Better-Than-2 Approximations
for Weighted Tree Augmentation

Vera Traub Rico Zenklusen
ETH Zirich ETH Zirich

Weighted Tree Augmentation (WTAP)

tree G = (V, E)

links L C (%) with weights w : L — Rx

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

.
\
/
\

.

Weighted Tree Augmentation (WTAP)

a e
N\ \
/N

7
.

[X
.
A
A
\‘ —__—
’.-_.-_-——‘

E)

with weights w : L — Ry

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

Weighted Tree Augmentation (WTAP)

a
N\ \p,
/N

-
_”‘
-

~

[R
\

7
.

E)

) with weights w : L — R

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

Equivalent:

Every edge e € E must be covered by a link £ € F,
i.e.,e € Pyforsomel € F.

Warm-up: a simple 2-approximation

[} N
NV
A /\
li ______ o \o, 0

(1) Pick an arbitrary root r € V.

Warm-up: a simple 2-approximation

AN

cmmmmen.g
>.\
.////,
R
.
.
’
.
’ /
o
~§
.
\ / o
[)
- e
A N~ 1
N DY
O o
. \‘
e

‘‘‘‘‘‘

(1) Pick an arbitrary root r € V.
@) “Split” every link £ into two up-links
each with weight w(?).

Warm-up: a simple 2-approximation

z r
.. .
~ J
~ ~
. !‘ ~
*‘ 1 S
(N Iy LN
® ° . Iy §‘
/ S~ @ 'y @
S
L) " >
[}
4 fd 04 1% e
’ ’ 1 Y
. R oy 1
o % 5
' @ [} [y [)
[y
[y

‘‘‘‘‘

(1) Pick an arbitrary root r € V.

@) “Split” every link ¢ into two up-links,
each with weight w(?).

@ Compute an optimal up-link solution.

[]
h
1
DY
Jey

~§
(}

.\
-~

-

.

s

o,
®

(D

="
-
-
-
-

-
-
L
P

’
4
,
4
4
4
’
’

—
i

Warm-up: a simple 2-approximation

o 5
.", o :‘\ o
KX --—/\-'= AN AN
’e - ““ ’d 4 ““ Y

[) So
N
"—
ks
4,
@
-
o __
“
*
kJ
4,
[)

A\

/
/.
2

.....

(1) Pick an arbitrary root r € V.
@) “Split” every link ¢ into two up-links,
solve natural LP (integral), or

each with weight w(?).
i i ion. <————/_ Use dynamic programming

@ Compute an optimal up-link solution

Better-than-2 approximations for special cases

» unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Grof3,
Kénemann, Sanita, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

» bounded-diameter trees: (1 + In 2)-approximation [Cohen, Nutov, 2013]

» better-than-2 approximation if an opt. solution to natural LP has no small fractional values
[lglesias, Ravi, 2018]

Our result

There is a (1.5 + €)-approximation algorithm for Weighted Tree Augmentation (WTAP)
for any fixed € > 0.

Outline of this talk:

1. relative greedy algorithm: (1 + In 2 + ¢)-approximation
2. local search algorithm: (1.5 + £)-approximation

3. main technical ingredient: decomposition theorem

The Relative Greedy Algorithm

The starting solution for relative greedy

T
.5
AN
n .
X S.
l‘ s~
-~z v @ -~
D PO\,
o o [®
’ LY
’ I 1
’] Y
) [[y .
’ -) .
’ \ [} .
[} O Y \
) s Y 3
)
[J [J [} [J

@ Compute optimal up-link solution U (2-approximation).

The starting solution for relative greedy

0=

G
4
,
4
4

.
/

/

-

/ \~

’
.9”7
’
NG
\J
\
\
Q
.

.

\\\\w
”,4’
./

-
@
@

~
Seo
S
N
"
“
-
-
o
~
~
-~
\\\:.
"
“
rmmm
%
"
"

@ Compute optimal up-link solution U (2-approximation).

(@) “Shorten” up-links s.t. P, with u € U are disjoint, i.e.,
every edge is covered by exactly one link.

Relative greedy

[Invariant: U U F'is a WTAP solution]

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.
F=10

.,

.
Y
1
]
()
-

.Q

S

~
Sas
(]
<
7

’
4
U

4
4

<.'
/
o’

Relative greedy

k_-,.
?
G
’
’
’

[Invariant: U U F'is a WTAP solution]

.
Y
1
]
()
-
@

.s
I

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.
F=10

S

~
Sas
®
<
7

d
4

®z--"""
’
» 1)
ML

@ Aslong as w(U U F) decreases:

e Select a component C' C L.
e Add C'to F.

Relative greedy

[Invariant: U U F'is a WTAP solution]

k_-,.
?
G
’
’
’

Py | .' [} \s
RN
(@) U := 2-approximate up-link solution s.t. ,". ° IS
the paths P, with u € U are disjoint. \
F=10

Oz .
~ o
L d
-
1
[)
I
o=
.
H d
H g
5 A
@fsrnnsn

@ Aslong as w(U U F) decreases:

e Select a component C' C L.
e Add C'to F.

e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC

Relative greedy

[Invariant: U U F'is a WTAP solution]

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.

F=10

@ Aslong as w(U U F) decreases:
e Select a component C' C L.

e Add C'to F.

e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}

@) Return U U F.

LeC

[]
.
.
.
H
[[.
I S
’ + H
] ‘]
D) E
° ° ®.......0

Relative greedy

[Invariant: U U F'is a WTAP solution]

\
1
1

\
/\
/

@ U = 2-approximate up-link solution s.t.

'.
the paths P, with u € U are disjoint. y \ \
F = Q) =

.... -l‘.
@ Aslong as w(U U F) decreases:

-

e Select a component C' C L.

w(C)
e Remove the following from U:

w(Dropy (C))

Choose C' s.t. it minimizes

Dropy; (C) = {u eU:P, C U P[}

= among a restricted class of
© components.
@) Return U U F.

How should we define components?

We need:

(a) We can efficiently find a component C' minimizing m.

How should we define components?

We need:

(a) We can efficiently find a component C' minimizing %.

w(C)

(b) Ifw(U) > w(OPT), there exist a component C' with wropg @) < L

How should we define components?

We need:

(@) We can efficiently find a component C' minimizing %.

w(C)

(b) Ifw(U) > w(OPT), there exist a component C' with wropg @) < L

constant size link sets
(a) v (enumerate)
(b) X

How should we define components?

We need:
(a) We can efficiently find a component C' minimizing w(Drope(C))"
w(C)

(b) Ifw(U) > w(OPT), there exist a component C' with wropg @) < L

constant size link sets arbitrary link sets
(a) v (enumerate) (a) X
(b) X (b) v (for C' = OPT)

How should we define components?

We need:
(a) We can efficiently find a component C' minimizing w(Drope(C))"
w(C)

(b) Ifw(U) > w(OPT), there exist a component C' with wropg @) < L

constant size link sets 2?? arbitrary link sets
(a) v (enumerate) (a) v (a) X
(b) X (b) v (b) v (for C' = OPT)

How should we define components?

We need:
(a) We can efficiently find a component C' minimizing w(Drope(C))"
w(C)

(b) Ifw(U) > w(OPT), there exist a component C' with wropg @) < L

constant size link sets k-thin link sets arbitrary link sets
(a) v (enumerate) (a) v (a) X
(b) X (b) v (b) v (for C' = OPT)

k-thin components

[)
Definition .//'\ '\\.
C C Lis k-thin if forevery v € V, o '\ P
there are at most k links ¢ € C' ./ \. \,,./ \.
for which v lies on ;. IRET N S .

2-thin component

k-thin components

[)
Definition .//'\ '\\.
(' C L is k-thin if for every v € V, b N
there are at most k links ¢ € C' ./ \. \,,./ \.
for which v lies on ;. ICTTA N -

2-thin component

k-thin components

Definition

C C Lis k-thin if forevery v € V,
there are at most k links £ € C
for which v lies on ;.

AN
N\ I\

“~-—
Q... --“

2-thin component

k-thin components

Definition

C C Lis k-thin if forevery v € V,
there are at most k links £ € C
for which v lies on ;.

AN
NN

~~~~~~

2-thin component



k-thin components

[ )
Definition .//'\ '\\.
C C Lis k-thin if forevery v € V, o '\ P
there are at most k links ¢ € C' ./ \. \,./ \.
for which v lies on ;. IRET N S .

2-thin component

Then:

(a) We can efficiently find a component C' minimizing o w(©

WU)(C))' 4 (dynamic program)



k-thin components

[ )
Definition .//'\ '\\.
C C Lis k-thin if forevery v € V, o '\ P
there are at most k links ¢ € C' ./ \. \,./ \.
for which v lies on ;. IRET N S .

2-thin component

Then:

(a) We can efficiently find a component C' minimizing o w(©

WU)(C))' 4 (dynamic program)

(b) If w(U) > w(OPT), there exist a component C' with w(la#fj)(c)) <1l Vv

(decomposition theorem)



The decomposition theorem

Fixe > 0.
U := set of up-links s.t. the paths P, with u € U are disjoint. z
Decomposition Theorem ./:" \\‘.
There exists a partition C of OPT" into [1/:]-thin components .,:'./.'/ \. H
st ﬂl N
> w(Dropy(C)) > (1—e)-w(U), I N ety

ceC




The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition C of OPT into [1/]-thin components s.t.:

Z w(Dropy (C)) > (1 —¢)-w(U).
ceC

Proving (b):



The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition C of OPT into [1/]-thin components s.t.:

> w(Dropy(C)) = (1 &) - w().
CceC

Proving (b): If w(U) > w(OPT),

> w(Dropy(C)) > w(OPT) = Y w(C).
cecC ceC

= There exist a component C' with w(D+?U)(C)) < 1.



The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition C of OPT into [1/]-thin components s.t.:

> w(Dropy(C)) = (1 &) - w().
CceC

Proving (b): If w(U) > w(OPT),

> w(Dropy(C)) > w(OPT) = Y w(C).
ceC ceC

= There exist a component C' with w(D+?U)(C)) < 1.

‘ The relative greedy algorithm for WTAP has approximation ratio 1 +In2 4 ¢ < 1.7.




Local Search



Improving on the Relative Greedy Algorithm

Relative greedy: Replace only up-links from the starting solution.

Now: We want to gain also on links added in previous iterations.



Improving on the Relative Greedy Algorithm

Relative greedy: Replace only up-links from the starting solution.

Now: We want to gain also on links added in previous iterations.

A\ ‘

“amm

link ¢

. - . witness set W,
(added in earlier iteration) !

Key idea

Reward partial progress, i.e., covering one of the up-links in TW,.




Rewarding partial progress
up-link solution U = UﬁeFWE

WTAP solution F’
. - ﬁ\.\ . /;-\.
/\° / \“‘6 o/'."i\o .": ““'./ \“‘o
/N

-0

[
’
’
s R
/. .- -

» If an up-link in W, C U is covered by a new component C, remove it

» If Wy is empty, remove ¢ from F'.



Rewarding partial progress
up-link solution U = UﬁeFWE

WTAP solution F'
N AN
2
\

AN -

» If an up-link in W, C U is covered by a new component C, remove it

-0

» If Wy is empty, remove ¢ from F'.



Rewarding partial progress
up-link solution U = UﬁeFWE

WTAP solution F'
N AN
2
\

AN -

» If an up-link in W, C U is covered by a new component C, remove it

-0

» If Wy is empty, remove ¢ from F'.

» Minimize the potential

O(F) = Z

ZEF:‘Wd:l

wl)+ > 3w

KEF:|W[|:2



[Wel= 1

[Wel= )

The potential function ¢

WTAP solution F’

/‘\,

AN
VAW

R

o=-"

U UEeFWZ
A
n
n
o/.' \\o
7%/ [KY %
! g \ "
. M Y
¢ N ;] e e
4 ]
-'/ \:
° °




The potential function ¢
U= UéeFWZ

WTAP solution F'
= Z w(l) + Z §.w(g) °/.\.\ "?“
T |v€v€4|F22 /\ /\ /\
I\

.-X

R

w(l).

[Wel=1
» When adding ¢ to F’ (and W, to U), the potential increases by at most



The potential function ¢

O(F) = Z w(l) + Z % ~w(0)
LeF: LeF":
[Wel=1 [We|=2

» When adding ¢ to F’ (and W, to U), the potential increases by at most

WTAP solution F'
./‘\.

/\

S\

R

U= UéeFWZ

A
/

,. Y
\J
G L Y
Q s [y
’ [} Ay
A (]
e !
7 H [ [
‘
' H
R 1
[ ] [

» When removing u € W), the potential decreases by

o fw
W {é-ww)

it W] = 1

if W] = 2

w(l).



The potential function ¢

U= UEeFWZ

-

OF):= > wl)+ > 2 w()
LeF: LeF:
[Wel=1 [We|=2

» When adding ¢ to F’ (and W, to U), the potential increases by at most

WTAP solution F’

/‘\,
S\

R

.

A

A
/

,. Y
.
G L Y
Q s (Y
] \‘ 1
(] ! .
7 H [ [
‘
’ H
L 1
[ ] [

» When removing u € W), the potential decreases by

o
) {é-ww)

it W, = 1
if || = 2

w(l).

Observation




Local minima are good approximations

A Local Search Step with component C

» When adding C'to F'
(and the corresponding witness sets to U),

®(F) increases by at most 3 - w(C).
» When removing Drop;;(C) from U,

®(F) decreases by at least w(Dropy; (C)).




Local minima are good approximations

A Local Search Step with component C
Decomposition Theorem

» When adding C'to F'

(and the corresponding witness sets to U), There exists a partition C of OPT into
[1/e]-thin components s.t.:

3 w(Dropy(C)) = (1 — &) - w(U)
» When removing Drop;;(C) from U, cec

®(F) increases by at most 3 - w(C).

=1-¢) w(F).

®(F) decreases by at least w(Dropy; (C)).




Local minima are good approximations

A Local Search Step with component C
Decomposition Theorem

» When adding C'to F'

(and the corresponding witness sets to U), There exists a partition C of OPT into
[1/e]-thin components s.t.:

3 w(Dropy(C)) = (1 — &) - w(U)
» When removing Drop;;(C) from U, cec

®(F) increases by at most 3 - w(C).

=1-¢) w(F).

®(F) decreases by at least w(Dropy; (C)).

If w(F) > 3 - w(OPT),

Zw(DropU(C’)) > 3. w(OPT) = Z 3. w(C).
ceC ceC

— There exists an improving component!



Local rch algorithm
ocal search aigo i WTAP solution F

() F := arbitrary WTAP solution C\
/ .\/ \
VA

U= corresponding up-link solution
’
S /\ ¢"
-

up-link solution U

==

\




Local search algorithm
(@) F := arbitrary WTAP solution
U := corresponding up-link solution

(@ Aslong as ®(F) improves significantly:
o (' := k-thin component maximizing @w(Drop (C)) — 1.5 - w(C).

WTAP solution F
T




Local search algorithm

(@) F := arbitrary WTAP solution
U := corresponding up-link solution

(@ Aslong as ®(F) improves significantly:

o (' := k-thin component maximizing @w(Drop (C)) — 1.5 - w(C).

e Remove Drop; (C) from U.
If a witness set W, became empty, remove ¢ from F.

WTAP solution F
T




Local search algorithm

(@) F := arbitrary WTAP solution
U := corresponding up-link solution

(@ Aslong as ®(F) improves significantly
e (C := k-thin component maximizing @w(Drop; (C)) — 1.5 - w(C)

e Remove Drop; (C') from U.
If a witness set W, became empty, remove ¢ from F’

e Add C'to F' and the corresponding witness sets to U

/‘R

WTAP solution F

r
(<

NG

7\

up-link solution U

24

]
]
Q A K
/ H W\
s\ 1
1 ’ R\
]
5 [ ] ([}
]
[
]




Local search algorithm

(@) F := arbitrary WTAP solution
U := corresponding up-link solution

(@ Aslong as ®(F) improves significantly
e (C := k-thin component maximizing @w(Drop; (C)) — 1.5 - w(C)

e Remove Drop; (C') from U.
If a witness set W, became empty, remove ¢ from F’
e Add C'to F' and the corresponding witness sets to U.

e "Shorten” up-links.

@) ReturnF.

WTAP solution F

/‘R

up-link solution U

r
(

/,-\
/ .": ./"“\o
A,




Local search algorithm

(@) F := arbitrary WTAP solution
U := corresponding up-link solution

(@ Aslong as ®(F) improves significantly
e (C := k-thin component maximizing @w(Drop; (C)) — 1.5 - w(C)

e Remove Drop; (C') from U.
If a witness set W, became empty, remove ¢ from F’
e Add C'to F' and the corresponding witness sets to U.

e "Shorten” up-links.

@) ReturnF.

The above algorithm is a (1.5+¢)-approximation algorithm

for Weighted Tree Augmentation.

WTAP solution F

/‘R

up-link solution U

r
(

/,-\
/ .": ./"“\o
A,




Proving the Decomposition Theorem



Proving the decomposition theorem
,
(]

We have ..\
o ] 3
» aset U of up-links s.t. the paths P, with u € U are disjoint, /°\l‘ '
> WTAP solution OP'T, and ivdl N i
%’l “ ’0.. ’0..
¢ ‘....“:"::‘n»

> constants e > 0 and k == [1].

Decomposition Theorem

There exists a partition C of OPT" into k-thin components s.t.:

Z w(Dropy(C)) > (1 —¢) - w(U).
ceC

20



Proving the decomposition theorem

We have
» aset U of up-links s.t. the paths P, with u € U are disjoint,
» WTAP solution OPT, and
> constants e > 0 and k == [1]. 0
L CIt L

) o

component C ="}

,&“" ./i'
/ R\?

L J

» Select “uncovered” up-links R C U with w(R) < e - w(U).
» Construct partition C of OPT into k-thin components s.t. § o
:.l' f ~s\ .:' :o'.

.:/] \.“‘: “".

all up-links in U \ R are covered, i.e.,
component Cs

U\ R C | Dropy(C)
cec




Proof Outline

I8
oo
/ .\.\/.:; ..... m
~—, '~~~~
NG
[ /\.

() Foru € U, fix a covering F,, C OPT of P,.

21



Proof Outline

.
[ S
/ \.\ ....... u
I
/ L] / \. S
. ® \..
o L4 \&' [} / Pu \.
________ . e PR
S w~’ ¢'/
=== -
Su -
F, — °

() Foru € U, fix a covering F,, C OPT of P,.

21



Proof Outline

T
® F,
~—ec e up
/ \.\ .......
® U o
.\. ~~~
[ ) / \."\
1y I~
o, © . ® / P °
(¢ ® U e (o)
________ 2 “ K J R \.
Seeaaw” .’ / o
Fy  TtmeemmT . o

() Foru € U, fix a covering F,, C OPT of P,.
OoOPT

21



Proof Outline

o
[ S
/ \.\ ....... u
.\. '~.~
/ [ ) / \. S
. ® \..
() L4 ‘)¢' L] / Pu \.
________ 2 “ K J R \.
Y -’ ¢'/
=== -
Su -
Fu - [

() Foru € U, fix a covering F,, C OPT of P,.

oOPT

21



Proof Outline

T
® F,
~—ec e u
/ \.\ .....
.\ s~ U
° S~
\. ~~
N ] T
[ ) ° v ® ® /P (]
. . ®

() Foru € U, fix a covering F,, C OPT of P,.
@ Select R C U with w(R) < e -w(U).

OOPT
R = {71/3}

21



Proof Outline

T
® F,
It YT “1
/ \.\ ....... u
.\. Say o
~—e ~
/ \ ° / / e,
o, © « _® / R ” .\.

~ . [ ] ,
DR T ‘*‘ ‘\ o 'l \.
Seena -7 —"
~ -
Fu Senmmm==" ° FUQ FU4

() Foru € U, fix a covering F,, C OPT of P,.

@) Select R C U with w(R) < ¢ - w(U). OoOPT

@) Partition OPT into components s.t. R = {us}
forallu € U \ R, there is a component C with £}, C C.

21



Proof Outline

T
® F,
[ S ul
/ \.\ ...... u
.\. Say o
~—e o
/ \ ° / / e,
o, © « _® ® / R " .\.
( J
R

() Foru € U, fix a covering F,, C OPT of P,.

@) Select R C U with w(R) < ¢ - w(U). OoOPT

@) Partition OPT into components s.t. R = {us}
forallu € U \ R, there is a component C with £}, C C.

Challenge

Make choices in (1) and (2) s.t. the resulting components are k-thin.




The Dependency Graph

r (Cohen, Nutov [2013])
[
~—
.-Q; ........ .
\. ~_~. U
[ \. .~.
~— Sao
N4 T
°. 1Y \‘ ’.. < / P .\
Stamma= "‘1~ ‘\ ¢. &".\.
! RbREEEE el /
1 €2 Scemnna== - °
3

minimal covering F), of P,.

22



The Dependency Graph
(Cohen, Nutov [2013])
/\..Q;"\.-......"u u
N LT
\~o

(o}
(] ,
\x.\ 51\0
x/ * /, o
~ "‘ 2
Seennnm=" - ®
3
minimal covering F), of P,.

directed path with vertex set ),

and arc set A,

22



The Dependency Graph
(Cohen, Nutov [2013])
/\..Q;"\.-......"u u
N LT
LY L4 i

(o}
.\".\ (1\0\
"‘¢/ { ] [2 o
AR T - ] [/,3
l3
minimal covering F), of P,. directed path with vertex set ),
and arc set A,
dependency graph for U := digraph with vertex set OP'T" and arc set UueUAu.

22



The Dependency Graph

r (Cohen, Nutov [2013])
°
\
.w; .........
T Teeal U
[ ] \. Y
/ \. Ss
/ \ * / e,
° ° \\ '.. < / P .\
__________ “1~ “ ,e ’/.\.
0 I RREEI /
1 (2 Sceennam=" ®
3

minimal covering F), of P,.

(o]
0y ;)
’3

directed path with vertex set ),

and arc set A,

dependency graph for U := digraph with vertex set OP'T" and arc set UueUAu.

—

The dependency graph is a branching.

22



Thinness and the Dependency Graph

different colors = different paths A,
o
Q=——p-0
/ <:o—>o
(o) (o)
\ /o—>o
0—>0\

O—>»0

23



Thinness and the Dependency Graph

different colors = different paths A,
o

o—>o<:
/ O——»0
o o
0——+0
\‘0_> o<
o—0

Key properties of the dependency graph

For a careful choice of the coverings F,:
(i) The dependency graph is a branching.

(ii) If every path in the dependency graph intersects < k& — 1 sets A,
then every component is k-thin.

7 23



Thinness and the Dependency Graph

different colors = different paths A,
o

o—0
/ <:o—>o
o o
\ O—»0
o o/ Every connected component
~— corresponds to a 4-thin link set.
o—0

Key properties of the dependency graph

For a careful choice of the coverings F,:
(i) The dependency graph is a branching.

(ii) If every path in the dependency graph intersects < k& — 1 sets A,
then every component is k-thin.

23



Selecting the uncovered up-links R

(e]

o—>o<: o
o—>o<:
O30

O—>0O.

/ \o—>o<:z_>z

O

\ /O—>O

o—»o\ o

24



Selecting the uncovered up-links R

(e]

O——> o<: o
o—>o<:
O=—p-0 © ©
0 \ (o) (o)
o—>o<:

O—>0
(®)

O—»0

24



Selecting the uncovered up-links R

(e]

/ o_>o<:°_’°<:2—>o
T oot

\ 0 1/'O_ND

O—>»0
1\A o

24



Selecting the uncovered up-links R

/ 02—> o<::—>o<:

O—>0O.

y 1 \o_>o<:z Z

N

\ o

o—»o\o

(0]
O—»0

24



Selecting the uncovered up-links R

24



Selecting the uncovered up-links R

O——»0 6
1 \ , 2 o o
© o<:o—3>o
2
Q=0
0 1/7
oo o
3
0—2>O\3>o

Sample i € {0, ...,k — 1} uniformly at random.

R = {u € U : label of A, isin { i, i+k, i+2k, }}

24



Selecting the uncovered up-links R

O—»0

o 5
2 (o] o
O—»0
<:O—>O
2 1=1
O—»0
k=3
O——»0 ©
2 \350

Sample i € {0, ...,k — 1} uniformly at random.

R = {u € U : label of A, isin { i, i+k, i+2k, }}

24



The decomposition theorem

Fixe > 0.
U := set of up-links s.t. the paths P, with u € U are disjoint. z
Decomposition Theorem ./:" \\‘.
There exists a partition C of OPT" into [1/:]-thin components .,:'./.'/ \. H
s.t.: ;:%'l ~\\ ’.:' ”‘f
> w(Dropy(C)) > (1—e)-w(U), L T ey

ceC

25



Conclusions



Conclusions

We gave two better-than-2 approximation algorithms for WTAP:
> Relative greedy: approximation ratio 1 + In2 + ¢ ~ 1.69
» Local search: approximation ratio 1.5 + ¢

Some open questions:
» Can we beat factor 2 for weighted connectivity augmentation?
» Can we beat factor 2 for the min. weight 2-edge-connected spanning subgraph problem?
» What about LP relaxations?
» What about node connectivity?

27



Conclusions

We gave two better-than-2 approximation algorithms for WTAP:
> Relative greedy: approximation ratio 1 + In2 + ¢ ~ 1.69
» Local search: approximation ratio 1.5 + ¢

Some open questions:
» Can we beat factor 2 for weighted connectivity augmentation?
» Can we beat factor 2 for the min. weight 2-edge-connected spanning subgraph problem?
» What about LP relaxations?
» What about node connectivity?

Thank you!

27



