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Fair Division

Divide items among agents fairly
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Applications

Vaccine
distributions

Divorce
settlements

Air traffic
management

Household
chores
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Setup (Discrete Fair Division)

Given:

• Set [n] of n agents.

• SetM of m indivisible goods.

• Additive valuations vi : 2M → R≥0 for every agent i.

Find: Partition X = 〈X1, X2, . . . , Xn〉 ofM , which is fair.
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Fairness Notions

Question
Is it always possible to be fair? (notion being Envy-Freeness)

Answer
NO! Consider two agents having positive valuation towards a single good.
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Relaxation : Envy-Freeness up to Any Good (EFX)
[CKMPSW’16]

X is EFX iff for all i, i′, vi(Xi) ≥ vi(Xi′ \ {g}) for every g ∈ Xi′ .

a1

a2

Laptop Bag Shoes
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10

25

20
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Relaxation : Envy-Freeness up to Any Good (EFX)

X is EFX iff for all i, i′, vi(Xi) ≥ vi(Xi′ \ {g}) for every g ∈ Xi′ .

a1

a2

Laptop Bag Shoes

25 10 10

20 10 10

35

10

25

20

v2(X2)<v2(X1\{Bag})

Not an EFX allocation



5

Relaxation : Envy-Freeness up to Any Good (EFX)

X is EFX iff for all i, i′, vi(Xi) ≥ vi(Xi′ \ {g}) for every g ∈ Xi′ .
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Envy Freeness upto Any Good (EFX)

X is EFX iff for all i, i′, vi(Xi) ≥ vi(Xi′ \ {g}) for all g ∈ Xi′ .

Question
Is it always possible to be fair? (notion being EFX)

Answer– We do not know yet!
“Fair division’s biggest problem” – Procaccia [CACM’20]
“highly non-trivial” (even for 3 agents) – Plaut and Roughgarden [SODA’18]
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State of the Art (EFX)

n = 2 n = 3 n > 3

Exists [PR’18] Exists [CG.M’20] Open

Relaxations
1. EFX with charity [CKMS’20, BCFF’21, M’21]

• EFX with at most n− 2 unallocated goods

2. Approximate-EFX [PR’18, ANM’20]. vi(Xi) ≥ αvi(Xj \ g) ∀g ∈ Xj for α ∈ [0, 1]

• 0.618-approximate EFX

3. Approximate-EFX with charity [CG.MMM’21]

• (1− ε)-EFX with O((n/ε) 4
5 ) charity for ε > 0
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Two Agents: Divide and Choose

• Agent 1 finds a partition (Y, Y ′) of all goods such that

v1(Y
′) ≥ v1(Y ) ≥ v1(Y ′ \ g), ∀g ∈ Y ′

• Agent 2 chooses her preferred bundle among Y and Y ′, and
Agent 1 keeps the other bundle

Theorem
EFX exists when n = 2
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Concepts: Envy Graph EX

• Vertices correspond to agents [n]. • (i, j) ∈ EX iff vi(Xi) < vi(Xj).
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Assume w.l.o.g. EX is acyclic
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Concepts: Most Envious Agents AX(S)

Given : X = 〈X1, . . . , Xn〉 and S ⊆M and agent i.

vi(S) vi(Xi)

Yi

Let Yi be the smallest subset of S such that vi(Yi) > vi(Xi).
Define κX(i, S) = |Yi|.
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Concepts: Most Envious Agents AX(S)

AX(S) = agents with minimum κX(i, S).

v1(S)

Y1

v1(X1) v2(S)

Y2

v2(X2) v3(S)

Y3

v3(X3)

AX(S) = {a1}Nobody envies Y1 up to any good and v1(Y1) >1 v1(X1)!
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Concepts: Champions and Champion-Cycle

Given allocation X, we say i champions the set S,

if i is a most envious
agent for S.
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Concepts: Champions and Champion-Cycle

Given : a partial EFX allocation X = 〈X1, . . . , Xn〉

X

EX has a single source

X1a1

X2a2 X3a3

X4a4 X5 a5 X6 a6

X7 a7

Pick any unallocated g

X1∪ga1

X2a2 X3a3

X4a4 X5 a5 X6 a6

X7 a7

AX(X1∪g) = {a7}

Exchange Bundles

X2a1

X4a2 X3a3

X7a4 X5 a5 X6 a6

X1∪ga7

X2a1

X4a2 X3a3

X7a4 X5 a5 X6 a6

Y7a7

X′

X′ >PD X and X′ is EFX
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Concepts: Champions and Champion-Cycle

g1∪g2∪g3

s1

s2

s3

t1

t2t3

Xs1
∪g1

Xs2

Xs3

Xs2
∪g2

Xs3
∪g3

Agents t1, t2, t3 and
goods g1, g2, g3 form
a champion-cycle

ti belongs to the
component in EX

with si as source
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State of the Art (EFX)
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Three Agents – First Attempt

Invariant: X is EFX
1: For all i ∈ [n] set Xi ← ∅
2: while there is an unallocated good g do
3: X ← U(X, g) by some update rule U
4: Return X

X ′ = U(X, g). Then
• X ′ is EFX

• vi(X ′i) ≥ vi(Xi) with at least one strict inequality (X ′ >PD X)

This strategy has been useful before:
• 0.5-EFX [PR’18] • EFX with charity [CKMS’20]
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Three Agents: Sources in EX

• One source • Two sources • Three sources
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Case 1: EX Has a Single Source

[CKMS’20]
Given: A partial EFX allocation X and an unallocated good g such that EX

has a single source.
Then there exists a partial EFX allocation X ′ >PD X
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Case 2: EX Has Three Sources

[CG.M’20]
Given: A partial EFX allocation X and an unallocated good g such that EX

has three sources.
Then there exists a partial EFX allocation X ′ >PD X
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Case 2: EX Has Three Sources

Sketch

X̃i ⊆ Xi∪g of smallest size, such that vi(X̃i) > vi(Xi)

If 〈X̃1, X2, X3〉 or 〈X1, X̃2, X3〉 or 〈X1, X2, X̃3〉 is EFX, then exit

Otherwise, there exists X ′ >PD X and ∪i∈[n]X
′
i = ∪i∈[n]Xi

Create EFX allocation Y from X ′ and g such that Y >PD X ′
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Case 3: EX Has Two Sources: No U Possible!

Lemma
There exists a partial EFX allocation X and an unallocated good g, such
that there exists no complete EFX allocation X ′ >PD X
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Case 3: EX Has Two Sources: No U Possible!

a1

a2

a3

g1 g2 g3 g4 g5 g6 g7

8 2 12 2 0 17 1

5 0 9 4 10 0 3

0 0 0 0 9 10 2

a1 a2

a3

“unallocated"

16

15

10

In all final EFX allocations, at least one agent’s valuation strictly decreases!

19

14

11

a1 and a3 are strictly better off, while a2 is worse off

17

16

9

a1 and a2 are strictly better off, while a3 is worse offFor each i ∈ [3], there is a complete EFX allocation where ai is better off!
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Fix: New Potential Function φ(X)

• Relabel agents as a, b and c

• φ(X) = 〈va(Xa), vb(Xb), vc(Xc)〉

• Observe, if X ′ >PD X, then φ(X ′) >lex φ(X)

Lemma
Given any partial EFX allocation X and an unallocated good g, there exists
another partial EFX allocation X ′ such that φ(X ′) >lex φ(X)

Theorem
EFX exists when n = 3
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State of the Art (EFX)

n = 2 n = 3 n > 3

Exists [PR’18] Exists [CG.M’20] Open

Relaxations
1. EFX with charity [CKMS’20, BCFF’21, M’21]

• EFX with at most n− 2 unallocated goods

2. Approximate-EFX [PR’18, ANM’20]. vi(Xi) ≥ αvi(Xj \ g) ∀g ∈ Xj for α ∈ [0, 1]

• 0.618-approximate EFX

3. Approximate-EFX with charity [CG.MMM’21]

• (1− ε)-EFX with O((n/ε) 4
5 ) charity for ε > 0
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EFX Allocations with Sublinear Charity

Almost EFX with sublinear charity→reduces extremal graph theory problem.



28

Reduction Sketch: Goods Classification

Good g is valuable to i iff vi(g) > ε · vi(Xi).

• High Demand Goods HX .

• g ∈ HX , iff g is valuable to at
least d+ 1 agents.

• Low Demand Goods LX .

• g ∈ LX , iff g is valuable to at
most d agents.
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Reduction Sketch

A Partial
(1 − ε)-EFX

Allocation X

If g is not valuable
or |HX | > (n/(ε · d))

or |LX | > R(d)

A Partial (1− ε)-
EFX Allocation
X ′ >PD X

X ′ >PD X iff vi(X ′i) ≥ vi(Xi) for all i, with at least one strict inequality.
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Process will converge to EFX allocation where |HX |+ |LX | ≤ n/(εd) +R(d).
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or |HX | > (n/(ε · d))
or |LX | > R(d)

A Partial (1− ε)-
EFX Allocation
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Process will converge to EFX allocations where |HX |+ |LX | ∈ O((n/ε)
4
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Concepts: Champions and Champion-Cycle

t1

t2t3

Xs1
∪g1

Xs2
∪g2

Xs3
∪g3Agents t1, t2, t3 and

goods g1, g2, g3 form
a champion-cycle

ti belongs to the
component in EX

with si as source

X admits champion-cycle =⇒ there exists EFX allocation X ′ >PD X
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Bounding LX : Group Champion Graph

LX = {g1, g2, g3}

Vg1 = components in EX containing agents who find g1 valuable

Vg2 = components in EX containing agents who find g2 valuable

Vg3 = components in EX containing agents who find g3 valuable

Vg1 Vg2 Vg3

s2

a2
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a1

s4

a4

s3

a3

s6

a6

s5

a5

Xs1∪g2
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Xs5∪g2

Xs6∪g2

Xs3∪g1

Xs4∪g1

Xs5∪g1

Xs6∪g1

Xs3∪g3

Xs4∪g3

Xs1∪g3

Xs2∪g3

Xs1∪g3Xs1∪g3

Xs4∪g1

Xs5∪g2
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Bounding LX : Group Champion Graph
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Vg2 = components in EX containing agents who find g2 valuable

Vg3 = components in EX containing agents who find g3 valuable

Vg1 Vg2 Vg3

s2

a2

s1

a1

s4

a4

s3

a3

s6

a6

s5

a5

Xs1∪g2

Xs2∪g2

Xs5∪g2

Xs6∪g2

Xs3∪g1

Xs4∪g1

Xs5∪g1

Xs6∪g1

Xs3∪g3

Xs4∪g3

Xs1∪g3

Xs2∪g3

Xs1∪g3

Xs1∪g3

Xs4∪g1

Xs5∪g2
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Vgi has incom-
ing edge from
Vgj
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Bounding LX : Group Champion Graph
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Existence of a
cycle that vis-
its each part at
most once im-
plies existence of
champion-cycle
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Bounding LX : Group Champion Graph

LX = {g1, g2, g3}

Vg1 = components in EX containing agents who find g1 valuable

Vg2 = components in EX containing agents who find g2 valuable

Vg3 = components in EX containing agents who find g3 valuable
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Question: How
many parts can
we have such
that there is no
such cycle?
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Bounding LX : Rainbow Cycle Number

Main Question
Find the largest k s.t. there is a k-partite graph G = (∪i∈[k]Vi, E), where

• each part has at most d vertices, i.e., |Vi| ≤ d for all i,

• for any two parts Vi and Vj , each vertex in Vi has an incoming edge
from Vj and vice-versa, and

• there is no cycle that visits each part at most once.
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Bounding LX : Rainbow Cycle Number

Main Question
Let R(d) be the largest k s.t. there is a k-partite graph G = (∪i∈[k]Vi, E),
where

• each part has at most d vertices, i.e., |Vi| ≤ d for all i,

• for any two parts Vi and Vj , each vertex in Vi has an incoming edge
from Vj and vice-versa, and

• there is no cycle that visits each part at most once.

If |LX | > R(d), then there exists an EFX allocation X ′ >PD X.
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Rainbow Cycle Number

R(1) ≤ 1

V1

V2

a1

a2

• |Vi| ≤ d for all i,

• each vertex in Vi has an
incoming edge from Vj and
vice-versa, and

• there is no cycle that visits
each part at most once.
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Rainbow Cycle Number

R(d) ∈ O(d4)

=⇒ existence of
(1− ε)-EFX with O((n/ε)4/5) charity.

• |Vi| ≤ d for all i,

• each vertex in Vi has an
incoming edge from Vj and
vice-versa, and

• there is no cycle that visits
each part at most once.
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(1− ε)-EFX with O((n/ε)4/5) charity.

• |Vi| ≤ d for all i,
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vice-versa, and

• there is no cycle that visits
each part at most once.
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Open Problems

n = 2 n = 3 n > 3

Exists [PR’18] Exists [CG.M’20] Open

Relaxations
1. EFX with charity [CKMS’20, BCFF’21, M’21]

• EFX with at most n− 2 unallocated goods

2. Approximate-EFX [PR’18, ANM’20]. vi(Xi) ≥ αvi(Xj \ g) ∀g ∈ Xj for α ∈ [0, 1]

• 0.618-approximate EFX

3. Approximate-EFX with charity [CG.MMM’21]

• (1− ε)-EFX with O((n/ε) 4
5 ) charity for ε > 0
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Thank you!

n = 2 n = 3 n > 3

Exists [PR’18] Exists [CG.M’20] Open

Relaxations
1. EFX with charity [CKMS’20, BCFF’21, M’21]

• EFX with at most n− 2 unallocated goods

2. Approximate-EFX [PR’18, ANM’20]. vi(Xi) ≥ αvi(Xj \ g) ∀g ∈ Xj for α ∈ [0, 1]

• 0.618-approximate EFX

3. Approximate-EFX with charity [CG.MMM’21]

• (1− ε)-EFX with O((n/ε) 4
5 ) charity for ε > 0


