The Expander Hierarchy and its Applications in Dynamic Graph Algorithms

Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, Zihan Tan

> Fakultät für Informatik TU München

25. Jan. 2021 1/29

Tree Cut Sparsifier

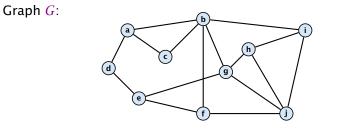
- given (undirected) graph G = (V, E)
- Compute tree T = (V_T, E_T) with V_T ⊇ V that approximates cuts in G

```
Formally, for all subsets S \subseteq V
```

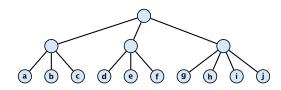
```
\frac{1}{q}\operatorname{mincut}_{T}(S, V \setminus S) \leq \operatorname{cut}_{G}(S, V \setminus S) \leq \operatorname{mincut}_{T}(S, V \setminus S)
```

q is the quality of the T

Tree Cut Sparsifier



Tree T:



Tree Cut Sparsifier

Motivation:

Complicated cut-related problems can be (approximately) solved on G by only considering the problem on T.

- Minimum Bisection
- Simulteneous Source Location
- k-multicut
- Min-max graph partitioning
- Online Multicut

4/29

Previous Work

▶ [R 02]

existence; quality $O(\log^3 n)$ (flow sparsifier)

- [Bienkowski, Korzeniowski, R 03] polynomial time; quality O(log⁴ n) (flow sparsifier)
- [Harrelson, Hildrum, Rao 03] polynomial time; quality O(log² n log log n) (flow sparsifier)
- [R, Shah 14]

polynomial time; quality $O(\log^{1.5} n \log \log n)$ (cut sparsifier) existence; quality $O(\log n \log \log n)$ (cut sparsifier)

[R, Shah, Täubig 14]

nearly linear time; quality $O(\log^4 n)$ (flow sparsifier)

dynamic construction of a tree cut sparsifier for unweighted graphs

- update time: $n^{o(1)}$
- quality: $n^{o(1)}$

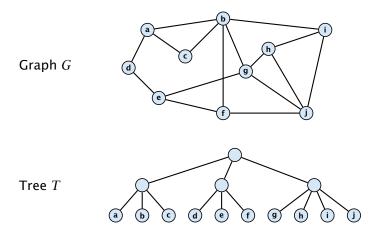
fully dynamic, deterministic, can be deamortized...

Main Result

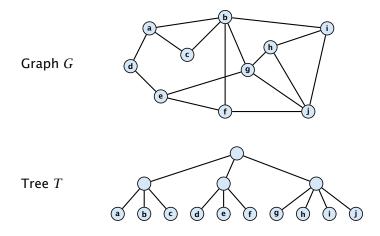
Consequences for Dynamic Graph Algorithms

- *s-t* maxflow/mincut approx: n^{o(1)}, update time: n^{o(1)}, query time: O(log n)
- Sparsest cut approx: $n^{o(1)}$, update time: $n^{o(1)}$, query time: $O(\log n)$
- multicommodity flow, multi-cut approx: n^{o(1)}, update time: kn^{o(1)}, query time: O(klog n)
- treewidth-decomposition approx: n^{o(1)}, update time: tw · n^{o(1)}
- connectivity update time: n^{o(1)}, query time: O(log n)

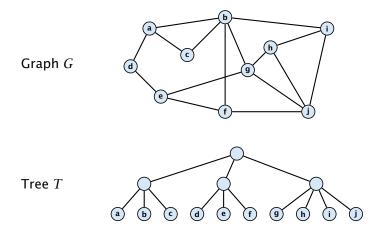
- leaf nodes of T correspond to vertices in G
- a level of the tree induces a partitioning of V into subsets



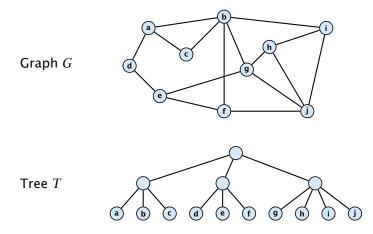
an edge in the tree is assigned a capacity equal to the capacity of the corresponding cut in G



equivalently a graph edge contributes to the capacity of every tree edge on the path between its endpoints in T



▶ this already guarantees that $\operatorname{cut}_G(S, V \setminus S) \leq \operatorname{mincut}_T(S, V \setminus S)$



- let \mathcal{P}_i be the partitioning on level *i*; level 0 is the leaf level
- let $G_{\mathcal{P}}$ be the graph obtained from G by contracting subsets in \mathcal{P}

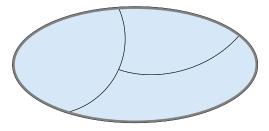
Property I:

For a cluster S on some level i+1 the graph $G\{S\}_{\mathcal{P}_i}$ must expand well

Property II:

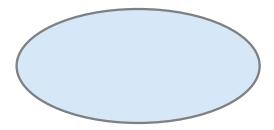
The set S must have good boundary-expansion in G

Property I



- cluster S on level i + 1 partitioned into sub-clusters
- the graph $G\{S\}_{\mathcal{P}_i}$ is obtained by
 - take induced subgraph G[S] but turn edges leaving S into self-loops
 - then contract subsets of \mathcal{P}_i
- expands well means we can route an all-to-all flow problem between edges of G{S}_{Pi} with small congestion (C)

Property II



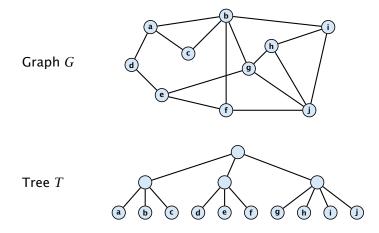
good boundary-expansion means we can route an all-to-all flow problem between boundary edges of S with small congestion (C_{II})

Proof

 $\boldsymbol{q} \cdot \operatorname{cut}_{\boldsymbol{G}}(\boldsymbol{S}, \boldsymbol{V} \setminus \boldsymbol{S}) \ge \operatorname{mincut}_{\boldsymbol{T}}(\boldsymbol{S}, \boldsymbol{V} \setminus \boldsymbol{S})$

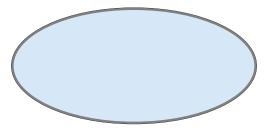
- take any multicommodity flow that can be routed in T with congestion at most 1
- route it in G with congestion at most q
- demand for the multicommodity flow is between edges of G
- an edge sends/receives at most one unit of flow in this demand

what does demand between edges mean?



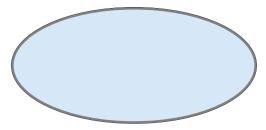
Route demand in G

go top down level by level



Route demand in G

go top down level by level

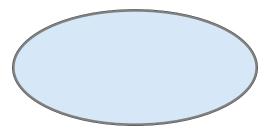


- route in the contracted graph (congestion 2C)
- undo the contraction and fill the gaps (congestion $2C_{I}C_{II}$)

Bottom Up Construction

For a bottom-up construction it is difficult to guarantee a good value for $C_{\rm II}$.

There is a (trivial) guarantee of $C_{\rm I}^h$.



Bottom Up Construction

Property I:

For a cluster S on some level i + 1 the graph $G\{S\}_{P_i}$ allows all-to-all routing between edges with congestion C_1

Property II':

For a cluster S on some level i + 1 the graph $G\{S\}_{\mathcal{P}_i}$ allows all-to-all routing between boundary-edges with congestion C'_{II}

Then we guarantee Property II with $(C'_{II})^h$

Expander Decomposition

[Thatchaphol Saranurak, Di Wang 2019]

Given graph G = (V, E), and parameter ϕ partition V into disjoint pieces U_1, U_2, \dots s.t.

- $G{U_i}$ can route all-to-all on its edges with congestion $1/\phi$
- $\sum_{i} |E(U_i, V \setminus U_i)| \le \tilde{O}(\phi m)$

This only gives something good for Property I...

Expander Decomposition

Given graph G = (V, E), and parameter ϕ partition V into disjoint pieces U_1, U_2, \ldots s.t.

- $G[U_i]^{\alpha/\phi}$ can route all-to-all on its edges with congestion $\log m/\phi$
- $\blacktriangleright \sum_{i} |E(U_{i}, V \setminus U_{i})| \le \tilde{O}(\phi m)$

where $\alpha = \Omega(1 / \operatorname{polylog} n)$.

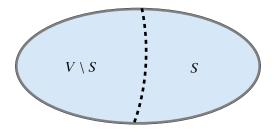
 $G[U_i]^{\alpha/\phi}$ is $G[U_i]$ where every outgoing edge is transformed into α/ϕ many self-loops.

This means we get $C'_{II} = \log m / \alpha !!!$

Existence

- ▶ give every edge money φ log |S| for each cluster S of one of its end-points
- total amount of money handed out is $2\phi m \log n$
- distribute money to cut-edges so that in the end every cut-edges has money at least one -> small number of cut-edges

Existence



- congestion $\geq 2 \log n / \phi \Rightarrow \text{cut} \leq \log n \cdot \frac{1}{\text{congestion}} \cdot \text{vol}(S)$
- every edge incident to S reduces its money by at least ϕ
- money available: $\geq \phi \cdot \operatorname{vol}(S)$
- every edge in the cut needs (at most)

 $1 + \alpha/\phi \cdot 2\phi \log n \le 2$

Choosing Parameters

In each iteration the number of edges reduces by a factor of ϕ .

Height $h \le \log_{1/\phi} m$. $C_{I} = \frac{1}{\phi} \log n$ $C_{II} = (\log m / \alpha)^{h}$ Quality: $h \cdot C_{I} \cdot C_{II}$ Choose $\phi = 1/e^{\sqrt{\log n}}$

Making Things Dynamics...

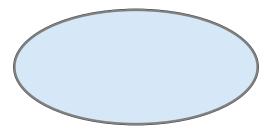
Expander Pruning

- given G and subset U with $G[U]^{\alpha/\phi}$ a ϕ -expander
- ($\leq \phi \operatorname{vol}(U)$) edge-updates for which one endpoint is in U

We can maintain a pruned set P such that

- $P_0 = \emptyset; P_i \subseteq P_{i+1}$
- $\operatorname{vol}(P_i) \le 32i/\phi$ and $|E(P_i, U \setminus P_i)| \le 16i$
- $|E(P_i, V \setminus U)| \le 16i/\alpha$
- $G[U]^{\alpha/\phi}$ is a $\phi/38$ -expander

Pruning



Maintaining the Expander Decomposition

Open Problems

- Better guarantee on the quality?
- Guarantees for vertex sparsifiers, i.e., sparsifiers w.r.t. a subset of vertices?

