Weighted Min-Cut: A Cross-Paradigm Algorithm

Sagnik Mukhopadhyay

University of Sheffield, UK

Weighted min-cut and our results

The (global) mincut problem

Remove edges to disconnect the graph (minimize total weight)

"[This problem] plays an important role in the design of communication networks. If a few links are cut ..."

The (global) mincut problem

- Cut:
- Set of edges whose removal disconnects G.
- Min-cut:
- Cut with minimum total edge weight.

Goal: Find a min-cut in a weighted graph.

State of the arts: near-linear time

Preface	
I	Tools and Techniques
1	Introduction
	1.1 A Min-Cut Algorithm
	$\mathbf{1 . 2} \quad$ Las Vegas and Monte Carlo
	$\mathbf{1 . 3}$ Binary Planar Partitions
	1.4 A Probabilistic Recurrence
	1.5 Computation Model and Complexity
	Notes
	Problems

	Complexity
Karger SODA'93 Karger, Stein STOC'93	$O\left(n^{2} \log ^{2} n\right)$
Karger STOC'96	$\boldsymbol{O}\left(\boldsymbol{m} \log ^{3} \boldsymbol{n}\right)$

Assume $m \geq n \log ^{6} n$ for simplicity

Problem:

Complicated dynamic programming \& data structures

Hard to adapt to new computational models
 No efficient algorithms in distributed, streaming, query complexity

Models of computation

Cut Query: Allowed to query arbitrary cuts of G. Charged once per query.

Dynamic semi-streaming: O (n polylog n) bits of internal memory. Charged once per pass.

Sequential: Standard unit-cost RAM model.

Parallel PRAM: Concurrent read exclusive write. Complexity is (work, depth) of computation.

Distributed CONGEST: Bandwidth restricted $(O(\log n)$ bits per round). Charged once per round.

Previous work

Parallel PRAM

Our results

Parallel

 PRAM
[DHNS STOC'19] $\widetilde{O}\left(n^{0.998}+D^{0.003} n^{0.997}\right)$
[GNT SODA'20] $\tilde{O}\left(n^{0.9}+D^{0.2} n^{0.8}\right)$

Our results

Today: Cut-query model

Today: Cut-query model

Graph cuts \Leftrightarrow Submodular function

Cut-query \Leftrightarrow Submodular function minimization via query

Our result

Common barrier: How to overcome?

Remark:

- Assuming simple graph makes life a lot easier!
- None of the improvements on simple graphs follow Karger's framework.

What is so hard about Karger's framework?

2-respecting cut

- Main subroutine of Karger's algorithm.
- Spanning tree:
- A tree T with edges from $\mathrm{E}(G)$ that spans all vertices.
- 2-respecting cut:
- Cut C with at most 2 edges from T.

2-respecting cut

- Spanning tree:
- A tree T with edges from $\mathrm{E}(G)$ that spans all vertices.

2-respecting cut

- Spanning tree:

- A tree T with edges from $\mathrm{E}(G)$ that spans all vertices.
- 2-respecting cut:
- Cut C with at most

Main
bottleneck!

Goal: Find a 2 -respecting min-cut in a weighted graph given a spanning tree T.

Theorem (Karger). Efficient algorithm for solving 2-respecting min-cut implies efficient algorithm for solving min-cut.

Our result

New improved algorithm for min 2-resp cut problem.

One (schematic) algorithm that works across models

A closer look...
Simple and efficient algorithm for min 2-resp cut for all models

A closer look...

- n^{2} many entries to look up.
- Goal: Minimize the number of look-ups to find a minimum value.

A quick detour: Matrix min-entry puzzle

Matrix min-entry problem

Puzzle time!

Input: I will write down an $n \times n$ matrix M (you don't see M but know n).
Promise: Monotonicity - column minimums never move up as we go right

Example: | 0 | 4 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 4 | 2 | 2 | 1 |
| 3 | 3 | 1 | 0 |
| 5 | 5 | 3 | 2 |

$\square=$ min of each column
Goal: Find the minimum entry in M .
Query: You can ask for one entry at a time. How many entries do you need?

Solution for matrix min-entry

Puzzle time!
$O(n \log n)$ queries by divide and conquer.

1. Find min in the middle column

- by asking for everything in that column.

2. The recurse on both sides.
3. Search area decreases by half.

Matrix min-entry to Global min-cut

Mincut \rightarrow Matrix min-entry

2-respecting min-cut: Easy to find spanning tree \mathbf{T} that 2constains the min-cut.

Cost matrix: Guess two tree-edges crossing the cuts Entries in $n \times n$ matrix

$$
\text { There are } O\left(n^{2}\right) \text { candidate }
$$ cuts

Cut-query model: Can find $\mathbf{1}$ entry by $\mathbf{1}$ query.

Mincut \rightarrow Matrix min-entry

2-respecting min-cut: Easy to find spanning tree \mathbf{T} that 2constains the min-cut.

Cost matrix: Guess two tree-edges crossing the cuts Entries in $n \times n$ matrix

$$
\text { There are } O\left(n^{2}\right) \text { candidate }
$$ cuts

Too expensive to compute all matrix entries

1 stream-pass can compute
only \mathbf{n} entries.

Mincut \rightarrow Matrix min-entry

Cute trick: Assume we know two paths in T where the best candidates are in

Lemma: The corresponding cost matrix is monotone like in the puzzle!

Monotone matrix

Key idea: Spanning tree with 2 paths

Cost matrix revisited

Structure of cost matrix

Add +3

Structure of cost matrix

Add +3

Technical
Structure of cost matrix

Add

Monotonicity of cost matrix

These operations result in a monotone matix.

Add

- Queries needed to solve bipartite path

$$
\text { problem }=O(n \log n)
$$

Mincut \rightarrow Matrix min-entry (2)

Cute trick: Assume we know two paths in \mathbf{T} where the best candidates are in

Lemma: The corresponding cost matrix is monotone like in the puzzle!

Decompose T into paths using path decomposition (e.g. heavy-light, bough/layering decomposition) \& the simulate matrix min-entry algorithm for some pairs of paths

Leftover details: Picking a few pairs

Heavy-light decomposition

Choosing a few pairs from decomposition

Picking up few pairs of path

Lemma (Not quite true): Each path can be paired with only one path such that the minimum 2-respect cut belongs to one such pair.

Star graph

$$
\operatorname{Cut}\left(e_{3}, e_{4}\right)=\operatorname{deg}(3)+\operatorname{deg}(4)-2 \times w t(3,4)
$$

$$
\operatorname{Cut}\left(e_{3}, e_{4}\right)<\operatorname{deg}(3), \operatorname{deg}(4) \longrightarrow \mathrm{wt}(3,4)>\frac{\operatorname{deg}(3)}{2}, \frac{\operatorname{deg}(4)}{2}
$$

Picking up few pairs of path

Lemma (Not quite true): Each path can be paired with only one path such that the minimum 2-respect cut belongs to one such pair.

Star graph

$$
\operatorname{Cut}\left(e_{3}, e_{4}\right)<\operatorname{deg}(3), \operatorname{deg}(4) \longrightarrow w t(3,4)>\frac{\operatorname{deg}(3)}{2}, \frac{\operatorname{deg}(4)}{2}
$$

\boldsymbol{e}_{3} can only pair with \boldsymbol{e}_{4}.

Picking up few pairs of path

Lemma (Not quite true): Each path can be paired with only one path such that the minimum 2-respect cut belongs to one such pair.

Lemma (Almost true): Each path can be paired with only one root-to-leaf path such that the minimum 2-respect cut belongs to one such pair.

[^0]
All results follow from one schematic algorithm

(with different implementation details)

1. Decompose T into paths using bough/layering decomposition.
2. Each edge \mathbf{e} in A picks path B that is interesting to it.
3. Simulate the matrix min-entry algorithm on the cost matrix of every such pair (A,B) after contracting useless edges.

Cut-query simulation

Query simulation:

Sequential

Range operation DS

Summary

Skipped this!
Karger framework

- Spanning tree packing.

Cut sparsifier with random neighbor sampling

- 2-respecting min-cut is the main bottle-neck of min-cut.
- Spanning tree: Path
- Monotone matrix
- Spanning tree: Star-graph

Can be solved quickly using properties of

Can be solved quickly using edge pairing

- Putting it all together: General spanning tree

Tree decomposition and almost correct lemma

Open problems

Open problems

- Graph problems in 2-party communication setting.
- Min-cut in dynamic setting.
- Directed min-cut and vertex connectivity.
- Other graph problems admitting cross-paradigm algorithm (?)

Thank you.

Simulating a cut-query

Range operation data-structure

- Takes m points in a 2-d plane.
- Preprocessing: $O(m)$ \#elements xdepth
- Query: An axis-aligned rectangle R.
- Count points in $R: O\left(n^{\epsilon}\right)$.
- Sample point from $R: O\left(n^{\epsilon}\right)$.
- Amortized.

	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											

Range operation on spanning tree

Range operation on spanning tree

Range operation on spanning tree

Matrix min-entry requires $O(m)+\widetilde{O}\left(n^{1+\epsilon}\right)$ time.

Minimum 2-resp cut requires $O(m)+\tilde{O}\left(n^{1+\epsilon}\right)$ time.
 $\log n$ many tree packing

Minimum cut requires $O(m \log n)+\tilde{O}\left(n^{1+\epsilon}\right)$ time.

[^0]: $\log n$ many paths from the tree decomposition

