Better-Than-2 Approximations for Weighted Tree Augmentation

Vera Traub
ETH Zürich

Rico Zenklusen
ETH Zürich

Weighted Tree Augmentation (WTAP)

Weighted Tree Augmentation (WTAP)

Weighted Tree Augmentation (WTAP)

WTAP

Find a min weight set $F \subseteq L$ of links s.t. G becomes 2-edge-connected when adding F.

Equivalent:

Every edge $e \in E$ must be covered by a link $\ell \in F$, i.e., $e \in P_{\ell}$ for some $\ell \in F$.

Warm-up: a simple 2-approximation

(1) Pick an arbitrary root $r \in V$.

Warm-up: a simple 2-approximation

(1) Pick an arbitrary root $r \in V$.
(2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.

Warm-up: a simple 2-approximation

(1) Pick an arbitrary root $r \in V$.
(2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.
(3) Compute an optimal up-link solution.

Warm-up: a simple 2-approximation

(1) Pick an arbitrary root $r \in V$.
(2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.
(3) Compute an optimal up-link solution.
solve natural LP (integral), or use dynamic programming

Better-than-2 approximations for special cases

- unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021] (improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018], [Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß, Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])
- bounded-diameter trees: $(1+\ln 2)$-approximation
[Cohen, Nutov, 2013]
- better-than-2 approximation if an opt. solution to natural LP has no small fractional values
[Iglesias, Ravi, 2018]

Our result

Theorem

There is a $(1.5+\varepsilon)$-approximation algorithm for Weighted Tree Augmentation (WTAP) for any fixed $\varepsilon>0$.

Outline of this talk:

1. relative greedy algorithm: $(1+\ln 2+\varepsilon)$-approximation
2. local search algorithm: $(1.5+\varepsilon)$-approximation
3. main technical ingredient: decomposition theorem

The Relative Greedy Algorithm

The starting solution for relative greedy

(1) Compute optimal up-link solution U (2-approximation).

The starting solution for relative greedy

(1) Compute optimal up-link solution U (2-approximation).
(2) "Shorten" up-links s.t. P_{u} with $u \in U$ are disjoint, i.e., every edge is covered by exactly one link.

Relative greedy

Invariant: $U \cup F$ is a WTAP solution
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint. $F:=\emptyset$

Relative greedy

Invariant: $U \cup F$ is a WTAP solution
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint. $F:=\emptyset$

(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.

Relative greedy

Invariant: $U \cup F$ is a WTAP solution
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint.
$F:=\emptyset$

(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U :

$$
\operatorname{Drop}_{U}(C):=\left\{u \in U: P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell}\right\}
$$

Relative greedy

Invariant: $U \cup F$ is a WTAP solution
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint.
$F:=\emptyset$

(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U :

$$
\operatorname{Drop}_{U}(C):=\left\{u \in U: P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell}\right\}
$$

(3) Return $U \cup F$.

Relative greedy

Invariant: $U \cup F$ is a WTAP solution
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint.
$F:=\emptyset$
(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U :

$$
\operatorname{Drop}_{U}(C):=\left\{u \in U: P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell}\right\}
$$

(3) Return $U \cup F$.

Choose C s.t. it minimizes

$$
\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}
$$

among a restricted class of components.

How should we define components?

We need:
(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.

How should we define components?

We need:
(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.
(b) If $w(U) \gg w(\mathrm{OPT})$, there exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.

How should we define components?

We need:
(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.
(b) If $w(U) \gg w(\mathrm{OPT})$, there exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.

constant size link sets

(a) \checkmark (enumerate)
(b) X

How should we define components?

We need:
(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.
(b) If $w(U) \gg w(\mathrm{OPT})$, there exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.
constant size link sets
(a) \checkmark (enumerate)
(b) X
arbitrary link sets
(a) X
(b) $\checkmark($ for $C=\mathrm{OPT})$

How should we define components?

We need:
(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.
(b) If $w(U) \gg w(\mathrm{OPT})$, there exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.
constant size link sets
(a) \checkmark (enumerate)
(b) x

???

(a) \checkmark
(b) $\sqrt{ }$
arbitrary link sets
(a) X
(b) $\checkmark($ for $C=\mathrm{OPT})$

How should we define components?

We need:
(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.
(b) If $w(U) \gg w(\mathrm{OPT})$, there exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.
constant size link sets
(a) \checkmark (enumerate)
(b) x

k-thin link sets

(a) \checkmark
(b)
arbitrary link sets
(a) X
(b) $\checkmark($ for $C=\mathrm{OPT})$

k-thin components

Definition

 there are at most k links $\ell \in C$ for which v lies on P_{ℓ}.

2-thin component

k-thin components

Definition

$C \subseteq L$ is $\underline{k \text {-thin if for every } v \in V, ~}$ there are at most k links $\ell \in C$ for which v lies on P_{ℓ}.

2-thin component

k-thin components

Definition

 there are at most k links $\ell \in C$ for which v lies on P_{ℓ}.

2-thin component

k-thin components

Definition

 there are at most k links $\ell \in C$ for which v lies on P_{ℓ}.

2-thin component

k-thin components

Definition

$C \subseteq L$ is $\underline{k \text {-thin if for every } v \in V, ~}$ there are at most k links $\ell \in C$ for which v lies on P_{ℓ}.

2-thin component

Then:

(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$. (dynamic program)

k-thin components

Definition

 there are at most k links $\ell \in C$ for which v lies on P_{ℓ}.

2-thin component

Then:

(a) We can efficiently find a component C minimizing $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}$.
(b) If $w(U) \gg w(\mathrm{OPT})$, there exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.
(decomposition theorem)

The decomposition theorem

Fix $\varepsilon>0$.
$U:=$ set of up-links s.t. the paths P_{u} with $u \in U$ are disjoint.

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U)
$$

The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U) .
$$

The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U)
$$

Proving (b): If $w(U) \gg w(\mathrm{OPT})$,

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \gg w(\mathrm{OPT})=\sum_{C \in \mathcal{C}} w(C)
$$

\Longrightarrow There exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.

The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U)
$$

Proving (b): If $w(U) \gg w(\mathrm{OPT})$,

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \gg w(\mathrm{OPT})=\sum_{C \in \mathcal{C}} w(C)
$$

\Longrightarrow There exist a component C with $\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)} \ll 1$.

Theorem

The relative greedy algorithm for WTAP has approximation ratio $1+\ln 2+\varepsilon<1.7$.

Local Search

Improving on the Relative Greedy Algorithm

Relative greedy: Replace only up-links from the starting solution.
Now: We want to gain also on links added in previous iterations.

Improving on the Relative Greedy Algorithm

Relative greedy: Replace only up-links from the starting solution.
Now: We want to gain also on links added in previous iterations.

link ℓ
(added in earlier iteration)

witness set W_{ℓ}

Rewarding partial progress

WTAP solution F

up-link solution $U=\dot{U}_{\ell \in F} W_{\ell}$

- If an up-link in $W_{\ell} \subseteq U$ is covered by a new component C, remove it.
- If W_{ℓ} is empty, remove ℓ from F.

Rewarding partial progress

WTAP solution F

up-link solution $U=\dot{U}_{\ell \in F} W_{\ell}$

- If an up-link in $W_{\ell} \subseteq U$ is covered by a new component C, remove it.
- If W_{ℓ} is empty, remove ℓ from F.

Rewarding partial progress

WTAP solution F

up-link solution $U=\dot{U}_{\ell \in F} W_{\ell}$

- If an up-link in $W_{\ell} \subseteq U$ is covered by a new component C, remove it.
- If W_{ℓ} is empty, remove ℓ from F.
- Minimize the potential

$$
\Phi(F):=\sum_{\ell \in F:\left|W_{\ell}\right|=1} w(\ell)+\sum_{\ell \in F:\left|W_{\ell}\right|=2} \frac{3}{2} \cdot w(\ell)
$$

The potential function Φ

The potential function Φ

- When adding ℓ to F (and W_{ℓ} to U), the potential increases by at most $\frac{3}{2} \cdot w(\ell)$.

The potential function Φ

- When adding ℓ to F (and W_{ℓ} to U), the potential increases by at most $\frac{3}{2} \cdot w(\ell)$.
- When removing $u \in W_{\ell}$, the potential decreases by

$$
\bar{w}(u):= \begin{cases}w(\ell) & \text { if }\left|W_{\ell}\right|=1 \\ \frac{1}{2} \cdot w(\ell) & \text { if }\left|W_{\ell}\right|=2\end{cases}
$$

The potential function Φ

- When adding ℓ to F (and W_{ℓ} to U), the potential increases by at most $\frac{3}{2} \cdot w(\ell)$.
- When removing $u \in W_{\ell}$, the potential decreases by

$$
\bar{w}(u):= \begin{cases}w(\ell) & \text { if }\left|W_{\ell}\right|=1 \\ \frac{1}{2} \cdot w(\ell) & \text { if }\left|W_{\ell}\right|=2\end{cases}
$$

Observation

$\bar{w}(U)=w(F)$

Local minima are good approximations

A Local Search Step with component C

- When adding C to F
(and the corresponding witness sets to U),

$$
\Phi(F) \text { increases by at most } \frac{3}{2} \cdot w(C) \text {. }
$$

- When removing $\operatorname{Drop}_{U}(C)$ from U,
$\Phi(F)$ decreases by at least $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)$.

Local minima are good approximations

A Local Search Step with component C

- When adding C to F
(and the corresponding witness sets to U),

$$
\Phi(F) \text { increases by at most } \frac{3}{2} \cdot w(C) \text {. }
$$

- When removing $\operatorname{Drop}_{U}(C)$ from U,
$\Phi(F)$ decreases by at least $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)$.

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\begin{aligned}
\sum_{C \in \mathcal{C}} \bar{w}\left(\operatorname{Drop}_{U}(C)\right) & \geq(1-\varepsilon) \cdot \bar{w}(U) \\
& =(1-\varepsilon) \cdot w(F) .
\end{aligned}
$$

Local minima are good approximations

A Local Search Step with component C

- When adding C to F
(and the corresponding witness sets to U),

$$
\Phi(F) \text { increases by at most } \frac{3}{2} \cdot w(C) \text {. }
$$

- When removing $\operatorname{Drop}_{U}(C)$ from U,
$\Phi(F)$ decreases by at least $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)$.

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\begin{aligned}
\sum_{C \in \mathcal{C}} \bar{w}\left(\operatorname{Drop}_{U}(C)\right) & \geq(1-\varepsilon) \cdot \bar{w}(U) \\
& =(1-\varepsilon) \cdot w(F) .
\end{aligned}
$$

If $w(F) \gg \frac{3}{2} \cdot w(\mathrm{OPT})$,

$$
\sum_{C \in \mathcal{C}} \bar{w}\left(\operatorname{Drop}_{U}(C)\right) \gg \frac{3}{2} \cdot w(\mathrm{OPT})=\sum_{C \in \mathcal{C}} \frac{3}{2} \cdot w(C)
$$

\Longrightarrow There exists an improving component!

Local search algorithm

(1) $F:=$ arbitrary WTAP solution
$U:=$ corresponding up-link solution

Local search algorithm

(1) $F:=$ arbitrary WTAP solution
$U:=$ corresponding up-link solution
(2) As long as $\Phi(F)$ improves significantly:

- $C:=k$-thin component maximizing $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)-1.5 \cdot w(C)$.

Local search algorithm

(1) $F:=$ arbitrary WTAP solution
$U:=$ corresponding up-link solution
(2) As long as $\Phi(F)$ improves significantly:

- $C:=k$-thin component maximizing $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)-1.5 \cdot w(C)$.
- Remove $\operatorname{Drop}_{U}(C)$ from U. If a witness set W_{ℓ} became empty, remove ℓ from F.

up-link solution U

Local search algorithm

(1) $F:=$ arbitrary WTAP solution
$U:=$ corresponding up-link solution
(2) As long as $\Phi(F)$ improves significantly:

- $C:=k$-thin component maximizing $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)-1.5 \cdot w(C)$.
- Remove $\operatorname{Drop}_{U}(C)$ from U. If a witness set W_{ℓ} became empty, remove ℓ from F.

up-link solution U

Local search algorithm

(1) $F:=$ arbitrary WTAP solution
$U:=$ corresponding up-link solution
(2) As long as $\Phi(F)$ improves significantly:

- $C:=k$-thin component maximizing $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)-1.5 \cdot w(C)$.
- Remove $\operatorname{Drop}_{U}(C)$ from U. If a witness set W_{ℓ} became empty, remove ℓ from F.

up-link solution U

Local search algorithm

(1) $F:=$ arbitrary WTAP solution
$U:=$ corresponding up-link solution
(2) As long as $\Phi(F)$ improves significantly:

- $C:=k$-thin component maximizing $\bar{w}\left(\operatorname{Drop}_{U}(C)\right)-1.5 \cdot w(C)$.
- Remove $\operatorname{Drop}_{U}(C)$ from U. If a witness set W_{ℓ} became empty, remove ℓ from F.

up-link solution U

The above algorithm is a $(1.5+\varepsilon)$-approximation algorithm for Weighted Tree Augmentation.

Proving the Decomposition Theorem

Proving the decomposition theorem

We have

- a set U of up-links s.t. the paths P_{u} with $u \in U$ are disjoint,
- WTAP solution OPT, and
- constants $\varepsilon>0$ and $k:=\left\lceil\frac{1}{\varepsilon}\right\rceil$.

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into k-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U)
$$

Proving the decomposition theorem

We have

- a set U of up-links s.t. the paths P_{u} with $u \in U$ are disjoint,
- WTAP solution OPT, and
- constants $\varepsilon>0$ and $k:=\left\lceil\frac{1}{\varepsilon}\right\rceil$.

Goal

- Select "uncovered" up-links $R \subseteq U$ with $w(R) \leq \varepsilon \cdot w(U)$.
- Construct partition \mathcal{C} of OPT into k-thin components s.t. all up-links in $U \backslash R$ are covered, i.e.,

$$
U \backslash R \subseteq \bigcup_{C \in \mathcal{C}} \operatorname{Drop}_{U}(C)
$$

(1) For $u \in U$, fix a covering $F_{u} \subseteq$ OPT of P_{u}.

(1) For $u \in U$, fix a covering $F_{u} \subseteq$ OPT of P_{u}.

(1) For $u \in U$, fix a covering $F_{u} \subseteq$ OPT of P_{u}.

(1) For $u \in U$, fix a covering $F_{u} \subseteq$ OPT of P_{u}.

(1) For $u \in U$, fix a covering $F_{u} \subseteq$ OPT of P_{u}.
(2) Select $R \subseteq U$ with $w(R) \leq \varepsilon \cdot w(U)$.

$$
R=\left\{u_{3}\right\}
$$

Proof Outline

(1) For $u \in U$, fix a covering $F_{u} \subseteq$ OPT of P_{u}.
(2) Select $R \subseteq U$ with $w(R) \leq \varepsilon \cdot w(U)$.
(3) Partition OPT into components s.t.

○ OPT
$R=\left\{u_{3}\right\}$ for all $u \in U \backslash R$, there is a component C with $F_{u} \subseteq C$.

Proof Outline

(1) For $u \in U$, fix a covering $F_{u} \subseteq \mathrm{OPT}$ of P_{u}.
(2) Select $R \subseteq U$ with $w(R) \leq \varepsilon \cdot w(U)$.

O OPT
(3) Partition OPT into components s.t. for all $u \in U \backslash R$, there is a component C with $F_{u} \subseteq C$.

Challenge

Make choices in (1) and (2) s.t. the resulting components are k-thin.

The Dependency Graph
(Cohen, Nutov [2013])
minimal covering F_{u} of P_{u}.

The Dependency Graph

minimal covering F_{u} of P_{u}.

directed path with vertex set F_{u} and arc set A_{u}

The Dependency Graph

minimal covering F_{u} of P_{u}.

directed path with vertex set F_{u} and arc set A_{u}
dependency graph for $U:=$ digraph with vertex set OPT and arc set $\dot{U}_{u \in U} A_{u}$.

The Dependency Graph

minimal covering F_{u} of P_{u}.

directed path with vertex set F_{u} and arc set A_{u}
dependency graph for $U:=$ digraph with vertex set OPT and arc set $\dot{U}_{u \in U} A_{u}$.

The dependency graph is a branching.

Thinness and the Dependency Graph

different colors $=$ different paths A_{u}

Thinness and the Dependency Graph

different colors $=$ different paths A_{u}

Key properties of the dependency graph

For a careful choice of the coverings F_{u} :
(i) The dependency graph is a branching.
(ii) If every path in the dependency graph intersects $\leq k-1$ sets A_{u}, then every component is k-thin.

Thinness and the Dependency Graph

different colors $=$ different paths A_{u}

Every connected component corresponds to a 4 -thin link set.

Key properties of the dependency graph

For a careful choice of the coverings F_{u} :
(i) The dependency graph is a branching.
(ii) If every path in the dependency graph intersects $\leq k-1$ sets A_{u}, then every component is k-thin.

Selecting the uncovered up-links R

Selecting the uncovered up-links R

Sample $i \in\{0, \ldots, k-1\}$ uniformly at random.
$R:=\left\{u \in U:\right.$ label of A_{u} is in $\left.\{i, i+k, i+2 k, \ldots\}\right\}$

Selecting the uncovered up-links R

Sample $i \in\{0, \ldots, k-1\}$ uniformly at random.

$$
R:=\left\{u \in U: \text { label of } A_{u} \text { is in }\{i, i+k, i+2 k, \ldots\}\right\}
$$

The decomposition theorem

Fix $\varepsilon>0$.
$U:=$ set of up-links s.t. the paths P_{u} with $u \in U$ are disjoint.

Decomposition Theorem

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U)
$$

Conclusions

Conclusions

Summary

We gave two better-than-2 approximation algorithms for WTAP:

- Relative greedy: approximation ratio $1+\ln 2+\varepsilon \approx 1.69$
- Local search: approximation ratio $1.5+\varepsilon$

Some open questions:

- Can we beat factor 2 for weighted connectivity augmentation?
- Can we beat factor 2 for the min. weight 2 -edge-connected spanning subgraph problem?
- What about LP relaxations?
- What about node connectivity?

Conclusions

Summary

We gave two better-than-2 approximation algorithms for WTAP:

- Relative greedy: approximation ratio $1+\ln 2+\varepsilon \approx 1.69$
- Local search: approximation ratio $1.5+\varepsilon$

Some open questions:

- Can we beat factor 2 for weighted connectivity augmentation?
- Can we beat factor 2 for the min. weight 2 -edge-connected spanning subgraph problem?
- What about LP relaxations?
- What about node connectivity?

Thank you!

