Dynamic Maintenance of Low-Stretch Probabilistic Tree Embeddings with Applications

Sebastian Forster¹, Gramoz Goranci², Monika Henzinger³

 1 University of Salzburg 2 University of Toronto \rightarrow University of Glasgow 3 University of Vienna

DIMAP Seminar, University of Warwick May 2021

Tree-Based Graph Approximations

Powerful Theme in Graph Algorithms

- Approximate arbitrary graphs by trees
- Why? Many graph problems are easy on trees
- Map the tree solution back to the original graph

Tree-Based Graph Approximations

Powerful Theme in Graph Algorithms

- Approximate arbitrary graphs by trees
- Why? Many graph problems are easy on trees
- Map the tree solution back to the original graph

example	property preserved
Spanning Tree/Forest	Connectivity
BFS Tree/Shortest-Path Tree	Distance from a source
Gomory-Hu Tree	Pairwise <i>s</i> - <i>t</i> max flow/min-cut
Tree Cut/Flow Sparsifier	Cut/Flow
Low-Stretch Spanning Trees	Average Pairwise Distance
Prob. Low-Stretch Trees	(Exp.) Pairwise Distance

Definition

For any simple graph G = (V, E), n = |V|, m = |E|, a probability distribution τ over trees $\{T_i\}_i$ is an α -probabilistic tree embedding $(\alpha$ -PTE) iff for all $u, v \in V$

Definition

For any simple graph G = (V, E), n = |V|, m = |E|, a probability distribution τ over trees $\{T_i\}_i$ is an α -probabilistic tree embedding $(\alpha$ -PTE) iff for all $u, v \in V$ (1) $V(G) \subset V(T_i)$ for all i

Definition

 For any simple graph G = (V, E), n = |V|, m = |E|, a probability distribution τ over trees {T_i}_i is an α-probabilistic tree embedding (α-PTE) iff for all u, v ∈ V
 (1) V(C) ⊂ V(T) for all i

- (1) $V(G) \subseteq V(T_i)$ for all i
- (2) $\operatorname{dist}_{T_i}(u, v) \ge \operatorname{dist}_G(u, v)$ for all i

Definition

For any simple graph G = (V, E), n = |V|, m = |E|, a probability distribution τ over trees $\{T_i\}_i$ is an α -probabilistic tree embedding (α -PTE) iff for all $u, v \in V$

- (1) $V(G) \subseteq V(T_i)$ for all i
- (2) $\operatorname{dist}_{T_i}(u, v) \ge \operatorname{dist}_G(u, v)$ for all i
- (3) $\mathbb{E}_{T \sim \tau}[\operatorname{dist}_T(u, v)] \leq \alpha \cdot \operatorname{dist}_G(u, v)$

Definition

For any simple graph G = (V, E), n = |V|, m = |E|, a probability distribution τ over trees $\{T_i\}_i$ is an α -probabilistic tree embedding $(\alpha$ -PTE) iff for all $u, v \in V$

- (1) $V(G) \subseteq V(T_i)$ for all i
- (2) $\operatorname{dist}_{T_i}(u, v) \ge \operatorname{dist}_G(u, v)$ for all i
- (3) $\mathbb{E}_{T \sim \tau}[\operatorname{dist}_T(u, v)] \leq \alpha \cdot \operatorname{dist}_G(u, v)$
- Goal: Find an α-PTE with small α (stretch)

Definition

 For any simple graph G = (V, E), n = |V|, m = |E|, a probability distribution τ over trees {T_i}_i is an α-probabilistic tree embedding (α-PTE) iff for all u, v ∈ V
 V(G) ⊆ V(T_i) for all i

- (2) $\operatorname{dist}_{T_i}(u, v) \ge \operatorname{dist}_G(u, v)$ for all i
- (3) $\mathbb{E}_{T \sim \tau}[\operatorname{dist}_T(u, v)] \leq \alpha \cdot \operatorname{dist}_G(u, v)$
- **Goal:** Find an α -PTE with small α (stretch)

Applications

buy-at-bulk network design, group steiner tree, metric labelling, oblivious routing, min-sum clustering, distributed k-server, mirror placement, linear arrangement, approx. all-pairs shortest path

Tree Embedding of Cycles

Bad News [Rabinovich Raz'95]

For any tree that deterministically approximates the n-cycle, it holds that α = Ω(n)

Tree Embedding of Cycles

Bad News [Rabinovich Raz'95]

For any tree that deterministically approximates the n-cycle, it holds that α = Ω(n)

Good News [Karp'89]

- ▶ The *n*-cycle *C_n* admits a 2-PTE **ALG**: delete an edge at random!
- For each edge (u, v) in the cycle C_n

$$\mathbb{E}(\operatorname{dist}_T(u,v)) = \frac{1}{n} \cdot (n-1) + \frac{n-1}{n} \cdot 1 \le 2 \cdot \operatorname{dist}_{C_n}(u,v)$$

Probabilistic Tree Embedding (PTE)

expected stretch α	runtime	reference
$\mathcal{O}(\log^2 n)$	polynomial	[Bartal'96]
$\mathcal{O}(\log n \log \log n)$	polynomial	[Bartal'98]
$\mathcal{O}(\log n)$	polynomial	[Fakcharoenphol et al.'03]
$\mathcal{O}(\log n)$	$\mathcal{O}(m\log^3 n)$	[Mendel Schwob'09]
$\mathcal{O}(\log n)$	$\mathcal{O}(m\log n)$	[Blelloch Guh Sun'17]

Probabilistic Tree Embedding (PTE)

expected stretch α	runtime	reference
$\mathcal{O}(\log^2 n)$	polynomial	[Bartal'96]
$\mathcal{O}(\log n \log \log n)$	polynomial	[Bartal'98]
$\mathcal{O}(\log n)$	polynomial	[Fakcharoenphol et al.'03]
$\mathcal{O}(\log n)$	$\mathcal{O}(m\log^3 n)$	[Mendel Schwob'09]
$\mathcal{O}(\log n)$	$\mathcal{O}(m\log n)$	[Blelloch Guh Sun'17]

Lower Bound [Bartal'96]

For any n, there exists a graph G_n such that for any α-PTE of G_n it holds that α = Ω(log n).

Fully-Dynamic Probabilistic Tree Embedding

Goal:

- minimize update time (time to handle edge insertions/deletions)
- ensure that T has small (expected) stretch after each update

The first dynamic algorithm for maintaining probabilistic low-stretch tree embedding in sub-linear time per update
 (1) our bounds are amortized, assume oblivious adversary
 (2) can handle graphs with polynomially bounded weights

Stretch	Update time	Stretch type	Tree type	Reference
$\mathcal{O}(\log^4 n)$ $n^{o(1)}$ $\mathcal{O}(\log n)^{3i-2}$	$\begin{array}{c} m^{1/2+o(1)} \\ n^{o(1)} \\ m^{1/i+o(1)} \ (^{1}) \end{array}$	expected	low-depth	[Our result]

$$^1i \leq \sqrt{\log n}$$

Dynamic PTE – Our Result

The first dynamic algorithm for maintaining probabilistic low-stretch tree embedding in sub-linear time per update
 (1) our bounds are amortized, assume oblivious adversary
 (2) can handle graphs with polynomially bounded weights

Stretch	Update time	Stretch type	Tree type	Reference
$ \begin{array}{c} \overline{\mathcal{O}(\log^4 n)} \\ n^{o(1)} \\ \mathcal{O}(\log n)^{3i-2} \end{array} \end{array} $	$ \begin{array}{c} m^{1/2+o(1)} \\ n^{o(1)} \\ m^{1/i+o(1)} \ (^{1}) \end{array} $	expected	low-depth	[Our result]
$n^{o(1)}$	$n^{o(1)}$	average	spanning	[Chechik Zhang'20]

$$i \le \sqrt{\log n}$$

The first dynamic algorithm for maintaining probabilistic low-stretch tree embedding in sub-linear time per update
 (1) our bounds are amortized, assume oblivious adversary
 (2) can handle graphs with polynomially bounded weights

Stretch	Update time	Stretch type	Tree type	Reference
$ \begin{array}{c} \mathcal{O}(\log^4 n) \\ n^{o(1)} \\ \mathcal{O}(\log n)^{3i-2} \end{array} $	$\begin{array}{c} m^{1/2+o(1)} \\ n^{o(1)} \\ m^{1/i+o(1)} \end{array} \begin{pmatrix} 1 \end{pmatrix}$	expected	low-depth	[Our result]
$n^{o(1)}$	$n^{o(1)}$	average	spanning	[Chechik Zhang'20]
$n^{o(1)}$	$n^{1/2+o(1)}$			[Forster Goranci'19]

$$1i \le \sqrt{\log n}$$

Buy-At-Bulk Network Design

Input

- Graph G = (V, E), positive lengths ℓ_e
- ▶ k source-sink s_i, t_i with demand dem(i)
- non-decreasing, sub-additive function f

Buy-At-Bulk Network Design

Input

- Graph G = (V, E), positive lengths ℓ_e
- k source-sink s_i, t_i with demand dem(i)
- non-decreasing, sub-additive function f

Routing & Edge cost

- routing of demands is a collection of paths $\{P_i\}_i$ that sends $dem(s_i, t_i)$ units of commodity from s_i to t_i
- **cost:** c(e) amount of commodity set along the edge, i.e.,

$$c_e := \sum_{i:e \in P_i} \operatorname{dem}(i)$$

Buy-At-Bulk Network Design

Input

- Graph G = (V, E), positive lengths ℓ_e
- k source-sink s_i, t_i with demand dem(i)
- non-decreasing, sub-additive function f

Routing & Edge cost

- routing of demands is a collection of paths $\{P_i\}_i$ that sends $dem(s_i, t_i)$ units of commodity from s_i to t_i
- cost: c(e) amount of commodity set along the edge, i.e.,

$$c_e := \sum_{i:e \in P_i} \operatorname{dem}(i)$$

Goal:

▶ find a routing $\{P_i\}_i$ that minimizes **total cost** $\sum_{e \in E} \ell_e f(c_e)$

Fully Dynamic All-Pairs Shortest Path

Approx	Update time	Query time	Reference
$\mathcal{O}(\log n)^{3i-2}$	$m^{1/i+o(1)}$	$\mathcal{O}(\log n)^{5/2}$	[Our result]
$2^{\mathcal{O}(k\rho)}$ (¹)	$\tilde{\mathcal{O}}(\sqrt{m}n^{1/k})$	$\mathcal{O}(k^2 \rho^2)$	[Abraham et al.'14]

▶ goes below the $\mathcal{O}(\sqrt{m})$ bound on update time with non-trivial approx.

$${}^1\rho = 1 + \left\lceil \log n^{1-1/k} \big/ \log(m/n^{1-1/k}) \right\rceil$$

Fully Dynamic All-Pairs Shortest Path

Approx	Update time	Query time	Reference
$\mathcal{O}(\log n)^{3i-2}$	$m^{1/i+o(1)}$	$\mathcal{O}(\log n)^{5/2}$	[Our result]
$2^{\mathcal{O}(k\rho)}$ (¹)	$\tilde{\mathcal{O}}(\sqrt{m}n^{1/k})$	$\mathcal{O}(k^2 \rho^2)$	[Abraham et al.'14]

▶ goes below the $\mathcal{O}(\sqrt{m})$ bound on update time with non-trivial approx.

Fully Dynamic Buy-At-Bulk Network Design

Approx	Update time	Query time	Reference
$\mathcal{O}(\log n)^{3i-2}$	$m^{1/i+o(1)}$	$\mathcal{O}(k \log^{3/2} n)$	[Our result]

this constitutes the first dynamic algorithm for the problem

$${}^1\rho = 1 + \left\lceil \log n^{1-1/k} / \log(m/n^{1-1/k}) \right\rceil$$

Overview

Overview

Extension to Fully Dynamic Setting

- Introduce a new "bootstrapping" idea
- Recursively employ fully dynamic algorithms in the reduction

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

cluster graphs into small diameter clusters w/ few inter-cluster edges

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

cluster graphs into small diameter clusters w/ few inter-cluster edges

(β, γ) -(probabilistic) LDD [Linial Saks'93, Bartal'96]

- ► A randomized partitioning of G = (V, E) into vertex-disjoint clusters C₁...C_k such that
 - (1) weak diameter of each C_i is at most β
 - (2) $\mathbb{P}(u \in C_i, v \in C_{j \neq i}) \leq \gamma$ for each edge (u, v)

Probabilistic Low-Diameter Decompositions (LDD)

Idea:

cluster graphs into small diameter clusters w/ few inter-cluster edges

(β, γ) -(probabilistic) LDD [Linial Saks'93, Bartal'96]

- ► A randomized partitioning of G = (V, E) into vertex-disjoint clusters C₁...C_k such that
 - (1) weak diameter of each C_i is at most β
 - (2) $\mathbb{P}(u \in C_i, v \in C_{j \neq i}) \leq \gamma$ for each edge (u, v)

Applications

- key tool for constructing tree-based graph approximation for distances, i.e.g, low-stretch spanning trees, probabilistic tree embeddings
- approximation algorithms, e.g., min-max graph partitioning

Probabilistic LDD under Edge Deletions

Goal

maintain (β, γ)-probabilistic LDD {C_i}^k_{i=1} of graph G under edge deletions; k may change

Probabilistic LDD under Edge Deletions

Goal

maintain (β, γ)-probabilistic LDD {C_i}^k_{i=1} of graph G under edge deletions; k may change

Theorem [Forster G Henzinger'21]

 For β ∈ (0, 1), there is a data-structure for maintaining a (β, O(β⁻¹ log² n))−probabilistic LDD of G in m^{1+o(1)} total update time.

Probabilistic LDD under Edge Deletions

Goal

maintain (β, γ)-probabilistic LDD {C_i}^k_{i=1} of graph G under edge deletions; k may change

Theorem [Forster G Henzinger'21]

 For β ∈ (0, 1), there is a data-structure for maintaining a (β, O(β⁻¹ log² n))−probabilistic LDD of G in m^{1+o(1)} total update time.

Important Feature

- our runtime is **independent** of β^{-1}
- key requirement for top-down graph clustering
- all previous dynamic graph clusterings [Saranurak Wang'19], [Chechik Zhang'20], [Forster Goranci'19] have runtimes depending on β⁻¹

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal'96]

- Set $i \leftarrow 1$, every vertex is unmarked initially
- While there are unmarked vertices:
 - Pick an unmarked vertex \boldsymbol{v}
 - Sample $R_v \sim \mathbf{Geom}(p)$ with $p = \mathcal{O}(\beta^{-1} \log n)$
 - Add all unmarked vertices in $\mathbf{Ball}_G(v, R_v)$ to C_i
 - Set $i \leftarrow i + 1$

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal'96]

- Set $i \leftarrow 1$, every vertex is unmarked initially
- While there are unmarked vertices:
 - Pick an unmarked vertex v
 - Sample $R_v \sim \mathbf{Geom}(p)$ with $p = \mathcal{O}(\beta^{-1} \log n)$
 - Add all unmarked vertices in $\mathbf{Ball}_G(v, R_v)$ to C_i
 - Set $i \leftarrow i+1$

Claim

▶ Ball-Growing constructs a $(\beta, \mathcal{O}(\beta^{-1}\log n)) - \mathsf{LDD}$ in $\tilde{\mathcal{O}}(m)$ time

Ball-Growing for Static Probabilistic LDD

Algorithm — Ball-Growing [Bartal'96]

- Set $i \leftarrow 1$, every vertex is unmarked initially
- While there are unmarked vertices:
 - Pick an unmarked vertex v
 - Sample $R_v \sim \mathbf{Geom}(p)$ with $p = \mathcal{O}(\beta^{-1} \log n)$
 - Add all unmarked vertices in $\mathbf{Ball}_G(v, R_v)$ to C_i
 - Set $i \leftarrow i + 1$

Claim

▶ Ball-Growing constructs a $(\beta, \mathcal{O}(\beta^{-1}\log n)) - \mathsf{LDD}$ in $\tilde{\mathcal{O}}(m)$ time

How to make it Dynamic?

white box and extend cluster pruning of [Chechik Zhang'20]

Handling Deletions - Cluster Pruning

Delete(e)

• $G \leftarrow G \setminus \{e\}$ and $\operatorname{PRUNE}(C)$ for all C with $e \in C$

 $\operatorname{Prune}(C)$

- ▶ If |C| > 1 and $\exists v \in C$ s.t. $\operatorname{dist}^*_C(c, v) > p^{-1} \log n$:
 - Sample $R \sim \operatorname{Geom}(p)$, set $B \leftarrow \operatorname{Ball}_C(v, R)$
 - If $\operatorname{vol}(B) \le 1/2 \cdot \operatorname{vol}^*(C)$:
 - $C \leftarrow C \setminus B$, Form new cluster B
 - AssignCenter(B), Prune(B)
 - Else: AssignCenter(C)
 - PRUNE(C)

AssignCenter(C)

- Pick a random vertex as center c proportional to vertex degrees
- ▶ Init 2-approx. decremental SSSP A_{HKN} on C [Henzinger et al.'14]

Cluster Pruning - Dynamic Ball Growing

Guarantees

- after each round *i*, $R_i = \mathcal{O}(p^{-1} \log n)$ with high probability
- ▶ for any edge $e \in E \setminus (E_1 \cup ... \cup E_k)$ the probability of e leaving a ball is at most p
- whenever a cluster is created we associate a dynamic ball-grow. process
- each edge can participate in at most $O(\log n)$ clusters
- deleted edges E_1, \ldots, E_k don't see the values R_1, \ldots, R_k

Cluster Pruning – Running Time

Decremental approx. SSSP [Henzinger et al.'14]

(1) can maintain 2-approx to SSSP in $m^{1+o(1)}$ total update time

Local Ball Growing and Center Reassignments

- (2) Can compute $B := \text{Ball}_C(v, R)$ in $\mathcal{O}(\text{vol}(B) \log \text{vol}(B))$
- (3) Total number of center reassignments is $O(\log n_C)$

Cluster Pruning – Running Time

Decremental approx. SSSP [Henzinger et al.'14]

(1) can maintain 2-approx to SSSP in $m^{1+o(1)}$ total update time

Local Ball Growing and Center Reassignments

- (2) Can compute $B := \text{Ball}_C(v, R)$ in $\mathcal{O}(\text{vol}(B) \log \text{vol}(B))$
- (3) Total number of center reassignments is $O(\log n_C)$

Analysis

- Consider cluster C, charge runtime to calls ASSIGNCENTER(C) and PRUNE(C), sans B's
- Runtime of ASSIGNCENTER is dominated by (1)
- ▶ By (3), total cost of ASSIGNCENTER on C is $\mathcal{O}(m_C^{1+o(1)})$
- ▶ By (2), and as we remove each ball B with volume $\leq 1/2 \cdot \text{vol}^*(C)$, charge $\mathcal{O}(\log m_C)$ to each edge in C for $O(m_c \log m_c)$ runtime
- Charged run time to C is $m_C^{1+o(1)}$, clusters are **disjoint**!
- \blacktriangleright As volume halves, we have $\mathcal{O}(\log n)$ levels, thus $m^{1+o(1)}$ total update time

Decremental Probabilistic Tree Embedding

Theorem [Forster G Henzinger'21]

- Given a graph G = (V, E) undergoing edge deletions, can maintain a random tree T of height O(log n) with
 - (1) $O(\log^3 n)$ expected stretch, and (2) $m^{1+o(1)}$ total update time

Decremental Probabilistic Tree Embedding

Theorem [Forster G Henzinger'21]

- Given a graph G = (V, E) undergoing edge deletions, can maintain a random tree T of height O(log n) with
 (1) O(log³ n) expected stretch, and
 - (2) $m^{1+o(1)}$ total update time

High Level Idea

Apply decremental LDDs in a non-recursive way using top-down graph clustering.

- gives only subpolynomial expected stretch $2^{\sqrt{\log n}} = n^{o(1)}$
- requires fully-dynamic LDDs; deletions in one level translate to insertions/deletions in the levels below

Attempt #2: Decremental LDD to Decremental PTE

Recursive Top-Down Clustering [Bartal'96]

- Find an LDD with diameter $\Delta/2$ in G
- For each cluster C_i recursively find a rooted tree T_i with diameter $\Delta/4$
- Construct T by creating a root node v_G and connecting it to the root node of each T_i with weight Δ
- Challenge: difficult to control recourse propagation of updates among decremental LDDs

Attempt #3: Decremental LDD to Decremental PTE

Iterative Top-Down Clustering

- Hierarchy Invariant: All inter-cluster edges at level *i* are deleted from the LDDs at level *i* - 1,...,0
- Maintain a decremental probabilistic LDD for each level in the hierarchy to handle the deletions from the levels above
- Maintain cluster connections between neighbouring levels in the hierarchy so we have access to an explicit tree after each deletion

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE

- Rebuild every k updates
- ▶ Pass deletions to decremental PTE T_A with stretch $O(\log^3 n)$, height $O(\log n)$
- Add inserted edge into set I, let U be the endpoints of I
- After each update:
 - Let $P = \bigcup_{v \in U} p_v$, where p_v is the path from v to root of T_A
 - Compute a (static) PTE $T_{\rm B}$ of $I \cup P$
 - Maintain $T_{\rm C} = (T_{\rm A} \setminus P) \cup T_{\rm B}$.

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE

- Rebuild every k updates
- ▶ Pass deletions to decremental PTE T_A with stretch $O(\log^3 n)$, height $O(\log n)$
- Add inserted edge into set I, let U be the endpoints of I
- After each update:
 - Let $P = \bigcup_{v \in U} p_v$, where p_v is the path from v to root of T_A
 - Compute a (static) PTE T_{B} of $I \cup P$
 - Maintain $T_{\rm C} = (T_{\rm A} \setminus P) \cup T_{\rm B}$.

Analysis

- Expected stretch increases to $\mathcal{O}(\log^4 n)$ due to $T_{\rm B}$
- ▶ Runtime: $m^{1+o(1)}/k + k \log^2 n = m^{1/2+o(1)}$, optimized when $k = m^{1/2}$

Fully Dynamic PTE

Decremental PTE + Static PTE = Fully Dynamic PTE

- Rebuild every k updates
- ▶ Pass deletions to decremental PTE T_A with stretch $O(\log^3 n)$, height $O(\log n)$
- Add inserted edge into set I, let U be the endpoints of I
- After each update:
 - Let $P = \bigcup_{v \in U} p_v$, where p_v is the path from v to root of T_A
 - Compute a (static) PTE T_{B} of $I \cup P$
 - Maintain $T_{\rm C} = (T_{\rm A} \setminus P) \cup T_{\rm B}$.

Analysis

- Expected stretch increases to $\mathcal{O}(\log^4 n)$ due to $T_{\rm B}$
- ▶ Runtime: $m^{1+o(1)}/k + k \log^2 n = m^{1/2+o(1)}$, optimized when $k = m^{1/2}$

Extensions

- Can generalize the above approach to multiple levels
- ▶ Requires bounding the number of changes to the aux. graph $I \cup P$

Fully Dynamic APSP via Dynamic PTE

 $\operatorname{Preprocessing}(G)$

• Maintain $\mathcal{O}(\log n)$ copies of dynamic PTEs $\{T_i\}_i$

INSERT/DELETE(e)

• Pass the insertion/deletion of e to each T_i

QUERY(s,t)

- Compute shortest path from s to t on each T_i
- Return the one that attains the minimum

Fully Dynamic APSP via Dynamic PTE

 $\operatorname{Preprocessing}(G)$

• Maintain $\mathcal{O}(\log n)$ copies of dynamic PTEs $\{T_i\}_i$

INSERT/DELETE(e)

• Pass the insertion/deletion of e to each T_i

QUERY(s,t)

- Compute shortest path from s to t on each T_i
- Return the one that attains the minimum

▶ approx: $\mathcal{O}(\log n)^{3i-2}$, updateT: $m^{1/i+o(1)}$, queryT: $\mathcal{O}(\log n)^{5/2}$

Summary

- The first fully dynamic algorithm for probabilistic tree embedding with competitive guarantees on expected stretch and update time
- Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Summary

- The first fully dynamic algorithm for probabilistic tree embedding with competitive guarantees on expected stretch and update time
- Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions

- Improve the expected stretch and running time of our dynamic PTE to polylogarithmic, respectively
- Apply our dynamic PTE to other optimization problems
- Transfer our ideas to fully dynamic cut-based tree sparsifiers with polylogarithmic guarantees

Summary

- The first fully dynamic algorithm for probabilistic tree embedding with competitive guarantees on expected stretch and update time
- Applied to All-Pairs Shortest Path and Buy-At-Bulk Network Design

Future Directions

- Improve the expected stretch and running time of our dynamic PTE to polylogarithmic, respectively
- Apply our dynamic PTE to other optimization problems
- Transfer our ideas to fully dynamic cut-based tree sparsifiers with polylogarithmic guarantees

Thank you!