Fair Division of Indivisible Goods

Jugal Garg University of Illinois at Urbana-Champaign

Divide *items* among agents *fairly*

Applications

Vaccine distributions Divorce settlements Air traffic management Household chores

Setup (Discrete Fair Division)

Given:

- Set [n] of n agents.
- Set M of m indivisible goods.
- Additive valuations $v_i: 2^M \to \mathbb{R}_{\geq 0}$ for every agent *i*.

Setup (Discrete Fair Division)

Given:

- Set [n] of n agents.
- Set M of m indivisible goods.
- Additive valuations $v_i(S) = \sum_{g \in S} v_i(g)$ for all $S \subseteq M$, for every agent i

Setup (Discrete Fair Division)

Given:

- Set [n] of n agents.
- Set M of m indivisible goods.
- Additive valuations $v_i(S) = \sum_{g \in S} v_i(g)$ for all $S \subseteq M$, for every agent i

Find: Partition $X = \langle X_1, X_2, \dots, X_n \rangle$ of M, which is *fair*.

X is envy-free iff for all pairs (i, i') we have $v_i(X_i) \ge v_i(X_{i'})$.

X is envy-free iff for all pairs (i, i') we have $v_i(X_i) \ge v_i(X_{i'})$.

Question

Is it always possible to be fair? (notion being Envy-Freeness)

X is envy-free iff for all pairs (i, i') we have $v_i(X_i) \ge v_i(X_{i'})$.

Question

Is it always possible to be fair? (notion being Envy-Freeness)

Answer

NO! Consider two agents having positive valuation towards a single good.

Relaxation: Envy-Freeness up to Any Good (EFX) (CKMPSW'16)

X is EFX iff for all $i, i', v_i(X_i) \ge v_i(X_{i'} \setminus \{g\})$ for every $g \in X_{i'}$.

Not an EFX allocation

X is EFX iff for all $i, i', v_i(X_i) \ge v_i(X_{i'} \setminus \{g\})$ for every $g \in X_{i'}$.

An EFX allocation

Envy Freeness upto Any Good (EFX)

X is EFX iff for all $i, i', v_i(X_i) \ge v_i(X_{i'} \setminus \{g\})$ for all $g \in X_{i'}$.

Question

Is it always possible to be fair? (notion being EFX)

Envy Freeness upto Any Good (EFX)

X is EFX iff for all $i, i', v_i(X_i) \ge v_i(X_{i'} \setminus \{g\})$ for all $g \in X_{i'}$.

Question

Is it always possible to be fair? (notion being EFX)

Answer- We do not know yet!

"Fair division's biggest problem" – Procaccia (CACM'20)
"highly non-trivial" (even for 3 agents) – Plaut and Roughgarden (SODA'18)

State of the Art (EFX)

n = 2	n = 3	n > 3
Exists (PR'18)	Exists (C G .M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0, 1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with charity (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$

State of the Art (EFX)

n=2	n=3	n > 3
Exists (PR'18)	Exists (C G. M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0,1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with charity (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$

Two Agents: Divide and Choose

• Agent 1 finds a partition (Y, Y') of all goods such that

 $v_1(Y') \ge v_1(Y) \ge v_1(Y' \setminus g), \forall g \in Y'$

• Agent 2 chooses her preferred bundle among Y and Y', and Agent 1 keeps the other bundle

Two Agents: Divide and Choose

• Agent 1 finds a partition (Y, Y') of all goods such that

 $v_1(Y') \ge v_1(Y) \ge v_1(Y' \setminus g), \forall g \in Y'$

• Agent 2 chooses her preferred bundle among Y and Y', and Agent 1 keeps the other bundle

Theorem EFX exists when n = 2

State of the Art (EFX)

n = 2	n = 3	n > 3
Exists (PR'18)	Exists (C G .M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0, 1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with charity (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$

• Vertices correspond to agents [n]. • $(i, j) \in E_X$ iff $v_i(X_i) < v_i(X_j)$.

• Vertices correspond to agents [n]. • $(i, j) \in E_X$ iff $v_i(X_i) < v_i(X_j)$.

• Vertices correspond to agents [n].

•
$$(i,j) \in E_X$$
 iff $v_i(X_i) < v_i(X_j)$.

• Vertices correspond to agents [n].

•
$$(i,j) \in E_X$$
 iff $v_i(X_i) < v_i(X_j)$.

Given: $X = \langle X_1, \ldots, X_n \rangle$ and $S \subseteq M$ and agent *i*.

Given: $X = \langle X_1, \ldots, X_n \rangle$ and $S \subseteq M$ and agent *i*.

Let Y_i be the smallest subset of S such that $v_i(Y_i) > v_i(X_i)$.

Given: $X = \langle X_1, \ldots, X_n \rangle$ and $S \subseteq M$ and agent *i*.

Let Y_i be the smallest subset of S such that $v_i(Y_i) > v_i(X_i)$.

Define $\kappa_X(i, S) = |Y_i|$.

 $A_X(S) =$ agents with minimum $\kappa_X(i, S)$.

 $A_X(S) =$ agents with minimum $\kappa_X(i, S)$.

 $A_X(S) =$ agents with minimum $\kappa_X(i, S)$.

$$A_X(S) = \{a_1\}$$

 $A_X(S) =$ agents with minimum $\kappa_X(i, S)$.

Nobody envies Y_1 up to any good and $v_1(Y_1) >_1 v_1(X_1)!$

Concepts: Champions and Champion-Cycle

Given allocation X, we say i **champions** the set S,

Concepts: Champions and Champion-Cycle

Given allocation X, we say i champions the set S, if i is a most envious agent for S.

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source $X_{s_1} \cup g_1$ X_{s_3} t_3 t_2 X_{s_2} t_1

 t_1 champions $X_{s_1} \cup g_1$

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source $X_{s_1} \cup g_1$ X_{s_3} t_3 t_2 $X_{s_2} \cup g_2$ t_1

 t_2 champions $X_{s_2} \cup g_2$

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source $X_{s_1} \cup g_1$ $X_{s_3} \cup g_3$ t_2 t_3 $X_{s_2} \cup g_2$ t_1

 t_3 champions $X_{s_3} \cup g_3$

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source

If the number of unallocated goods is at least n, then X admits champion-cycle

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source $X_{s_1} \cup g_1$ $X_{s_3} \cup g_3$ t_2 t_3 $X_{s_2} \cup g_2$ t_1

X admits champion-cycle \implies there exists EFX allocation $X' >_{PD} X$

State of the Art (EFX)

n = 2	n=3	n > 3
Exists (PR'18)	Exists (C G. M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0, 1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with charity (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$

Invariant: X is EFX

- 1: For all $i \in [n]$ set $X_i \leftarrow \emptyset$
- 2: while there is an unallocated good g do
- 3: $X \leftarrow U(X,g)$ by some update rule U
- 4: Return X

Invariant: X is EFX

- 1: For all $i \in [n]$ set $X_i \leftarrow \emptyset$
- 2: while there is an unallocated good g do
- 3: $X \leftarrow U(X,g)$ by some update rule U

4: Return X

X' = U(X,g). Then

 $\bullet \ X' \text{ is EFX}$

Invariant: X is EFX

- 1: For all $i \in [n]$ set $X_i \leftarrow \emptyset$
- 2: while there is an unallocated good g do
- 3: $X \leftarrow U(X,g)$ by some update rule U

4: Return X

X' = U(X,g). Then

• X' is EFX • $v_i(X'_i) \ge v_i(X_i)$ with at least one strict inequality (X' >_{PD} X)

Invariant: X is EFX

- 1: For all $i \in [n]$ set $X_i \leftarrow \emptyset$
- 2: while there is an unallocated good g do
- 3: $X \leftarrow U(X,g)$ by some update rule U

4: Return X

X' = U(X,g). Then

• X' is EFX • $v_i(X'_i) \ge v_i(X_i)$ with at least one strict inequality (X' >_{PD} X)

This strategy has been useful before:

• 0.5-EFX (PR'18) • EFX with charity (CKMS'20)

Three Agents: Sources in E_X

• One source

Two sources

- Three sources
 - \mathbf{O}

Case 1: E_X Has a Single Source

(CKMS'20)

Given: A partial EFX allocation X and an unallocated good g such that E_X has a single source.

Then there exists a partial EFX allocation $X' >_{PD} X$

(C**G.**M'20)

Given: A partial EFX allocation X and an unallocated good g such that E_X has three sources.

Then there exists a partial EFX allocation $X' >_{PD} X$

Sketch

 $ilde{X}_i \subseteq X_i \cup g$ of smallest size, such that $v_i(ilde{X}_i) > v_i(X_i)$

Sketch

Sketch

Sketch

Lemma

There exists a partial EFX allocation X and an unallocated good g, such that there exists no complete EFX allocation $X' >_{PD} X$

	g_1	g_2	g_3	g_4	g_5	g_6	g_7
a_1	8	2	12	2	0	17	1
a_2	5	0	9	4	10	0	3
a_3	0	0	0	0	9	10	2

↓ "unallocated"

		g_1	g_2	g_3	g_4	g_5	g_6	g_7
16	a_1	8	2	12	2	0	17	1
15	a_2	5	0	9	4	10	0	3
10	a_3	0	0	0	0	9	10	2

In all final EFX allocations, at least one agent's valuation strictly decreases!

 a_1 and a_3 are strictly better off, while a_2 is worse off

 a_1 and a_2 are strictly better off, while a_3 is worse off

		g_1	g_2	g_3	g_4	g_5	g_6	g_7
16	a_1	8	2	12	2	0	17	1
15	a_2	5	0	9	4	10	0	3
10	a_3	0	0	0	0	9	10	2

For each $i \in [3]$, there is a complete EFX allocation where a_i is better off!

• Relabel agents as a, b and c

- Relabel agents as a, b and c
- $\phi(X) = \langle v_a(X_a), v_b(X_b), v_c(X_c) \rangle$

- Relabel agents as a, b and c
- $\phi(X) = \langle v_a(X_a), v_b(X_b), v_c(X_c) \rangle$
- Observe, if $X' >_{PD} X$, then $\phi(X') >_{lex} \phi(X)$

- Relabel agents as a, b and c
- $\phi(X) = \langle v_a(X_a), v_b(X_b), v_c(X_c) \rangle$
- Observe, if $X' >_{PD} X$, then $\phi(X') >_{lex} \phi(X)$

Lemma

Given any partial EFX allocation X and an unallocated good g, there exists another partial EFX allocation X' such that $\phi(X') >_{lex} \phi(X)$

- Relabel agents as a, b and c
- $\phi(X) = \langle v_a(X_a), v_b(X_b), v_c(X_c) \rangle$
- Observe, if $X' >_{PD} X$, then $\phi(X') >_{lex} \phi(X)$

Lemma

Given any partial EFX allocation X and an unallocated good g, there exists another partial EFX allocation X' such that $\phi(X') >_{lex} \phi(X)$

Theorem

EFX exists when n = 3

State of the Art (EFX)

n = 2	n = 3	n > 3
Exists (PR'18)	Exists (C G .M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0,1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with *charity* (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$

EFX Allocations with Sublinear Charity

Almost EFX with sublinear charity $\rightarrow_{reduces}$ extremal graph theory problem.

Reduction Sketch: Goods Classification

Good g is valuable to i iff $v_i(g) > \varepsilon \cdot v_i(X_i)$.

Reduction Sketch: Goods Classification

Good g is valuable to i iff $v_i(g) > \varepsilon \cdot v_i(X_i)$.

- High Demand Goods H_X .
- $g \in H_X$, iff g is valuable to at least d + 1 agents.

- Low Demand Goods L_X .
- $g \in L_X$, iff g is valuable to at most d agents.

 $X' >_{PD} X$ iff $v_i(X'_i) \ge v_i(X_i)$ for all *i*, with at least one strict inequality.

Process will converge to EFX allocation where $|H_X| + |L_X| \le n/(\varepsilon d) + R(d)$.

Process will converge to EFX allocations where $|H_X| + |L_X| \in \mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$.

Process will converge to EFX allocations where $|H_X| + |L_X| \in \mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$.

Concepts: Champions and Champion-Cycle

Agents t_1, t_2, t_3 and goods g_1, g_2, g_3 form a champion-cycle

 t_i belongs to the component in E_X with s_i as source $X_{s_1} \cup g_1$ $X_{s_3} \cup g_3$ t_2 t_3 $X_{s_2} \cup g_2$ t_1

X admits champion-cycle \implies there exists EFX allocation $X' >_{PD} X$

$$L_X = \{g_1, g_2, g_3\}$$

 $V_{g_1} =$ components in E_X containing agents who find g_1 valuable

 $V_{g_2} =$ components in E_X containing agents who find g_2 valuable

 $V_{g_3} =$ components in E_X containing agents who find g_3 valuable

Existence of a cycle that visits each part at most once implies existence of champion-cycle

Question: How many parts can we have such that there is no such cycle?

Main Question Find the largest k s.t. there is a k-partite graph $G = (\bigcup_{i \in [k]} V_i, E)$, where

Main Question

Find the largest k s.t. there is a k-partite graph $G = (\bigcup_{i \in [k]} V_i, E)$, where

• each part has at most d vertices, i.e., $|V_i| \leq d$ for all i,

Main Question

Find the largest k s.t. there is a k-partite graph $G = (\bigcup_{i \in [k]} V_i, E)$, where

- each part has at most d vertices, i.e., $|V_i| \le d$ for all i,
- for any two parts V_i and V_j , each vertex in V_i has an incoming edge from V_j and vice-versa, and

Main Question

Find the largest k s.t. there is a k-partite graph $G = (\bigcup_{i \in [k]} V_i, E)$, where

- each part has at most d vertices, i.e., $|V_i| \le d$ for all i,
- for any two parts V_i and V_j , each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

Main Question

Let R(d) be the largest k s.t. there is a k-partite graph $G = (\cup_{i \in [k]} V_i, E)$, where

- each part has at most d vertices, i.e., $|V_i| \leq d$ for all i,
- for any two parts V_i and V_j , each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

Main Question

Let R(d) be the largest k s.t. there is a k-partite graph $G = (\cup_{i \in [k]} V_i, E)$, where

- each part has at most d vertices, i.e., $|V_i| \leq d$ for all i,
- for any two parts V_i and V_j , each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

If $|L_X| > R(d)$, then there exists an EFX allocation $X' >_{PD} X$.

$$R(1) \le 1$$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

$$R(1) \leq 1$$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

$$R(1) \leq 1$$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

$$R(1) \le 1$$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

$$R(1) \leq 1$$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

$$R(2) \le 2$$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

 $R(d) \in \mathcal{O}(d^4)$

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

 $R(d) \in \mathcal{O}(d^4) \implies \text{existence of}$ $(1 - \varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{4/5})$ charity.

- $|V_i| \le d$ for all i,
- each vertex in V_i has an incoming edge from V_j and vice-versa, and
- there is no cycle that visits each part at most once.

Open Problems

n=2	n = 3	n > 3
Exists (PR'18)	Exists (C G .M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0, 1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with charity (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$

Thank you!

n=2	n = 3	n > 3
Exists (PR'18)	Exists (C G .M'20)	Open

Relaxations

- 1. EFX with charity (CKMS'20, BCFF'21, M'21)
 - EFX with at most n-2 unallocated goods
- 2. Approximate-EFX (PR'18, ANM'20). $v_i(X_i) \ge \alpha v_i(X_j \setminus g) \ \forall g \in X_j \text{ for } \alpha \in [0, 1]$
 - 0.618-approximate EFX
- 3. Approximate-EFX with charity (CG.MMM'21)
 - $(1-\varepsilon)$ -EFX with $\mathcal{O}((n/\varepsilon)^{\frac{4}{5}})$ charity for $\epsilon > 0$