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ETH Zürich

Rico Zenklusen

ETH Zürich



Weighted Tree Augmentation (WTAP)

tree G = (V, E)
links L ⊆

(
V
2
)

with weights w : L→ R>0

`

P`

WTAP
Find a min weight set F ⊆ L of links s.t.
G becomes 2-edge-connected when adding F .

Equivalent:
Every edge e ∈ E must be covered by a link ` ∈ F ,
i.e., e ∈ P` for some ` ∈ F .
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Warm-up: a simple 2-approximation

r

r r

1 Pick an arbitrary root r ∈ V .

2 “Split” every link ` into two up-links,
each with weight w(`).

3 Compute an optimal up-link solution.

solve natural LP (integral), or
use dynamic programming
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Better-than-2 approximations for special cases

unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß,
Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

bounded-diameter trees: (1 + ln 2)-approximation [Cohen, Nutov, 2013]

better-than-2 approximation if an opt. solution to natural LP has no small fractional values

[Iglesias, Ravi, 2018]
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Our result

Theorem

There is a (1.5 + ε)-approximation algorithm for Weighted Tree Augmentation (WTAP)
for any fixed ε > 0.

Outline of this talk:

1. relative greedy algorithm: (1 + ln 2 + ε)-approximation

2. local search algorithm: (1.5 + ε)-approximation

3. main technical ingredient: decomposition theorem
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The Relative Greedy Algorithm



The starting solution for relative greedy

r

r

1 Compute optimal up-link solution U (2-approximation).

2 “Shorten” up-links s.t. Pu with u ∈ U are disjoint, i.e.,
every edge is covered by exactly one link.
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Relative greedy

Invariant: U ∪ F is a WTAP solution

1 U := 2-approximate up-link solution s.t.
the paths Pu with u ∈ U are disjoint.

F := ∅

2 As long as w(U ∪ F ) decreases:
• Select a component C ⊆ L. x
• Add C to F .

• Remove the following from U :

DropU (C) :=
{

u ∈ U : Pu ⊆
⋃
`∈C

P`

}

3 Return U ∪ F .

Choose C s.t. it minimizes

w(C)
w(DropU (C))

among a restricted class of
components.
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How should we define components?

We need:

(a) We can efficiently find a component C minimizing w(C)
w(DropU (C)) .

(b) If w(U)� w(OPT), there exist a component C with w(C)
w(DropU (C)) � 1.

constant size link sets

(a) 3 (enumerate)

(b) 7

???

(a) 3

(b) 3

arbitrary link sets

(a) 7

(b) 3 (for C = OPT)
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k-thin components

Definition

C ⊆ L is k-thin if for every v ∈ V ,
there are at most k links ` ∈ C
for which v lies on P`.

v

2-thin component

Then:

(a) We can efficiently find a component C minimizing w(C)
w(DropU (C)) . 3 (dynamic program)

(b) If w(U)� w(OPT), there exist a component C with w(C)
w(DropU (C)) � 1. 3

(decomposition theorem)
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The decomposition theorem

Fix ε > 0.

U := set of up-links s.t. the paths Pu with u ∈ U are disjoint.

Decomposition Theorem

There exists a partition C of OPT into d1/εe-thin components
s.t.: ∑

C∈C
w(DropU (C)) ≥ (1− ε) · w(U).

r

11



The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition C of OPT into d1/εe-thin components s.t.:∑
C∈C

w(DropU (C)) ≥ (1− ε) · w(U).

Proving (b):

If w(U)� w(OPT),∑
C∈C

w(DropU (C)) � w(OPT) =
∑
C∈C

w(C).

=⇒ There exist a component C with w(C)
w(DropU (C)) � 1.

Theorem
The relative greedy algorithm for WTAP has approximation ratio 1 + ln 2 + ε < 1.7.
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Local Search



Improving on the Relative Greedy Algorithm

Relative greedy: Replace only up-links from the starting solution.

Now: We want to gain also on links added in previous iterations.

r
r

link `
(added in earlier iteration)

witness set W`

Key idea

Reward partial progress, i.e., covering one of the up-links in W`.

14
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Rewarding partial progress

WTAP solution F

r

up-link solution U =
⋃̇

`∈F W`

r

If an up-link in W` ⊆ U is covered by a new component C, remove it.

If W` is empty, remove ` from F .

Minimize the potential

Φ(F ) :=
∑

`∈F :|W`|=1
w(`) +

∑
`∈F :|W`|=2

3
2 · w(`)

15
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The potential function Φ

Φ(F ) :=
∑
`∈F :

|W`|=1

w(`) +
∑
`∈F :

|W`|=2

3
2 · w(`)

WTAP solution F U =
⋃̇

`∈F W`

r r

Observation

w(U) = w(F )

When adding ` to F (and W` to U ), the potential increases by at most 3
2 · w(`).

When removing u ∈W`, the potential decreases by

w(u) :=
{

w(`) if |W`| = 1
1
2 · w(`) if |W`| = 2
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Local minima are good approximations

A Local Search Step with component C

When adding C to F
(and the corresponding witness sets to U ),

Φ(F ) increases by at most 3
2 · w(C).

When removing DropU (C) from U ,

Φ(F ) decreases by at least w(DropU (C)).

Decomposition Theorem

There exists a partition C of OPT into
d1/εe-thin components s.t.:∑
C∈C

w(DropU (C)) ≥ (1− ε) · w(U)

= (1− ε) · w(F ).

If w(F )� 3
2 · w(OPT),∑

C∈C
w(DropU (C)) � 3

2 · w(OPT) =
∑
C∈C

3
2 · w(C).

=⇒ There exists an improving component!
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Local search algorithm

1 F := arbitrary WTAP solution
U := corresponding up-link solution

2 As long as Φ(F ) improves significantly:
• C := k-thin component maximizing w(DropU (C))− 1.5 · w(C).

• Remove DropU (C) from U .
If a witness set W` became empty, remove ` from F .

• Add C to F and the corresponding witness sets to U .

• ”Shorten” up-links.

3 Return F.

Theorem

The above algorithm is a (1.5+ε)-approximation algorithm
for Weighted Tree Augmentation.

WTAP solution F
r

C

up-link solution U
r

C

18



Local search algorithm

1 F := arbitrary WTAP solution
U := corresponding up-link solution

2 As long as Φ(F ) improves significantly:
• C := k-thin component maximizing w(DropU (C))− 1.5 · w(C).

• Remove DropU (C) from U .
If a witness set W` became empty, remove ` from F .

• Add C to F and the corresponding witness sets to U .

• ”Shorten” up-links.

3 Return F.

Theorem

The above algorithm is a (1.5+ε)-approximation algorithm
for Weighted Tree Augmentation.

WTAP solution F
r

C

up-link solution U
r

C

18



Local search algorithm

1 F := arbitrary WTAP solution
U := corresponding up-link solution

2 As long as Φ(F ) improves significantly:
• C := k-thin component maximizing w(DropU (C))− 1.5 · w(C).

• Remove DropU (C) from U .
If a witness set W` became empty, remove ` from F .

• Add C to F and the corresponding witness sets to U .

• ”Shorten” up-links.

3 Return F.

Theorem

The above algorithm is a (1.5+ε)-approximation algorithm
for Weighted Tree Augmentation.

WTAP solution F
r

C

up-link solution U
r

C

18



Local search algorithm

1 F := arbitrary WTAP solution
U := corresponding up-link solution

2 As long as Φ(F ) improves significantly:
• C := k-thin component maximizing w(DropU (C))− 1.5 · w(C).

• Remove DropU (C) from U .
If a witness set W` became empty, remove ` from F .

• Add C to F and the corresponding witness sets to U .

• ”Shorten” up-links.

3 Return F.

Theorem

The above algorithm is a (1.5+ε)-approximation algorithm
for Weighted Tree Augmentation.

WTAP solution F
r

C

up-link solution U
r

C

18



Local search algorithm

1 F := arbitrary WTAP solution
U := corresponding up-link solution

2 As long as Φ(F ) improves significantly:
• C := k-thin component maximizing w(DropU (C))− 1.5 · w(C).

• Remove DropU (C) from U .
If a witness set W` became empty, remove ` from F .

• Add C to F and the corresponding witness sets to U .

• ”Shorten” up-links.

3 Return F.

Theorem

The above algorithm is a (1.5+ε)-approximation algorithm
for Weighted Tree Augmentation.

WTAP solution F
r

C

up-link solution U
r

C

18



Local search algorithm

1 F := arbitrary WTAP solution
U := corresponding up-link solution

2 As long as Φ(F ) improves significantly:
• C := k-thin component maximizing w(DropU (C))− 1.5 · w(C).

• Remove DropU (C) from U .
If a witness set W` became empty, remove ` from F .

• Add C to F and the corresponding witness sets to U .

• ”Shorten” up-links.

3 Return F.

Theorem

The above algorithm is a (1.5+ε)-approximation algorithm
for Weighted Tree Augmentation.

WTAP solution F
r

C

up-link solution U
r

C

18



Proving the Decomposition Theorem



Proving the decomposition theorem

We have

a set U of up-links s.t. the paths Pu with u ∈ U are disjoint,

WTAP solution OPT, and

constants ε > 0 and k := d1
εe.

Decomposition Theorem

There exists a partition C of OPT into k-thin components s.t.:∑
C∈C

w(DropU (C)) ≥ (1− ε) · w(U).

r

20



Proving the decomposition theorem

We have

a set U of up-links s.t. the paths Pu with u ∈ U are disjoint,

WTAP solution OPT, and

constants ε > 0 and k := d1
εe.

Goal

Select “uncovered” up-links R ⊆ U with w(R) ≤ ε · w(U).

Construct partition C of OPT into k-thin components s.t.
all up-links in U \R are covered, i.e.,

U \R ⊆
⋃

C∈C
DropU (C)

r

r
component C1

component C2

R

20



Proof Outline

r

u

Pu

Fu

Fu2 Fu4

Fu1

Fu3Fu3

OPT

R = {u3}

1 For u ∈ U , fix a covering Fu ⊆ OPT of Pu.

2 Select R ⊆ U with w(R) ≤ ε · w(U).
3 Partition OPT into components s.t.

for all u ∈ U \R, there is a component C with Fu ⊆ C.

Challenge

Make choices in 1 and 2 s.t. the resulting components are k-thin.

21
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The Dependency Graph
(Cohen, Nutov [2013])r

u

`1 `2
`3

Pu

`1
`2

`3

minimal covering Fu of Pu.

directed path with vertex set Fu

and arc set Au

dependency graph for U := digraph with vertex set OPT and arc set
⋃̇

u∈U Au.

The dependency graph is a branching.
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Thinness and the Dependency Graph

Every connected component
corresponds to a 4-thin link set.

different colors = different paths Au

Key properties of the dependency graph

For a careful choice of the coverings Fu:

(i) The dependency graph is a branching.

(ii) If every path in the dependency graph intersects ≤ k − 1 sets Au,
then every component is k-thin.
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Selecting the uncovered up-links R

1

1

1

4

0

0

2

2

2

2

3

3
3

3

3

3

5

5 6

i = 1
k = 3

Sample i ∈ {0, . . . , k − 1} uniformly at random.

R :=
{

u ∈ U : label of Au is in { i, i+k, i+2k, . . . }
}
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The decomposition theorem

Fix ε > 0.

U := set of up-links s.t. the paths Pu with u ∈ U are disjoint.

Decomposition Theorem

There exists a partition C of OPT into d1/εe-thin components
s.t.: ∑

C∈C
w(DropU (C)) ≥ (1− ε) · w(U).

r
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Conclusions



Conclusions

Summary

We gave two better-than-2 approximation algorithms for WTAP:

Relative greedy: approximation ratio 1 + ln 2 + ε ≈ 1.69
Local search: approximation ratio 1.5 + ε

Some open questions:

Can we beat factor 2 for weighted connectivity augmentation?

Can we beat factor 2 for the min. weight 2-edge-connected spanning subgraph problem?

What about LP relaxations?

What about node connectivity?

Thank you!
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