
Dynamic Maintenance of Low-Stretch

Probabilistic Tree Embeddings with Applications

Sebastian Forster1, Gramoz Goranci2, Monika Henzinger3

1University of Salzburg
2University of Toronto → University of Glasgow

3University of Vienna

DIMAP Seminar, University of Warwick

May 2021

Dynamic Low-Stretch Tree Embeddings 1/23

Tree-Based Graph Approximations

Powerful Theme in Graph Algorithms

I Approximate arbitrary graphs by trees

I Why? Many graph problems are easy on trees

I Map the tree solution back to the original graph

example property preserved

Spanning Tree/Forest Connectivity
BFS Tree/Shortest-Path Tree Distance from a source
Gomory-Hu Tree Pairwise s-t max flow/min-cut
Tree Cut/Flow Sparsifier Cut/Flow
Low-Stretch Spanning Trees Average Pairwise Distance

Prob. Low-Stretch Trees (Exp.) Pairwise Distance

Dynamic Low-Stretch Tree Embeddings 2/23

Tree-Based Graph Approximations

Powerful Theme in Graph Algorithms

I Approximate arbitrary graphs by trees

I Why? Many graph problems are easy on trees

I Map the tree solution back to the original graph

example property preserved

Spanning Tree/Forest Connectivity
BFS Tree/Shortest-Path Tree Distance from a source
Gomory-Hu Tree Pairwise s-t max flow/min-cut
Tree Cut/Flow Sparsifier Cut/Flow
Low-Stretch Spanning Trees Average Pairwise Distance

Prob. Low-Stretch Trees (Exp.) Pairwise Distance

Dynamic Low-Stretch Tree Embeddings 2/23

Probabilistic Tree Embedding (PTE) [Bartal’96]

Definition

I For any simple graph G = (V,E), n = |V |,
m = |E|, a probability distribution τ over trees
{Ti}i is an α−probabilistic tree embedding
(α−PTE) iff for all u, v ∈ V

(1) V (G) ⊆ V (Ti) for all i

(2) distTi
(u, v) ≥ distG(u, v) for all i

(3) ET∼τ [distT (u, v)] ≤ α · distG(u, v)

I Goal: Find an α−PTE with small α (stretch)

Applications

I buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings 3/23

Probabilistic Tree Embedding (PTE) [Bartal’96]

Definition

I For any simple graph G = (V,E), n = |V |,
m = |E|, a probability distribution τ over trees
{Ti}i is an α−probabilistic tree embedding
(α−PTE) iff for all u, v ∈ V
(1) V (G) ⊆ V (Ti) for all i

(2) distTi
(u, v) ≥ distG(u, v) for all i

(3) ET∼τ [distT (u, v)] ≤ α · distG(u, v)

I Goal: Find an α−PTE with small α (stretch)

Applications

I buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings 3/23

Probabilistic Tree Embedding (PTE) [Bartal’96]

Definition

I For any simple graph G = (V,E), n = |V |,
m = |E|, a probability distribution τ over trees
{Ti}i is an α−probabilistic tree embedding
(α−PTE) iff for all u, v ∈ V
(1) V (G) ⊆ V (Ti) for all i

(2) distTi
(u, v) ≥ distG(u, v) for all i

(3) ET∼τ [distT (u, v)] ≤ α · distG(u, v)

I Goal: Find an α−PTE with small α (stretch)

Applications

I buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings 3/23

Probabilistic Tree Embedding (PTE) [Bartal’96]

Definition

I For any simple graph G = (V,E), n = |V |,
m = |E|, a probability distribution τ over trees
{Ti}i is an α−probabilistic tree embedding
(α−PTE) iff for all u, v ∈ V
(1) V (G) ⊆ V (Ti) for all i

(2) distTi
(u, v) ≥ distG(u, v) for all i

(3) ET∼τ [distT (u, v)] ≤ α · distG(u, v)

I Goal: Find an α−PTE with small α (stretch)

Applications

I buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings 3/23

Probabilistic Tree Embedding (PTE) [Bartal’96]

Definition

I For any simple graph G = (V,E), n = |V |,
m = |E|, a probability distribution τ over trees
{Ti}i is an α−probabilistic tree embedding
(α−PTE) iff for all u, v ∈ V
(1) V (G) ⊆ V (Ti) for all i

(2) distTi
(u, v) ≥ distG(u, v) for all i

(3) ET∼τ [distT (u, v)] ≤ α · distG(u, v)

I Goal: Find an α−PTE with small α (stretch)

Applications

I buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings 3/23

Probabilistic Tree Embedding (PTE) [Bartal’96]

Definition

I For any simple graph G = (V,E), n = |V |,
m = |E|, a probability distribution τ over trees
{Ti}i is an α−probabilistic tree embedding
(α−PTE) iff for all u, v ∈ V
(1) V (G) ⊆ V (Ti) for all i

(2) distTi
(u, v) ≥ distG(u, v) for all i

(3) ET∼τ [distT (u, v)] ≤ α · distG(u, v)

I Goal: Find an α−PTE with small α (stretch)

Applications

I buy-at-bulk network design, group steiner tree, metric labelling,
oblivious routing, min-sum clustering, distributed k-server, mirror
placement, linear arrangement, approx. all-pairs shortest path

Dynamic Low-Stretch Tree Embeddings 3/23

Tree Embedding of Cycles

Cn T

Bad News [Rabinovich Raz’95]

I For any tree that deterministically approximates the n-cycle, it holds
that α = Ω(n)

Good News [Karp’89]

I The n-cycle Cn admits a 2-PTE – ALG: delete an edge at random!
I For each edge (u, v) in the cycle Cn

E(distT (u, v)) =
1

n
· (n− 1) +

n− 1

n
· 1 ≤ 2 · distCn

(u, v)

Dynamic Low-Stretch Tree Embeddings 4/23

Tree Embedding of Cycles

Cn T

Bad News [Rabinovich Raz’95]

I For any tree that deterministically approximates the n-cycle, it holds
that α = Ω(n)

Good News [Karp’89]

I The n-cycle Cn admits a 2-PTE – ALG: delete an edge at random!
I For each edge (u, v) in the cycle Cn

E(distT (u, v)) =
1

n
· (n− 1) +

n− 1

n
· 1 ≤ 2 · distCn

(u, v)

Dynamic Low-Stretch Tree Embeddings 4/23

Probabilistic Tree Embedding (PTE)

expected stretch α runtime reference

O(log2 n) polynomial [Bartal’96]

O(log n log log n) polynomial [Bartal’98]

O(log n) polynomial [Fakcharoenphol et al.’03]

O(log n) O(m log3 n) [Mendel Schwob’09]

O(log n) O(m log n) [Blelloch Guh Sun’17]

Lower Bound [Bartal’96]

I For any n, there exists a graph Gn such that for any α-PTE of Gn it
holds that α = Ω(log n).

Dynamic Low-Stretch Tree Embeddings 5/23

Probabilistic Tree Embedding (PTE)

expected stretch α runtime reference

O(log2 n) polynomial [Bartal’96]

O(log n log log n) polynomial [Bartal’98]

O(log n) polynomial [Fakcharoenphol et al.’03]

O(log n) O(m log3 n) [Mendel Schwob’09]

O(log n) O(m log n) [Blelloch Guh Sun’17]

Lower Bound [Bartal’96]

I For any n, there exists a graph Gn such that for any α-PTE of Gn it
holds that α = Ω(log n).

Dynamic Low-Stretch Tree Embeddings 5/23

Fully-Dynamic Probabilistic Tree Embedding

input graph G random tree T

Dynamic
update

Algorithm

update

adversary inserts and
deletes edges

algorithm adds and
removes nodes/edges

Goal:

I minimize update time (time to handle edge insertions/deletions)

I ensure that T has small (expected) stretch after each update

Dynamic Low-Stretch Tree Embeddings 6/23

Dynamic PTE – Our Result

I The first dynamic algorithm for maintaining probabilistic low-stretch
tree embedding in sub-linear time per update

(1) our bounds are amortized, assume oblivious adversary

(2) can handle graphs with polynomially bounded weights

Stretch Update time Stretch type Tree type Reference

O(log4 n) m1/2+o(1)

expected low-depth [Our result]no(1) no(1)

O(log n)3i−2 m1/i+o(1) (1)

no(1) no(1) average spanning [Chechik Zhang’20]

no(1) n1/2+o(1) [Forster Goranci’19]

1i ≤
√
logn

Dynamic Low-Stretch Tree Embeddings 7/23

Dynamic PTE – Our Result

I The first dynamic algorithm for maintaining probabilistic low-stretch
tree embedding in sub-linear time per update

(1) our bounds are amortized, assume oblivious adversary

(2) can handle graphs with polynomially bounded weights

Stretch Update time Stretch type Tree type Reference

O(log4 n) m1/2+o(1)

expected low-depth [Our result]no(1) no(1)

O(log n)3i−2 m1/i+o(1) (1)

no(1) no(1) average spanning [Chechik Zhang’20]

no(1) n1/2+o(1) [Forster Goranci’19]

1i ≤
√
logn

Dynamic Low-Stretch Tree Embeddings 7/23

Dynamic PTE – Our Result

I The first dynamic algorithm for maintaining probabilistic low-stretch
tree embedding in sub-linear time per update

(1) our bounds are amortized, assume oblivious adversary

(2) can handle graphs with polynomially bounded weights

Stretch Update time Stretch type Tree type Reference

O(log4 n) m1/2+o(1)

expected low-depth [Our result]no(1) no(1)

O(log n)3i−2 m1/i+o(1) (1)

no(1) no(1) average spanning [Chechik Zhang’20]

no(1) n1/2+o(1) [Forster Goranci’19]

1i ≤
√
logn

Dynamic Low-Stretch Tree Embeddings 7/23

Buy-At-Bulk Network Design

Input

I Graph G = (V,E), positive lengths `e
I k source-sink si, ti with demand dem(i)

I non-decreasing, sub-additive function f

Routing & Edge cost

I routing of demands is a collection of paths {Pi}i that sends dem(si, ti)
units of commodity from si to ti

I cost: c(e) amount of commodity set along the edge, i.e.,

ce :=
∑
i:e∈Pi

dem(i)

Goal:

I find a routing {Pi}i that minimizes total cost
∑
e∈E `ef(ce)

Dynamic Low-Stretch Tree Embeddings 8/23

Buy-At-Bulk Network Design

Input

I Graph G = (V,E), positive lengths `e
I k source-sink si, ti with demand dem(i)

I non-decreasing, sub-additive function f

Routing & Edge cost

I routing of demands is a collection of paths {Pi}i that sends dem(si, ti)
units of commodity from si to ti

I cost: c(e) amount of commodity set along the edge, i.e.,

ce :=
∑
i:e∈Pi

dem(i)

Goal:

I find a routing {Pi}i that minimizes total cost
∑
e∈E `ef(ce)

Dynamic Low-Stretch Tree Embeddings 8/23

Buy-At-Bulk Network Design

Input

I Graph G = (V,E), positive lengths `e
I k source-sink si, ti with demand dem(i)

I non-decreasing, sub-additive function f

Routing & Edge cost

I routing of demands is a collection of paths {Pi}i that sends dem(si, ti)
units of commodity from si to ti

I cost: c(e) amount of commodity set along the edge, i.e.,

ce :=
∑
i:e∈Pi

dem(i)

Goal:

I find a routing {Pi}i that minimizes total cost
∑
e∈E `ef(ce)

Dynamic Low-Stretch Tree Embeddings 8/23

Applications of Dynamic PTE

Fully Dynamic All-Pairs Shortest Path

Approx Update time Query time Reference

O(log n)3i−2 m1/i+o(1) O(log n)5/2 [Our result]

2O(kρ) (1) Õ(
√
mn1/k) O(k2ρ2) [Abraham et al.’14]

I goes below the O(
√
m) bound on update time with non-trivial approx.

Fully Dynamic Buy-At-Bulk Network Design

Approx Update time Query time Reference

O(log n)3i−2 m1/i+o(1) O(k log3/2 n) [Our result]

I this constitutes the first dynamic algorithm for the problem

1ρ = 1 + d logn1−1/k/log(m/n1−1/k)e

Dynamic Low-Stretch Tree Embeddings 9/23

Applications of Dynamic PTE

Fully Dynamic All-Pairs Shortest Path

Approx Update time Query time Reference

O(log n)3i−2 m1/i+o(1) O(log n)5/2 [Our result]

2O(kρ) (1) Õ(
√
mn1/k) O(k2ρ2) [Abraham et al.’14]

I goes below the O(
√
m) bound on update time with non-trivial approx.

Fully Dynamic Buy-At-Bulk Network Design

Approx Update time Query time Reference

O(log n)3i−2 m1/i+o(1) O(k log3/2 n) [Our result]

I this constitutes the first dynamic algorithm for the problem

1ρ = 1 + d logn1−1/k/log(m/n1−1/k)e

Dynamic Low-Stretch Tree Embeddings 9/23

Overview

Decremental LDD

Decremental PTE

Top-Down Clust. B’96

Dynamic Ball-GrowingPruning CZ’20 Decremental SSSP HKN’14

Extension to Fully Dynamic Setting

I Introduce a new “bootstrapping” idea

I Recursively employ fully dynamic algorithms in the reduction

Dynamic Low-Stretch Tree Embeddings 10/23

Overview

Decremental LDD

Decremental PTE

Top-Down Clust. B’96

Dynamic Ball-GrowingPruning CZ’20 Decremental SSSP HKN’14

Extension to Fully Dynamic Setting

I Introduce a new “bootstrapping” idea

I Recursively employ fully dynamic algorithms in the reduction

Dynamic Low-Stretch Tree Embeddings 10/23

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

I cluster graphs into small diameter clusters w/ few inter-cluster edges

(β, γ)−(probabilistic) LDD [Linial Saks’93, Bartal’96]

I A randomized partitioning of G = (V,E) into
vertex-disjoint clusters C1 . . . Ck such that

(1) weak diameter of each Ci is at most β

(2) P(u ∈ Ci, v ∈ Cj 6=i) ≤ γ for each edge (u, v)

Applications

I key tool for constructing tree-based graph approximation for distances,
i.e.g, low-stretch spanning trees, probabilistic tree embeddings

I approximation algorithms, e.g., min-max graph partitioning

Dynamic Low-Stretch Tree Embeddings 11/23

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

I cluster graphs into small diameter clusters w/ few inter-cluster edges

(β, γ)−(probabilistic) LDD [Linial Saks’93, Bartal’96]

I A randomized partitioning of G = (V,E) into
vertex-disjoint clusters C1 . . . Ck such that

(1) weak diameter of each Ci is at most β

(2) P(u ∈ Ci, v ∈ Cj 6=i) ≤ γ for each edge (u, v)

Applications

I key tool for constructing tree-based graph approximation for distances,
i.e.g, low-stretch spanning trees, probabilistic tree embeddings

I approximation algorithms, e.g., min-max graph partitioning

Dynamic Low-Stretch Tree Embeddings 11/23

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

I cluster graphs into small diameter clusters w/ few inter-cluster edges

(β, γ)−(probabilistic) LDD [Linial Saks’93, Bartal’96]

I A randomized partitioning of G = (V,E) into
vertex-disjoint clusters C1 . . . Ck such that

(1) weak diameter of each Ci is at most β

(2) P(u ∈ Ci, v ∈ Cj 6=i) ≤ γ for each edge (u, v)

Applications

I key tool for constructing tree-based graph approximation for distances,
i.e.g, low-stretch spanning trees, probabilistic tree embeddings

I approximation algorithms, e.g., min-max graph partitioning

Dynamic Low-Stretch Tree Embeddings 11/23

Probabilistic LDD under Edge Deletions

Goal

I maintain (β, γ)-probabilistic LDD {Ci}ki=1 of
graph G under edge deletions; k may change

Theorem [Forster G Henzinger’21]

I For β ∈ (0, 1), there is a data-structure for
maintaining a (β,O(β−1 log2 n))−probabilistic
LDD of G in m1+o(1) total update time.

Important Feature

I our runtime is independent of β−1

I key requirement for top-down graph clustering

I all previous dynamic graph clusterings [Saranurak Wang’19], [Chechik

Zhang’20], [Forster Goranci’19] have runtimes depending on β−1

Dynamic Low-Stretch Tree Embeddings 12/23

Probabilistic LDD under Edge Deletions

Goal

I maintain (β, γ)-probabilistic LDD {Ci}ki=1 of
graph G under edge deletions; k may change

Theorem [Forster G Henzinger’21]

I For β ∈ (0, 1), there is a data-structure for
maintaining a (β,O(β−1 log2 n))−probabilistic
LDD of G in m1+o(1) total update time.

Important Feature

I our runtime is independent of β−1

I key requirement for top-down graph clustering

I all previous dynamic graph clusterings [Saranurak Wang’19], [Chechik

Zhang’20], [Forster Goranci’19] have runtimes depending on β−1

Dynamic Low-Stretch Tree Embeddings 12/23

Probabilistic LDD under Edge Deletions

Goal

I maintain (β, γ)-probabilistic LDD {Ci}ki=1 of
graph G under edge deletions; k may change

Theorem [Forster G Henzinger’21]

I For β ∈ (0, 1), there is a data-structure for
maintaining a (β,O(β−1 log2 n))−probabilistic
LDD of G in m1+o(1) total update time.

Important Feature

I our runtime is independent of β−1

I key requirement for top-down graph clustering

I all previous dynamic graph clusterings [Saranurak Wang’19], [Chechik

Zhang’20], [Forster Goranci’19] have runtimes depending on β−1

Dynamic Low-Stretch Tree Embeddings 12/23

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal’96]

I Set i← 1, every vertex is unmarked initially

I While there are unmarked vertices:

• Pick an unmarked vertex v

• Sample Rv ∼ Geom(p) with p = O(β−1 log n)

• Add all unmarked vertices in BallG(v,Rv) to Ci

• Set i← i+ 1

Claim

I Ball-Growing constructs a (β,O(β−1 log n))−LDD in Õ(m) time

How to make it Dynamic?

I white box and extend cluster pruning of [Chechik Zhang’20]

Dynamic Low-Stretch Tree Embeddings 13/23

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal’96]

I Set i← 1, every vertex is unmarked initially

I While there are unmarked vertices:

• Pick an unmarked vertex v

• Sample Rv ∼ Geom(p) with p = O(β−1 log n)

• Add all unmarked vertices in BallG(v,Rv) to Ci

• Set i← i+ 1

Claim

I Ball-Growing constructs a (β,O(β−1 log n))−LDD in Õ(m) time

How to make it Dynamic?

I white box and extend cluster pruning of [Chechik Zhang’20]

Dynamic Low-Stretch Tree Embeddings 13/23

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal’96]

I Set i← 1, every vertex is unmarked initially

I While there are unmarked vertices:

• Pick an unmarked vertex v

• Sample Rv ∼ Geom(p) with p = O(β−1 log n)

• Add all unmarked vertices in BallG(v,Rv) to Ci

• Set i← i+ 1

Claim

I Ball-Growing constructs a (β,O(β−1 log n))−LDD in Õ(m) time

How to make it Dynamic?

I white box and extend cluster pruning of [Chechik Zhang’20]

Dynamic Low-Stretch Tree Embeddings 13/23

Handling Deletions – Cluster Pruning

Delete(e)

I G← G \ {e} and Prune(C) for all C with e ∈ C

Prune(C)

I If |C| > 1 and ∃v ∈ C s.t. dist∗C(c, v) > p−1 log n:

• Sample R ∼ Geom(p), set B ← BallC(v,R)

• If vol(B) ≤ 1/2 · vol∗(C):

• C ← C \B, Form new cluster B

• AssignCenter(B), Prune(B)

• Else: AssignCenter(C)

• Prune(C)

AssignCenter(C)

I Pick a random vertex as center c proportional to vertex degrees

I Init 2-approx. decremental SSSP AHKN on C [Henzinger et al.’14]

Dynamic Low-Stretch Tree Embeddings 14/23

Cluster Pruning – Dynamic Ball Growing

Dynamic Ball-Growing Process
I For rounds i = 1 to k:

(1) Select a vertex ci of Gi = (V \ (B1 ∪ . . .∪Bi−1), E \ (E1 ∪ . . .∪Ei−1))
with G1 = G

(2) Sample Ri ∼ Geom(p) and grow ball Bi from ci of radius Ri in Gi

Guarantees

I after each round i, Ri = O(p−1 log n) with high probability

I for any edge e ∈ E \ (E1 ∪ . . . ∪Ek) the probability of e leaving a ball is
at most p

I whenever a cluster is created we associate a dynamic ball-grow. process

I each edge can participate in at most O(log n) clusters

I deleted edges E1, . . . , Ek don’t see the values R1, . . . , Rk

Dynamic Low-Stretch Tree Embeddings 15/23

Cluster Pruning – Dynamic Ball Growing

Dynamic Ball-Growing Process
I For rounds i = 1 to k:

(1) Select a vertex ci of Gi = (V \ (B1 ∪ . . .∪Bi−1), E \ (E1 ∪ . . .∪Ei−1))
with G1 = G

(2) Sample Ri ∼ Geom(p) and grow ball Bi from ci of radius Ri in Gi

Guarantees

I after each round i, Ri = O(p−1 log n) with high probability

I for any edge e ∈ E \ (E1 ∪ . . . ∪Ek) the probability of e leaving a ball is
at most p

I whenever a cluster is created we associate a dynamic ball-grow. process

I each edge can participate in at most O(log n) clusters

I deleted edges E1, . . . , Ek don’t see the values R1, . . . , Rk

Dynamic Low-Stretch Tree Embeddings 15/23

Cluster Pruning – Running Time

Decremental approx. SSSP [Henzinger et al.’14]

(1) can maintain 2-approx to SSSP in m1+o(1) total update time

Local Ball Growing and Center Reassignments

(2) Can compute B := BallC(v,R) in O(vol(B) logvol(B))

(3) Total number of center reassignments is O(log nC)

Analysis

I Consider cluster C, charge runtime to calls AssignCenter(C) and
Prune(C), sans B’s

I Runtime of AssignCenter is dominated by (1)

I By (3), total cost of AssignCenter on C is O(m
1+o(1)
C)

I By (2), and as we remove each ball B with volume ≤ 1/2 · vol∗(C),
charge O(logmC) to each edge in C for O(mc logmc) runtime

I Charged run time to C is m
1+o(1)
C , clusters are disjoint!

I As volume halves, we have O(log n) levels, thus m1+o(1) total update
time

Dynamic Low-Stretch Tree Embeddings 16/23

Cluster Pruning – Running Time

Decremental approx. SSSP [Henzinger et al.’14]

(1) can maintain 2-approx to SSSP in m1+o(1) total update time

Local Ball Growing and Center Reassignments

(2) Can compute B := BallC(v,R) in O(vol(B) logvol(B))

(3) Total number of center reassignments is O(log nC)

Analysis

I Consider cluster C, charge runtime to calls AssignCenter(C) and
Prune(C), sans B’s

I Runtime of AssignCenter is dominated by (1)

I By (3), total cost of AssignCenter on C is O(m
1+o(1)
C)

I By (2), and as we remove each ball B with volume ≤ 1/2 · vol∗(C),
charge O(logmC) to each edge in C for O(mc logmc) runtime

I Charged run time to C is m
1+o(1)
C , clusters are disjoint!

I As volume halves, we have O(log n) levels, thus m1+o(1) total update
time

Dynamic Low-Stretch Tree Embeddings 16/23

Decremental Probabilistic Tree Embedding

Theorem [Forster G Henzinger’21]

I Given a graph G = (V,E) undergoing edge
deletions, can maintain a random tree T of
height O(log n) with

(1) O(log3 n) expected stretch, and

(2) m1+o(1) total update time

High Level Idea

I Apply decremental LDDs in a non-recursive way
using top-down graph clustering.

Dynamic Low-Stretch Tree Embeddings 17/23

Decremental Probabilistic Tree Embedding

Theorem [Forster G Henzinger’21]

I Given a graph G = (V,E) undergoing edge
deletions, can maintain a random tree T of
height O(log n) with

(1) O(log3 n) expected stretch, and

(2) m1+o(1) total update time

High Level Idea

I Apply decremental LDDs in a non-recursive way
using top-down graph clustering.

Dynamic Low-Stretch Tree Embeddings 17/23

Attempt #1: Bottom-Up Clustering [AKPW’91]

Dynamic Low-Stretch Tree Embeddings 18/23

Attempt #1: Bottom-Up Clustering [AKPW’91]

Dynamic Low-Stretch Tree Embeddings 18/23

Attempt #1: Bottom-Up Clustering [AKPW’91]

Dynamic Low-Stretch Tree Embeddings 18/23

Attempt #1: Bottom-Up Clustering [AKPW’91]

Dynamic Low-Stretch Tree Embeddings 18/23

Attempt #1: Bottom-Up Clustering [AKPW’91]

Dynamic Low-Stretch Tree Embeddings 18/23

Attempt #1: Bottom-Up Clustering [AKPW’91]

I gives only subpolynomial expected stretch 2
√
logn = no(1)

I requires fully-dynamic LDDs; deletions in one level translate to
insertions/deletions in the levels below

Dynamic Low-Stretch Tree Embeddings 18/23

Attempt #2: Decremental LDD to Decremental PTE

Recursive Top-Down Clustering [Bartal’96]

I Find an LDD with diameter ∆/2 in G

I For each cluster Ci recursively find a rooted tree Ti with diameter ∆/4

I Construct T by creating a root node vG and connecting it to the root
node of each Ti with weight ∆

I Challenge: difficult to control recourse – propagation of updates
among decremental LDDs

Dynamic Low-Stretch Tree Embeddings 19/23

Attempt #3: Decremental LDD to Decremental PTE

Iterative Top-Down Clustering

I Hierarchy Invariant: All
inter-cluster edges at level i are
deleted from the LDDs at level
i− 1, . . . , 0

I Maintain a decremental
probabilistic LDD for each level
in the hierarchy to handle the
deletions from the levels above

I Maintain cluster connections
between neighbouring levels in
the hierarchy so we have access to
an explicit tree after each deletion

Dynamic Low-Stretch Tree Embeddings 20/23

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE

I Rebuild every k updates

I Pass deletions to decremental PTE TA with stretch O(log3 n), height O(logn)
I Add inserted edge into set I, let U be the endpoints of I

I After each update:

• Let P =
⋃

v∈U pv, where pv is the path from v to root of TA

• Compute a (static) PTE TB of I ∪ P

• Maintain TC = (TA \ P) ∪ TB.

Analysis

I Expected stretch increases to O(log4 n) – due to TB
I Runtime: m1+o(1)/k + k log2 n = m1/2+o(1), optimized when k = m1/2

Extensions

I Can generalize the above approach to multiple levels

I Requires bounding the number of changes to the aux. graph I ∪ P

Dynamic Low-Stretch Tree Embeddings 21/23

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE

I Rebuild every k updates

I Pass deletions to decremental PTE TA with stretch O(log3 n), height O(logn)
I Add inserted edge into set I, let U be the endpoints of I

I After each update:

• Let P =
⋃

v∈U pv, where pv is the path from v to root of TA

• Compute a (static) PTE TB of I ∪ P

• Maintain TC = (TA \ P) ∪ TB.

Analysis

I Expected stretch increases to O(log4 n) – due to TB
I Runtime: m1+o(1)/k + k log2 n = m1/2+o(1), optimized when k = m1/2

Extensions

I Can generalize the above approach to multiple levels

I Requires bounding the number of changes to the aux. graph I ∪ P

Dynamic Low-Stretch Tree Embeddings 21/23

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE

I Rebuild every k updates

I Pass deletions to decremental PTE TA with stretch O(log3 n), height O(logn)
I Add inserted edge into set I, let U be the endpoints of I

I After each update:

• Let P =
⋃

v∈U pv, where pv is the path from v to root of TA

• Compute a (static) PTE TB of I ∪ P

• Maintain TC = (TA \ P) ∪ TB.

Analysis

I Expected stretch increases to O(log4 n) – due to TB
I Runtime: m1+o(1)/k + k log2 n = m1/2+o(1), optimized when k = m1/2

Extensions

I Can generalize the above approach to multiple levels

I Requires bounding the number of changes to the aux. graph I ∪ P

Dynamic Low-Stretch Tree Embeddings 21/23

Fully Dynamic APSP via Dynamic PTE

Preprocessing(G)

I Maintain O(log n) copies of dynamic PTEs {Ti}i

Insert/Delete(e)

I Pass the insertion/deletion of e to each Ti

Query(s, t)

I Compute shortest path from s to t on each Ti
I Return the one that attains the minimum

I approx: O(log n)3i−2, updateT: m1/i+o(1), queryT: O(log n)5/2

Dynamic Low-Stretch Tree Embeddings 22/23

Fully Dynamic APSP via Dynamic PTE

Preprocessing(G)

I Maintain O(log n) copies of dynamic PTEs {Ti}i

Insert/Delete(e)

I Pass the insertion/deletion of e to each Ti

Query(s, t)

I Compute shortest path from s to t on each Ti
I Return the one that attains the minimum

I approx: O(log n)3i−2, updateT: m1/i+o(1), queryT: O(log n)5/2

Dynamic Low-Stretch Tree Embeddings 22/23

Summary and Future Directions

Summary

I The first fully dynamic algorithm for probabilistic tree embedding with
competitive guarantees on expected stretch and update time

I Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions

I Improve the expected stretch and running time of our dynamic PTE to
polylogarithmic, respectively

I Apply our dynamic PTE to other optimization problems

I Transfer our ideas to fully dynamic cut-based tree sparsifiers with
polylogarithmic guarantees

Thank you!

Dynamic Low-Stretch Tree Embeddings 23/23

Summary and Future Directions

Summary

I The first fully dynamic algorithm for probabilistic tree embedding with
competitive guarantees on expected stretch and update time

I Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions

I Improve the expected stretch and running time of our dynamic PTE to
polylogarithmic, respectively

I Apply our dynamic PTE to other optimization problems

I Transfer our ideas to fully dynamic cut-based tree sparsifiers with
polylogarithmic guarantees

Thank you!

Dynamic Low-Stretch Tree Embeddings 23/23

Summary and Future Directions

Summary

I The first fully dynamic algorithm for probabilistic tree embedding with
competitive guarantees on expected stretch and update time

I Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions

I Improve the expected stretch and running time of our dynamic PTE to
polylogarithmic, respectively

I Apply our dynamic PTE to other optimization problems

I Transfer our ideas to fully dynamic cut-based tree sparsifiers with
polylogarithmic guarantees

Thank you!

Dynamic Low-Stretch Tree Embeddings 23/23

