The Expander Hierarchy and its Applications in Dynamic Graph Algorithms

Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, Zihan Tan

Fakultät für Informatik
TU München
Tree Cut Sparsifier

- given (undirected) graph $G = (V, E)$
- compute tree $T = (V_T, E_T)$ with $V_T \supseteq V$ that approximates cuts in G

Formally, for all subsets $S \subseteq V$

$$\frac{1}{q} \mincut_T(S, V \setminus S) \leq \cut_G(S, V \setminus S) \leq \mincut_T(S, V \setminus S)$$

q is the quality of the T
Tree Cut Sparsifier

Graph G:

Tree T:
Tree Cut Sparsifier

Motivation:
Complicated cut-related problems can be (approximately) solved on G by only considering the problem on T.

- Minimum Bisection
- Simultaneous Source Location
- k-multicut
- Min-max graph partitioning
- Online Multicut
Previous Work

- [R 02]
 existence; quality $O(\log^3 n)$ (flow sparsifier)

- [Bienkowski, Korzeniowski, R 03]
 polynomial time; quality $O(\log^4 n)$ (flow sparsifier)

- [Harrelson, Hildrum, Rao 03]
 polynomial time; quality $O(\log^2 n \log \log n)$ (flow sparsifier)

- [R, Shah 14]
 polynomial time; quality $O(\log^{1.5} n \log \log n)$ (cut sparsifier)
 existence; quality $O(\log n \log \log n)$ (cut sparsifier)

- [R, Shah, Täubig 14]
 nearly linear time; quality $O(\log^4 n)$ (flow sparsifier)
Main Result

dynamic construction of a tree cut sparsifier for unweighted graphs

- update time: $n^{o(1)}$
- quality: $n^{o(1)}$

fully dynamic, deterministic, can be deamortized...
Main Result

Consequences for Dynamic Graph Algorithms

- \textbf{\textit{s-t maxflow/mincut}}
 - approx: $n^{o(1)}$, update time: $n^{o(1)}$, query time: $O(\log n)$

- \textbf{\textit{sparsest cut}}
 - approx: $n^{o(1)}$, update time: $n^{o(1)}$, query time: $O(\log n)$

- \textbf{\textit{multicommodity flow, multi-cut}}
 - approx: $n^{o(1)}$, update time: $kn^{o(1)}$, query time: $O(k \log n)$

- \textbf{\textit{treewidth-decomposition}}
 - approx: $n^{o(1)}$, update time: $tw \cdot n^{o(1)}$

- \textbf{\textit{connectivity}}
 - update time: $n^{o(1)}$, query time: $O(\log n)$
Proof Techniques of Existing Approaches

- leaf nodes of T correspond to vertices in G
- a level of the tree induces a partitioning of V into subsets
Proof Techniques of Existing Approaches

- an edge in the tree is assigned a capacity equal to the capacity of the corresponding cut in G
Proof Techniques of Existing Approaches

- equivalently a graph edge contributes to the capacity of every tree edge on the path between its endpoints in T
Proof Techniques of Existing Approaches

- this already guarantees that
 \[\text{cut}_G(S, V \setminus S) \leq \text{mincut}_T(S, V \setminus S) \]
Proof Techniques of Existing Approaches

- let P_i be the partitioning on level i; level 0 is the leaf level
- let G_P be the graph obtained from G by contracting subsets in P

Property I:
For a cluster S on some level $i + 1$ the graph $G\{S\}_{P_i}$ must expand well

Property II:
The set S must have good boundary-expansion in G
Property I

- Cluster S on level $i + 1$ partitioned into sub-clusters
- The graph $G\{S\}_{P_i}$ is obtained by:
 - Take induced subgraph $G[S]$ but turn edges leaving S into self-loops
 - Then contract subsets of P_i
- Expands well means we can route an all-to-all flow problem between edges of $G\{S\}_{P_i}$ with small congestion (C_1)
Property II

- good boundary-expansion means we can route an all-to-all flow problem between boundary edges of S with small congestion (C_{II})
Proof

\[q \cdot \text{cut}_G(S, V \setminus S) \geq \text{mincut}_T(S, V \setminus S) \]

- take any multicommodity flow that can be routed in \(T \) with congestion at most 1
- route it in \(G \) with congestion at most \(q \)
- demand for the multicommodity flow is between edges of \(G \)
- an edge sends/receives at most one unit of flow in this demand
what does demand between edges mean?

Graph G

Tree T
Route demand in G

- go top down level by level
Route demand in G

- go top down level by level
- route in the contracted graph (congestion $2C_i$)
- undo the contraction and fill the gaps (congestion $2C_iC_{il}$)
Bottom Up Construction

For a bottom-up construction it is difficult to guarantee a good value for C_{ll}.

There is a (trivial) guarantee of C_{lh}.
Bottom Up Construction

Property I:
For a cluster S on some level $i + 1$ the graph $G\{S\}_{P_i}$ allows all-to-all routing between edges with congestion C_i

Property II':
For a cluster S on some level $i + 1$ the graph $G\{S\}_{P_i}$ allows all-to-all routing between boundary-edges with congestion C_{II}'

Then we guarantee Property II with $(C_{II}')^h$
Expander Decomposition

[Thatchaphol Saranurak, Di Wang 2019]
Given graph $G = (V, E)$, and parameter ϕ partition V into disjoint pieces U_1, U_2, \ldots s.t.

- $G\{U_i\}$ can route all-to-all on its edges with congestion $1/\phi$
- $\sum_i |E(U_i, V \setminus U_i)| \leq \tilde{O}(\phi m)$

This only gives something good for Property I...
Expander Decomposition

Given graph $G = (V, E)$, and parameter ϕ partition V into disjoint pieces U_1, U_2, \ldots s.t.

- $G[U_i]^{\alpha/\phi}$ can route all-to-all on its edges with congestion $\log m/\phi$
- $\sum_i |E(U_i, V \setminus U_i)| \leq \tilde{O}(\phi m)$

where $\alpha = \Omega(1/\text{polylog} n)$.

$G[U_i]^{\alpha/\phi}$ is $G[U_i]$ where every outgoing edge is transformed into α/ϕ many self-loops.

This means we get $C_{\parallel}' = \log m/\alpha$!!!
Existence

- give every edge money $\phi \log |S|$ for each cluster S of one of its end-points
- total amount of money handed out is $2\phi m \log n$
- distribute money to cut-edges so that in the end every cut-edges has money at least one \rightarrow small number of cut-edges
Existence

- congestion $\geq 2 \log n / \phi \Rightarrow \text{cut} \leq \log n \cdot \frac{1}{\text{congestion}} \cdot \text{vol}(S)$
- every edge incident to S reduces its money by at least ϕ
- money available: $\geq \phi \cdot \text{vol}(S)$
- every edge in the cut needs (at most)

$$1 + \alpha / \phi \cdot 2\phi \log n \leq 2$$
Choosing Parameters

In each iteration the number of edges reduces by a factor of ϕ.

Height $h \leq \log_{1/\phi} m$.

$C_I = \frac{1}{\phi} \log n$

$C_{II} = (\log m / \alpha)^h$

Quality: $h \cdot C_I \cdot C_{II}$

Choose $\phi = 1/e^{\sqrt{\log n}}$
Expander Pruning

- given G and subset U with $G[U]^\alpha/\phi$ a ϕ-expander
- $(\leq \phi \text{vol}(U))$ edge-updates for which one endpoint is in U

We can maintain a pruned set P such that

- $P_0 = \emptyset$; $P_i \subseteq P_{i+1}$
- $\text{vol}(P_i) \leq 32i/\phi$ and $|E(P_i, U \setminus P_i)| \leq 16i$
- $|E(P_i, V \setminus U)| \leq 16i/\alpha$
- $G[U]^\alpha/\phi$ is a $\phi/38$-expander
Maintaining the Expander Decomposition
Open Problems

- Better guarantee on the quality?
- Guarantees for vertex sparsifiers, i.e., sparsifiers w.r.t. a subset of vertices?