{i} \leftarrow \emptyset$
2: while there is an unallocated good g do
3: $\quad X \leftarrow U(X, g)$ by some update rule U
4: Return X
$X^{\prime}=U(X, g)$. Then

- X^{\prime} is EFX $\bullet v_{i}\left(X_{i}^{\prime}\right) \geq v_{i}\left(X_{i}\right)$ with at least one strict inequality $\left(X^{\prime}>_{P D} X\right)$

Three Agents - First Attempt

Invariant: X is EFX
1: For all $i \in[n]$ set $X_{i} \leftarrow \emptyset$
2: while there is an unallocated good g do
3: $\quad X \leftarrow U(X, g)$ by some update rule U
4: Return X
$X^{\prime}=U(X, g)$. Then

- X^{\prime} is EFX - $v_{i}\left(X_{i}^{\prime}\right) \geq v_{i}\left(X_{i}\right)$ with at least one strict inequality $\left(X^{\prime}>_{P D} X\right)$

This strategy has been useful before:

- 0.5-EFX (PR'18) •EFX with charity (CKMS'20)

Three Agents: Sources in E_{X}

- One source

- Two sources

- Three sources

Case 1: E_{X} Has a Single Source

(CKMS'20)

Given: A partial EFX allocation X and an unallocated good g such that E_{X} has a single source.
Then there exists a partial EFX allocation $X^{\prime}>_{P D} X$

Case 2: E_{X} Has Three Sources

(CG.M'20)
Given: A partial EFX allocation X and an unallocated good g such that E_{X} has three sources.
Then there exists a partial EFX allocation $X^{\prime}>_{P D} X$

Case 2: E_{X} Has Three Sources

Sketch

$$
\tilde{X}_{i} \subseteq X_{i} \cup g \text { of smallest size, such that } v_{i}\left(\tilde{X}_{i}\right)>v_{i}\left(X_{i}\right)
$$

Case 2: E_{X} Has Three Sources

Sketch

$\tilde{X}_{i} \subseteq X_{i} \cup g$ of smallest size, such that $v_{i}\left(\tilde{X}_{i}\right)>v_{i}\left(X_{i}\right)$
\downarrow

$$
\text { If }\left\langle\tilde{X}_{1}, X_{2}, X_{3}\right\rangle \text { or }\left\langle X_{1}, \tilde{X}_{2}, X_{3}\right\rangle \text { or }\left\langle X_{1}, X_{2}, \tilde{X}_{3}\right\rangle \text { is EFX, then exit }
$$

Case 2: E_{X} Has Three Sources

Sketch

$\tilde{X}_{i} \subseteq X_{i} \cup g$ of smallest size, such that $v_{i}\left(\tilde{X}_{i}\right)>v_{i}\left(X_{i}\right)$
\downarrow
If $\left\langle\tilde{X}_{1}, X_{2}, X_{3}\right\rangle$ or $\left\langle X_{1}, \tilde{X}_{2}, X_{3}\right\rangle$ or $\left\langle X_{1}, X_{2}, \tilde{X}_{3}\right\rangle$ is EFX, then exit

Otherwise, there exists $X^{\prime}>_{P D} X$ and $\cup_{i \in[n]} X_{i}^{\prime}=\cup_{i \in[n]} X_{i}$

Case 2: E_{X} Has Three Sources

Sketch

$\tilde{X}_{i} \subseteq X_{i} \cup g$ of smallest size, such that $v_{i}\left(\tilde{X}_{i}\right)>v_{i}\left(X_{i}\right)$
\downarrow
If $\left\langle\tilde{X}_{1}, X_{2}, X_{3}\right\rangle$ or $\left\langle X_{1}, \tilde{X}_{2}, X_{3}\right\rangle$ or $\left\langle X_{1}, X_{2}, \tilde{X}_{3}\right\rangle$ is EFX , then exit
\downarrow
Otherwise, there exists $X^{\prime}>_{P D} X$ and $\cup_{i \in[n]} X_{i}^{\prime}=\cup_{i \in[n]} X_{i}$

Create EFX allocation Y from X^{\prime} and g such that $Y>_{P D} X^{\prime}$

Case 3: E_{X} Has Two Sources: No U Possible!

Lemma

There exists a partial EFX allocation X and an unallocated good g, such that there exists no complete EFX allocation $X^{\prime}>_{P D} X$

Case 3: E_{X} Has Two Sources: No U Possible!

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
a_{1}	8	2	12	2	0	17	1
a_{2}	5	0	9	4	10	0	3
a_{3}	0	0	0	0	9	10	2

Case 3: E_{X} Has Two Sources: No U Possible!

		g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
16	a_{1}	8	2	12	2	0	17	1
15	a_{2}	5	0	9	4	10	0	3
10	a_{3}	0	0	0	0	9	10	2

Case 3: E_{X} Has Two Sources: No U Possible!

		g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
16	a_{1}	8	2	12	2	0	17	1
15	a_{2}	5	0	9	4	10	0	3
10	a_{3}	0	0	0	0	9	10	2

In all final EFX allocations, at least one agent's valuation strictly decreases!

Case 3: E_{X} Has Two Sources: No U Possible!

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}		
16	a_{1}	8	2	12	$\boxed{2}$	0	$\boxed{17}$	1	$\mathbf{1 9}$
15	a_{2}	$\boxed{5}$	0	$\boxed{9}$	4	10	0	3	14
10	a_{3}	0	0	0	0	9	10	2	$\mathbf{1 1}$

a_{1} and a_{3} are strictly better off, while a_{2} is worse off

Case 3: E_{X} Has Two Sources: No U Possible!

		g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	
16	a_{1}	8	2	12	2	0	$\boxed{17}$	1	$\mathbf{1 7}$
15	a_{2}	5	0	$\boxed{9}, 4$	10	0	3	$\mathbf{1 6}$	
10	a_{3}	0	0	0	0	9	10	2	9

a_{1} and a_{2} are strictly better off, while a_{3} is worse off

Case 3: E_{X} Has Two Sources: No U Possible!

		g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
16	a_{1}	8	2	12	2	0	17	1
15	a_{2}	5	0	9	4	10	0	3
10	a_{3}	0	0	0	0	9	10	2

For each $i \in[3]$, there is a complete EFX allocation where a_{i} is better off!

Fix: New Potential Function $\phi(X)$

- Relabel agents as a, b and c

Fix: New Potential Function $\phi(X)$

- Relabel agents as a, b and c
- $\phi(X)=\left\langle v_{a}\left(X_{a}\right), v_{b}\left(X_{b}\right), v_{c}\left(X_{c}\right)\right\rangle$

Fix: New Potential Function $\phi(X)$

- Relabel agents as a, b and c
- $\phi(X)=\left\langle v_{a}\left(X_{a}\right), v_{b}\left(X_{b}\right), v_{c}\left(X_{c}\right)\right\rangle$
- Observe, if $X^{\prime}>_{P D} X$, then $\phi\left(X^{\prime}\right)>_{l e x} \phi(X)$

Fix: New Potential Function $\phi(X)$

- Relabel agents as a, b and c
- $\phi(X)=\left\langle v_{a}\left(X_{a}\right), v_{b}\left(X_{b}\right), v_{c}\left(X_{c}\right)\right\rangle$
- Observe, if $X^{\prime}>_{P D} X$, then $\phi\left(X^{\prime}\right)>_{\text {lex }} \phi(X)$

Lemma

Given any partial EFX allocation X and an unallocated good g, there exists another partial EFX allocation X^{\prime} such that $\phi\left(X^{\prime}\right)>_{\text {lex }} \phi(X)$

Fix: New Potential Function $\phi(X)$

- Relabel agents as a, b and c
- $\phi(X)=\left\langle v_{a}\left(X_{a}\right), v_{b}\left(X_{b}\right), v_{c}\left(X_{c}\right)\right\rangle$
- Observe, if $X^{\prime}>_{P D} X$, then $\phi\left(X^{\prime}\right)>_{l e x} \phi(X)$

Lemma

Given any partial EFX allocation X and an unallocated good g, there exists another partial EFX allocation X^{\prime} such that $\phi\left(X^{\prime}\right)>$ lex $\phi(X)$

Theorem
EFX exists when $n=3$

State of the Art (EFX)

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF'21, M'21)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR'18, ANM'20). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM ${ }^{\prime} 21$)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

EFX Allocations with Sublinear Charity

Almost EFX with sublinear charity $\rightarrow_{\text {reduces }}$ extremal graph theory problem.

Reduction Sketch: Goods Classification

Good g is valuable to i iff $v_{i}(g)>\varepsilon \cdot v_{i}\left(X_{i}\right)$.

Reduction Sketch: Goods Classification

Good g is valuable to i iff $v_{i}(g)>\varepsilon \cdot v_{i}\left(X_{i}\right)$.

- High Demand Goods H_{X}.
- $g \in H_{X}$, iff g is valuable to at least $d+1$ agents.
- Low Demand Goods L_{X}.
- $g \in L_{X}$, iff g is valuable to at most d agents.

Reduction Sketch

$X^{\prime}>_{P D} X$ iff $v_{i}\left(X_{i}^{\prime}\right) \geq v_{i}\left(X_{i}\right)$ for all i, with at least one strict inequality.

Reduction Sketch

Process will converge to EFX allocation where $\left|H_{X}\right|+\left|L_{X}\right| \leq n /(\varepsilon d)+R(d)$.

Reduction Sketch

Process will converge to EFX allocations where $\left|H_{X}\right|+\left|L_{X}\right| \in \mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$.

Reduction Sketch

Process will converge to EFX allocations where $\left|H_{X}\right|+\left|L_{X}\right| \in \mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$.

Concepts: Champions and Champion-Cycle

```
Agents }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}\mathrm{ and
goods }\mp@subsup{g}{1}{},\mp@subsup{g}{2}{},\mp@subsup{g}{3}{}\mathrm{ form
a champion-cycle
```

```
ti
component in E}\mp@subsup{E}{X}{
with }\mp@subsup{s}{i}{}\mathrm{ as source
```


X admits champion-cycle \Longrightarrow there exists EFX allocation $X^{\prime}>_{P D} X$

Bounding L_{X} : Group Champion Graph

$$
L_{X}=\left\{g_{1}, g_{2}, g_{3}\right\}
$$

$V_{g_{1}}=$ components in E_{X} containing agents who find g_{1} valuable
$V_{g_{2}}=$ components in E_{X} containing agents who find g_{2} valuable
$V_{g_{3}}=$ components in E_{X} containing agents who find g_{3} valuable

Bounding L_{X} : Group Champion Graph

Bounding L_{X} : Group Champion Graph

Edges are champion edges

Bounding L_{X} : Group Champion Graph

The champion edges for $X_{s_{i}} \cup g_{2}$ come from $V_{g_{2}}$

Bounding L_{X} : Group Champion Graph

The champion
edges for $X_{s_{i}} \cup g_{2}$
come from $V_{g_{2}}$

Bounding L_{X} : Group Champion Graph

The champion
edges for $X_{s_{i}} \cup g_{1}$
come from $V_{g_{1}}$

Bounding L_{X} : Group Champion Graph

The champion
edges for $X_{s_{i}} \cup g_{3}$
come from $V_{g_{3}}$

Bounding L_{X} : Group Champion Graph

Bounding L_{X} : Group Champion Graph

> Existence of a cycle that visits each part at most once implies existence of champion-cycle

Bounding L_{X} : Group Champion Graph

Question: How
many parts can
we have such
that there is no
such cycle?

Bounding L_{X} : Rainbow Cycle Number

Main Question

Find the largest k s.t. there is a k-partite graph $G=\left(\cup_{i \in[k]} V_{i}, E\right)$, where

Bounding L_{X} : Rainbow Cycle Number

Main Question

Find the largest k s.t. there is a k-partite graph $G=\left(\cup_{i \in[k]} V_{i}, E\right)$, where

- each part has at most d vertices, i.e., $\left|V_{i}\right| \leq d$ for all i,

Bounding L_{X} : Rainbow Cycle Number

Main Question

Find the largest k s.t. there is a k-partite graph $G=\left(\cup_{i \in[k]} V_{i}, E\right)$, where

- each part has at most d vertices, i.e., $\left|V_{i}\right| \leq d$ for all i,
- for any two parts V_{i} and V_{j}, each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and

Bounding L_{X} : Rainbow Cycle Number

Main Question

Find the largest k s.t. there is a k-partite graph $G=\left(\cup_{i \in[k]} V_{i}, E\right)$, where

- each part has at most d vertices, i.e., $\left|V_{i}\right| \leq d$ for all i,
- for any two parts V_{i} and V_{j}, each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Bounding L_{X} : Rainbow Cycle Number

Main Question

Let $R(d)$ be the largest k s.t. there is a k-partite graph $G=\left(\cup_{i \in[k]} V_{i}, E\right)$, where

- each part has at most d vertices, i.e., $\left|V_{i}\right| \leq d$ for all i,
- for any two parts V_{i} and V_{j}, each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Bounding L_{X} : Rainbow Cycle Number

Main Question

Let $R(d)$ be the largest k s.t. there is a k-partite graph $G=\left(\cup_{i \in[k]} V_{i}, E\right)$, where

- each part has at most d vertices, i.e., $\left|V_{i}\right| \leq d$ for all i,
- for any two parts V_{i} and V_{j}, each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

If $\left|L_{X}\right|>R(d)$, then there exists an EFX allocation $X^{\prime}>_{P D} X$.

Rainbow Cycle Number

$$
R(1) \leq 1
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(1) \leq 1
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(1) \leq 1
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(1) \leq 1
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(1) \leq 1
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(2) \leq 2
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

$$
R(d) \in \mathcal{O}\left(d^{4}\right)
$$

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Rainbow Cycle Number

- $\left|V_{i}\right| \leq d$ for all i,
- each vertex in V_{i} has an incoming edge from V_{j} and vice-versa, and
- there is no cycle that visits each part at most once.

Open Problems

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF' $21, \mathrm{M}^{\prime} 21$)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR'18, ANM'20). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM'21)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

Thank you!

$n=2$	$n=3$	$n>3$
Exists (PR'18)	Exists (CG.M'20)	Open

Relaxations

1. EFX with charity (CKMS'20, BCFF'21, M'21)

- EFX with at most $n-2$ unallocated goods

2. Approximate-EFX (PR' $18, \mathrm{ANM}^{\prime} 20$). $v_{i}\left(X_{i}\right) \geq \alpha v_{i}\left(X_{j} \backslash g\right) \forall g \in X_{j}$ for $\alpha \in[0,1]$

- 0.618-approximate EFX

3. Approximate-EFX with charity (CG.MMM'21)

- $(1-\varepsilon)$-EFX with $\mathcal{O}\left((n / \varepsilon)^{\frac{4}{5}}\right)$ charity for $\epsilon>0$

