
The Expander Hierarchy and its
Applications in Dynamic Graph

Algorithms

Gramoz Goranci, Harald Räcke,

Thatchaphol Saranurak, Zihan Tan

Fakultät für Informatik
TU München

25. Jan. 2021

Harald Räcke 1/29

Tree Cut Sparsifier

ñ given (undirected) graph G = (V , E)
ñ compute tree T = (VT , ET) with VT ⊇ V that approximates

cuts in G

Formally, for all subsets S ⊆ V

1
q

mincutT (S, V \ S) ≤ cutG(S, V \ S) ≤mincutT (S, V \ S)

q is the quality of the T

0 25. Jan. 2021

Harald Räcke 2/29

Tree Cut Sparsifier

Graph G:
a

b

c

d

e

f

g

h

i

j

Tree T :

a b c d e f g h i j

0 25. Jan. 2021

Harald Räcke 3/29

Tree Cut Sparsifier

Motivation:

Complicated cut-related problems can be (approximately) solved

on G by only considering the problem on T .

ñ Minimum Bisection

ñ Simulteneous Source Location

ñ k-multicut

ñ Min-max graph partitioning

ñ Online Multicut

0 25. Jan. 2021

Harald Räcke 4/29

Previous Work

ñ [R 02]

existence; quality O(log3n) (flow sparsifier)

ñ [Bienkowski, Korzeniowski, R 03]

polynomial time; quality O(log4n) (flow sparsifier)

ñ [Harrelson, Hildrum, Rao 03]

polynomial time; quality O(log2n log logn) (flow sparsifier)

ñ [R, Shah 14]

polynomial time; quality O(log1.5n log logn) (cut sparsifier)

existence; quality O(logn log logn) (cut sparsifier)

ñ [R, Shah, Täubig 14]

nearly linear time; quality O(log4n) (flow sparsifier)

0 25. Jan. 2021

Harald Räcke 5/29

Main Result

dynamic construction of a tree cut sparsifier for unweighted

graphs

ñ update time: no(1)

ñ quality: no(1)

fully dynamic, deterministic, can be deamortized...

0 25. Jan. 2021

Harald Räcke 6/29

Main Result

Consequences for Dynamic Graph Algorithms

ñ s-t maxflow/mincut

approx: no(1), update time: no(1), query time: O(logn)
ñ sparsest cut

approx: no(1), update time: no(1), query time: O(logn)
ñ multicommodity flow, multi-cut

approx: no(1), update time: kno(1), query time: O(k logn)
ñ treewidth-decomposition

approx: no(1), update time: tw ·no(1)

ñ connectivity

update time: no(1), query time: O(logn)

0 25. Jan. 2021

Harald Räcke 7/29

Proof Techniques of Existing Approaches

ñ leaf nodes of T correspond to vertices in G
ñ a level of the tree induces a partitioning of V into subsets

a
b

c

d

e

f

g

h

i

j

Graph G

a b c d e f g h i j

Tree T

Proof Techniques of Existing Approaches

ñ an edge in the tree is assigned a capacity equal to the

capacity of the corresponding cut in G

a
b

c

d

e

f

g

h

i

j

Graph G

a b c d e f g h i j

Tree T

Proof Techniques of Existing Approaches

ñ equivalently a graph edge contributes to the capacity of

every tree edge on the path between its endpoints in T

a
b

c

d

e

f

g

h

i

j

Graph G

a b c d e f g h i j

Tree T

Proof Techniques of Existing Approaches

ñ this already guarantees that

cutG(S, V \ S) ≤mincutT (S, V \ S)

a
b

c

d

e

f

g

h

i

j

Graph G

a b c d e f g h i j

Tree T

Proof Techniques of Existing Approaches

ñ let Pi be the partitioning on level i; level 0 is the leaf level

ñ let GP be the graph obtained from G by contracting subsets

in P

Property I:

For a cluster S on some level i+ 1 the graph G{S}Pi must

expand well

Property II:

The set S must have good boundary-expansion in G

Property I

ñ cluster S on level i+ 1 partitioned into sub-clusters

ñ the graph G{S}Pi is obtained by
ñ take induced subgraph G[S] but turn edges leaving S into

self-loops
ñ then contract subsets of Pi

ñ expands well means we can route an all-to-all flow problem

between edges of G{S}Pi with small congestion (CI)

Property II

ñ good boundary-expansion means we can route an all-to-all

flow problem between boundary edges of S with small

congestion (CII)

Proof

q · cutG(S, V \ S) ≥mincutT (S, V \ S)

ñ take any multicommodity flow that can be routed in T with

congestion at most 1

ñ route it in G with congestion at most q
ñ demand for the multicommodity flow is between edges of G
ñ an edge sends/receives at most one unit of flow in this

demand

0 25. Jan. 2021

Harald Räcke 15/29

Proof Techniques of Existing Approaches

ñ what does demand between edges mean?

a
b

c

d

e

f

g

h

i

j

Graph G

a b c d e f g h i j

Tree T

Route demand in G

ñ go top down level by level

0 25. Jan. 2021

Harald Räcke 17/29

Route demand in G

ñ go top down level by level

ñ route in the contracted graph (congestion 2CI)

ñ undo the contraction and fill the gaps (congestion 2CICII)

0 25. Jan. 2021

Harald Räcke 18/29

Bottom Up Construction

For a bottom-up construction it is difficult to guarantee a good

value for CII.

There is a (trivial) guarantee of ChI .

0 25. Jan. 2021

Harald Räcke 19/29

Bottom Up Construction

Property I:

For a cluster S on some level i+ 1 the graph G{S}Pi allows

all-to-all routing between edges with congestion CI

Property II′:
For a cluster S on some level i+ 1 the graph G{S}Pi allows

all-to-all routing between boundary-edges with congestion C′II

Then we guarantee Property II with (C′II)h

0 25. Jan. 2021

Harald Räcke 20/29

Expander Decomposition

[Thatchaphol Saranurak, Di Wang 2019]

Given graph G = (V , E), and parameter φ partition V into

disjoint pieces U1, U2, . . . s.t.

ñ G{Ui} can route all-to-all on its edges with congestion 1/φ
ñ
∑
i |E(Ui, V \Ui)| ≤ Õ(φm)

This only gives something good for Property I...

0 25. Jan. 2021

Harald Räcke 21/29

Expander Decomposition

Given graph G = (V , E), and parameter φ partition V into

disjoint pieces U1, U2, . . . s.t.

ñ G[Ui]α/φ can route all-to-all on its edges with congestion

logm/φ
ñ
∑
i |E(Ui, V \Ui)| ≤ Õ(φm)

where α = Ω(1/polylogn).

G[Ui]α/φ is G[Ui] where every outgoing edge is transformed

into α/φ many self-loops.

This means we get C′II = logm/α!!!

0 25. Jan. 2021

Harald Räcke 22/29

Existence

ñ give every edge money φ log |S| for each cluster S of one of

its end-points

ñ total amount of money handed out is 2φm logn
ñ distribute money to cut-edges so that in the end every

cut-edges has money at least one –> small number of

cut-edges

0 25. Jan. 2021

Harald Räcke 23/29

Existence

SV \ S

ñ congestion ≥ 2 logn/φ ⇒ cut ≤ logn · 1
congestion · vol(S)

ñ every edge incident to S reduces its money by at least φ
ñ money available: ≥ φ · vol(S)
ñ every edge in the cut needs (at most)

1+α/φ · 2φ logn ≤ 2

0 25. Jan. 2021

Harald Räcke 24/29

Choosing Parameters

In each iteration the number of edges reduces by a factor of φ.

Height h ≤ log1/φm.

CI = 1
φ logn

CII = (logm/α)h

Quality: h · CI · CII

Choose φ = 1/e
√

logn

0 25. Jan. 2021

Harald Räcke 25/29

Making Things Dynamics...

Expander Pruning

ñ given G and subset U with G[U]α/φ a φ-expander

ñ (≤ φ vol(U)) edge-updates for which one endpoint is in U

We can maintain a pruned set P such that

ñ P0 = ∅; Pi ⊆ Pi+1

ñ vol(Pi) ≤ 32i/φ and |E(Pi, U \ Pi)| ≤ 16i
ñ |E(Pi, V \U)| ≤ 16i/α
ñ G[U]α/φ is a φ/38-expander

0 25. Jan. 2021

Harald Räcke 26/29

Pruning

0 25. Jan. 2021

Harald Räcke 27/29

Maintaining the Expander Decomposition

0 25. Jan. 2021

Harald Räcke 28/29

Open Problems

ñ Better guarantee on the quality?

ñ Guarantees for vertex sparsifiers, i.e., sparsifiers w.r.t. a

subset of vertices?

0 25. Jan. 2021

Harald Räcke 29/29

