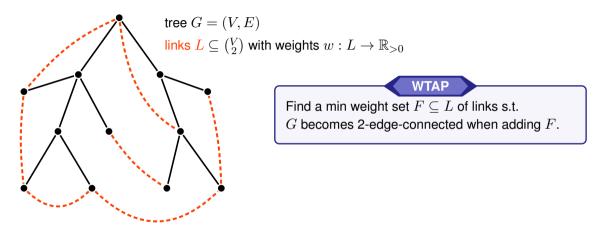
Better-Than-2 Approximations for Weighted Tree Augmentation

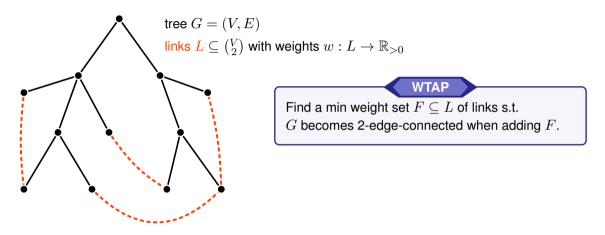
Vera Traub ETH Zürich **Rico Zenklusen**

ETH Zürich

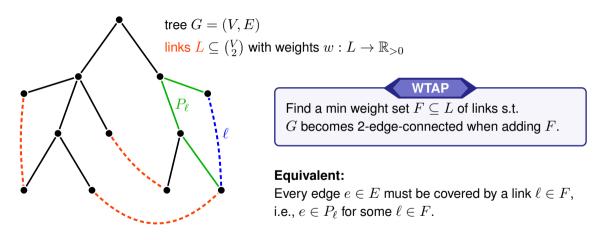
Weighted Tree Augmentation (WTAP)

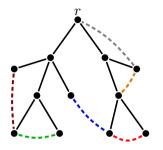


Weighted Tree Augmentation (WTAP)

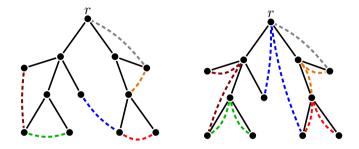


Weighted Tree Augmentation (WTAP)

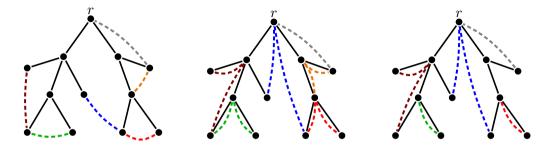




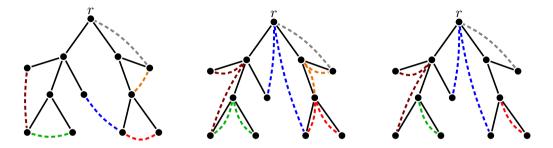
1) Pick an arbitrary root $r \in V$.



- 1) Pick an arbitrary root $r \in V$.
- (2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.



- 1) Pick an arbitrary root $r \in V$.
- (2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.
- 3 Compute an optimal up-link solution.



- 1) Pick an arbitrary root $r \in V$.
- (2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.

3 Compute an optimal up-link solution.

solve natural LP (integral), or use dynamic programming

Better-than-2 approximations for special cases

▶ unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018], [Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß, Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

bounded-diameter trees: $(1 + \ln 2)$ -approximation

[Cohen, Nutov, 2013]

better-than-2 approximation if an opt. solution to natural LP has no small fractional values [Iglesias, Ravi, 2018]

Theorem

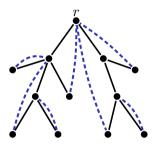
There is a $(1.5 + \varepsilon)$ -approximation algorithm for Weighted Tree Augmentation (WTAP) for any fixed $\varepsilon > 0$.

Outline of this talk:

- 1. relative greedy algorithm: $(1 + \ln 2 + \varepsilon)$ -approximation
- 2. local search algorithm: $(1.5 + \varepsilon)$ -approximation
- 3. main technical ingredient: decomposition theorem

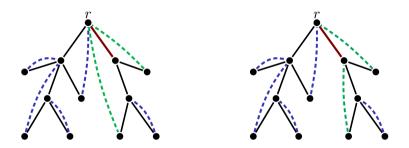
The Relative Greedy Algorithm

The starting solution for relative greedy



(1) Compute optimal up-link solution U (2-approximation).

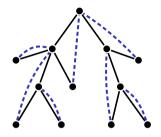
The starting solution for relative greedy



Compute optimal up-link solution U (2-approximation).
 (2) "Shorten" up-links s.t. P_u with u ∈ U are disjoint, i.e., every edge is covered by exactly one link.

Invariant: $U \cup F$ is a WTAP solution

(1) U := 2-approximate up-link solution s.t. the paths P_u with $u \in U$ are disjoint. $F := \emptyset$

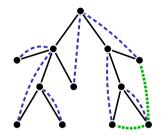


Invariant: $U \cup F$ is a WTAP solution

(1) $U \coloneqq$ 2-approximate up-link solution s.t. the paths P_u with $u \in U$ are disjoint. $F \coloneqq \emptyset$

(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.



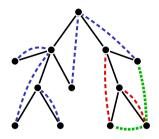
Invariant: $U \cup F$ is a WTAP solution

(1) $U \coloneqq$ 2-approximate up-link solution s.t. the paths P_u with $u \in U$ are disjoint. $F \coloneqq \emptyset$

(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U:

$$\mathrm{Drop}_U(C) \coloneqq \left\{ u \in U : P_u \subseteq \bigcup_{\ell \in C} P_\ell \right\}$$



Invariant: $U \cup F$ is a WTAP solution

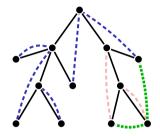
(1) $U \coloneqq$ 2-approximate up-link solution s.t. the paths P_u with $u \in U$ are disjoint. $F \coloneqq \emptyset$

(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from *U*:

$$\operatorname{Drop}_{U}(C) \coloneqq \left\{ u \in U : P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell} \right\}$$

3 Return $U \cup F$.



Invariant: $U \cup F$ is a WTAP solution

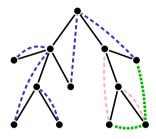
(1) $U \coloneqq$ 2-approximate up-link solution s.t. the paths P_u with $u \in U$ are disjoint. $F \coloneqq \emptyset$

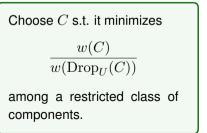
(2) As long as
$$w(U \cup F)$$
 decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from *U*:

$$\operatorname{Drop}_U(C) \coloneqq \left\{ u \in U : P_u \subseteq \bigcup_{\ell \in C} P_\ell \right\}$$

3 Return $U \cup F$.





We need:

(a) We can efficiently find a component *C* minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$.

We need:

(a) We can efficiently find a component C minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$.

(b) If $w(U) \gg w(\text{OPT})$, there exist a component C with $\frac{w(C)}{w(\text{Drop}_U(C))} \ll 1$.

We need:

(a) We can efficiently find a component C minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$.

(b) If $w(U) \gg w(\text{OPT})$, there exist a component C with $\frac{w(C)}{w(\text{Drop}_U(C))} \ll 1$.

We need:

- (a) We can efficiently find a component C minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$.
- (b) If $w(U) \gg w(\text{OPT})$, there exist a component C with $\frac{w(C)}{w(\text{Drop}_U(C))} \ll 1$.

arbitrary link sets
(a)
$$\checkmark$$

(b) \checkmark (for $C = OPT$)

We need:

- (a) We can efficiently find a component *C* minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$.
- (b) If $w(U) \gg w(\text{OPT})$, there exist a component C with $\frac{w(C)}{w(\text{Drop}_U(C))} \ll 1$.

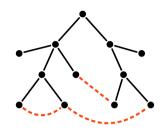
We need:

- (a) We can efficiently find a component C minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$.
- (b) If $w(U) \gg w(OPT)$, there exist a component C with $\frac{w(C)}{w(Drop_U(C))} \ll 1$.

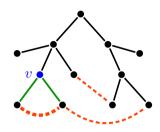
constant size link sets	k-thin link sets	arbitrary link sets
(a) 🗸 (enumerate)	(a) 🗸	(a) 🗡
(b) 🗡	(b) 🗸	(b) \checkmark (for $C = OPT$)

Definition

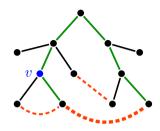
 $C \subseteq L$ is <u>k-thin</u> if for every $v \in V$, there are at most k links $\ell \in C$ for which v lies on P_{ℓ} .



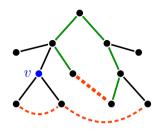
 $C \subseteq L$ is <u>k-thin</u> if for every $v \in V$, there are at most k links $\ell \in C$ for which v lies on P_{ℓ} .

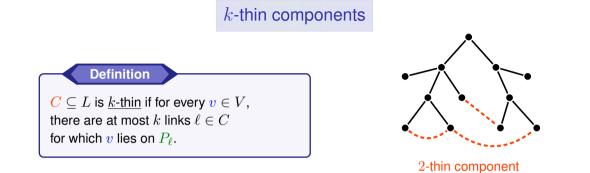


 $C \subseteq L$ is <u>k-thin</u> if for every $v \in V$, there are at most k links $\ell \in C$ for which v lies on P_{ℓ} .



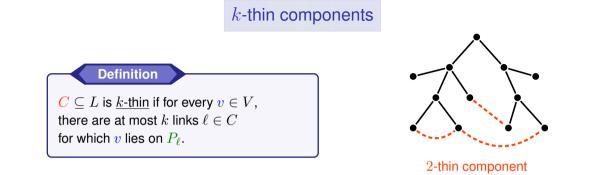
 $C \subseteq L$ is <u>k-thin</u> if for every $v \in V$, there are at most k links $\ell \in C$ for which v lies on P_{ℓ} .





Then:

(a) We can efficiently find a component C minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$. \checkmark (dynamic program)



Then:

(a) We can efficiently find a component *C* minimizing $\frac{w(C)}{w(\text{Drop}_U(C))}$. \checkmark (dynamic program)

(b) If
$$w(U) \gg w(\text{OPT})$$
, there exist a component C with $\frac{w(C)}{w(\text{Drop}_U(C))} \ll 1$.

(decomposition theorem)

The decomposition theorem

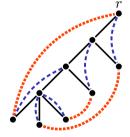
Fix $\varepsilon > 0$.

 $U \coloneqq$ set of up-links s.t. the paths P_u with $u \in U$ are disjoint.

Decomposition Theorem

There exists a partition C of OPT into $\lceil 1/\epsilon \rceil$ -thin components s.t.:

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \geq (1 - \varepsilon) \cdot w(U).$$



The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition ${\mathcal C}$ of OPT into $\lceil 1/\epsilon\rceil\text{-thin components s.t.:}$

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \geq (1 - \varepsilon) \cdot w(U).$$

Proving (b):

The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition ${\mathcal C}$ of OPT into $\lceil 1/\varepsilon\rceil$ -thin components s.t.:

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \geq (1 - \varepsilon) \cdot w(U).$$

Proving (b): If $w(U) \gg w(OPT)$,

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \gg w(\operatorname{OPT}) = \sum_{C \in \mathcal{C}} w(C).$$

 \implies There exist a component C with $\frac{w(C)}{w(\operatorname{Drop}_U(C))} \ll 1$.

The approximation ratio of relative greedy

Decomposition Theorem

There exists a partition ${\mathcal C}$ of OPT into $\lceil 1/\varepsilon\rceil\text{-thin components s.t.:}$

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \geq (1 - \varepsilon) \cdot w(U).$$

Proving (b): If $w(U) \gg w(OPT)$,

$$\sum_{C \in \mathcal{C}} w(\mathrm{Drop}_U(C)) \gg w(\mathrm{OPT}) = \sum_{C \in \mathcal{C}} w(C).$$

 \implies There exist a component C with $\frac{w(C)}{w(\operatorname{Drop}_U(C))} \ll 1$.

TheoremThe relative greedy algorithm for WTAP has approximation ratio $1 + \ln 2 + \varepsilon < 1.7$.

Local Search

Improving on the Relative Greedy Algorithm

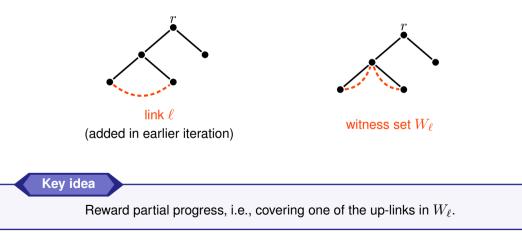
Relative greedy: Replace only up-links from the starting solution.

Now: We want to gain also on links added in previous iterations.

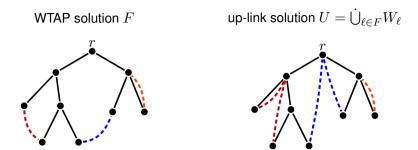
Improving on the Relative Greedy Algorithm

Relative greedy: Replace only up-links from the starting solution.

Now: We want to gain also on links added in previous iterations.

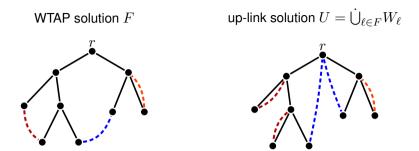


Rewarding partial progress



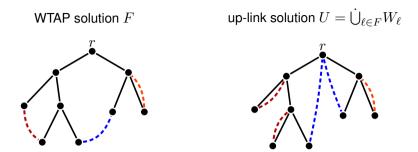
- ▶ If an up-link in $W_{\ell} \subseteq U$ is covered by a new component *C*, remove it.
- ▶ If W_{ℓ} is empty, remove ℓ from *F*.

Rewarding partial progress



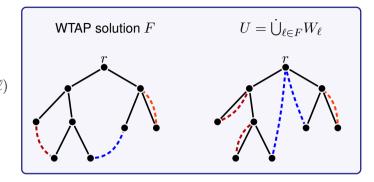
- ▶ If an up-link in $W_{\ell} \subseteq U$ is covered by a new component *C*, remove it.
- ▶ If W_{ℓ} is empty, remove ℓ from *F*.

Rewarding partial progress

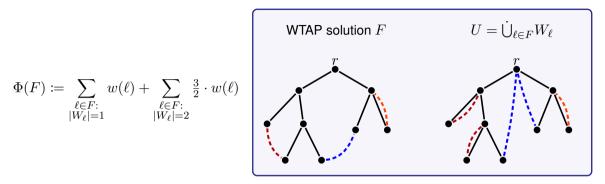


- ▶ If an up-link in $W_{\ell} \subseteq U$ is covered by a new component *C*, remove it.
- ▶ If W_{ℓ} is empty, remove ℓ from *F*.
- Minimize the potential

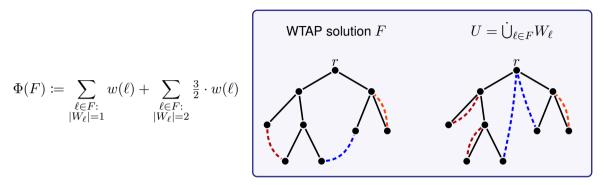
$$\Phi(F) \coloneqq \sum_{\ell \in F : |W_\ell| = 1} w(\ell) + \sum_{\ell \in F : |W_\ell| = 2} \frac{3}{2} \cdot w(\ell)$$



$$\Phi(F) \coloneqq \sum_{\substack{\ell \in F: \\ |W_{\ell}|=1}} w(\ell) + \sum_{\substack{\ell \in F: \\ |W_{\ell}|=2}} \frac{3}{2} \cdot w(\ell)$$

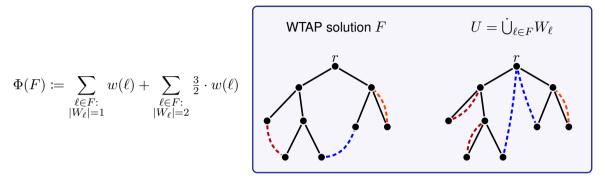


• When adding ℓ to F (and W_{ℓ} to U), the potential increases by at most $\frac{3}{2} \cdot w(\ell)$.



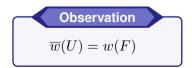
- When adding ℓ to F (and W_{ℓ} to U), the potential increases by at most $\frac{3}{2} \cdot w(\ell)$.
- When removing $u \in W_{\ell}$, the potential decreases by

$$\overline{w}(u) \coloneqq \begin{cases} w(\ell) & \text{ if } |W_\ell| = 1\\ \frac{1}{2} \cdot w(\ell) & \text{ if } |W_\ell| = 2 \end{cases}$$



- When adding ℓ to F (and W_{ℓ} to U), the potential increases by at most $\frac{3}{2} \cdot w(\ell)$.
- ▶ When removing $u \in W_{\ell}$, the potential decreases by

$$\overline{w}(u) \coloneqq \begin{cases} w(\ell) & \text{ if } |W_\ell| = 1\\ \frac{1}{2} \cdot w(\ell) & \text{ if } |W_\ell| = 2 \end{cases}$$



Local minima are good approximations

A Local Search Step with component ${\bf C}$

 When adding C to F (and the corresponding witness sets to U),

 $\Phi(F)$ increases by at most $\frac{3}{2} \cdot w(C)$.

• When removing $Drop_U(C)$ from U,

 $\Phi(F)$ decreases by at least $\overline{w}(\operatorname{Drop}_U(C))$.

Local minima are good approximations

A Local Search Step with component ${\bf C}$

 When adding C to F (and the corresponding witness sets to U),

 $\Phi(F)$ increases by at most $\frac{3}{2} \cdot w(C)$.

• When removing $Drop_U(C)$ from U,

 $\Phi(F)$ decreases by at least $\overline{w}(\operatorname{Drop}_U(C))$.

Decomposition Theorem

There exists a partition C of OPT into $\lceil 1/\varepsilon \rceil$ -thin components s.t.:

 $\sum_{C \in \mathcal{C}} \overline{w}(\operatorname{Drop}_U(C)) \ge (1 - \varepsilon) \cdot \overline{w}(U)$ $= (1 - \varepsilon) \cdot w(F).$

Local minima are good approximations

A Local Search Step with component ${\bf C}$

 When adding C to F (and the corresponding witness sets to U),

 $\Phi(F)$ increases by at most $\frac{3}{2} \cdot w(C)$.

• When removing $Drop_U(C)$ from U,

 $\Phi(F)$ decreases by at least $\overline{w}(\operatorname{Drop}_U(C))$.

Decomposition Theorem

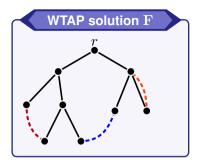
There exists a partition \mathcal{C} of OPT into $\lceil 1/\varepsilon \rceil$ -thin components s.t.:

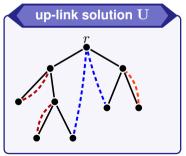
 $\sum_{C \in \mathcal{C}} \overline{w}(\operatorname{Drop}_U(C)) \ge (1 - \varepsilon) \cdot \overline{w}(U)$ $= (1 - \varepsilon) \cdot w(F).$

If $w(F) \gg \frac{3}{2} \cdot w(\text{OPT})$, $\sum_{C \in \mathcal{C}} \overline{w}(\text{Drop}_U(C)) \gg \frac{3}{2} \cdot w(\text{OPT}) = \sum_{C \in \mathcal{C}} \frac{3}{2} \cdot w(C).$

 \implies There exists an improving component!

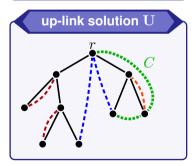
- (1) $F \coloneqq$ arbitrary WTAP solution
 - $U\coloneqq \mathsf{corresponding} \text{ up-link solution}$



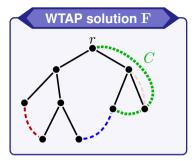


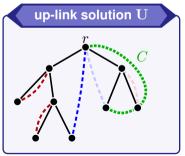
- 1) $F \coloneqq$ arbitrary WTAP solution
 - $U\coloneqq \text{corresponding up-link solution}$
- (2) As long as $\Phi(F)$ improves significantly:
 - C := k-thin component maximizing $\overline{w}(\operatorname{Drop}_U(C)) 1.5 \cdot w(C)$.



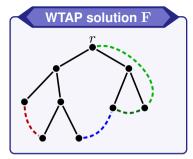


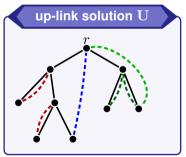
- 1) $F \coloneqq$ arbitrary WTAP solution
 - $U\coloneqq \text{corresponding up-link solution}$
- 2 As long as $\Phi(F)$ improves significantly:
 - $C \coloneqq k$ -thin component maximizing $\overline{w}(\operatorname{Drop}_U(C)) 1.5 \cdot w(C)$.
 - Remove $Drop_U(C)$ from U. If a witness set W_ℓ became empty, remove ℓ from F.



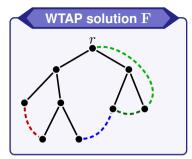


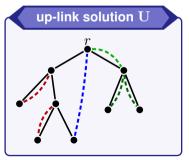
- 1) $F \coloneqq$ arbitrary WTAP solution
 - $U\coloneqq \text{corresponding up-link solution}$
- 2 As long as $\Phi(F)$ improves significantly:
 - $C \coloneqq k$ -thin component maximizing $\overline{w}(\operatorname{Drop}_U(C)) 1.5 \cdot w(C)$.
 - Remove $Drop_U(C)$ from U. If a witness set W_ℓ became empty, remove ℓ from F.
 - Add C to F and the corresponding witness sets to U.





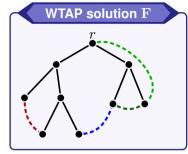
- 1) $F \coloneqq$ arbitrary WTAP solution
 - $U\coloneqq \operatorname{corresponding}\,\operatorname{up-link}\,\operatorname{solution}$
- 2 As long as $\Phi(F)$ improves significantly:
 - $C \coloneqq k$ -thin component maximizing $\overline{w}(\operatorname{Drop}_U(C)) 1.5 \cdot w(C)$.
 - Remove $Drop_U(C)$ from U. If a witness set W_ℓ became empty, remove ℓ from F.
 - Add C to F and the corresponding witness sets to U.
 - "Shorten" up-links.
- 3 Return F.

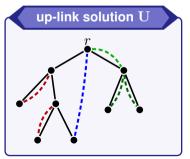




- 1) $F \coloneqq$ arbitrary WTAP solution
 - $U\coloneqq \operatorname{corresponding}\,\operatorname{up-link}\,\operatorname{solution}$
- 2 As long as $\Phi(F)$ improves significantly:
 - $C \coloneqq k$ -thin component maximizing $\overline{w}(\operatorname{Drop}_U(C)) 1.5 \cdot w(C)$.
 - Remove $Drop_U(C)$ from U. If a witness set W_ℓ became empty, remove ℓ from F.
 - Add C to F and the corresponding witness sets to U.
 - "Shorten" up-links.
- 3 Return F.

Theorem The above algorithm is a $(1.5+\varepsilon)$ -approximation algorithm for Weighted Tree Augmentation.





Proving the Decomposition Theorem

Proving the decomposition theorem

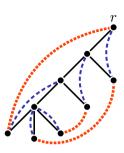
We have

- ▶ a set U of up-links s.t. the paths P_u with $u \in U$ are disjoint,
- ▶ WTAP solution OPT, and
- constants $\varepsilon > 0$ and $k \coloneqq \lceil \frac{1}{\varepsilon} \rceil$.

Decomposition Theorem

There exists a partition C of OPT into k-thin components s.t.:

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \geq (1 - \varepsilon) \cdot w(U).$$



Proving the decomposition theorem

We have

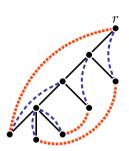
- ▶ a set U of up-links s.t. the paths P_u with $u \in U$ are disjoint,
- ▶ WTAP solution OPT, and
- constants $\varepsilon > 0$ and $k \coloneqq \lfloor \frac{1}{\varepsilon} \rfloor$.

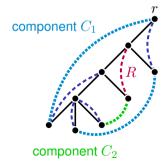
Goal

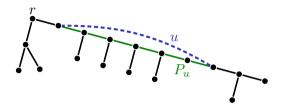
▶ Select "uncovered" up-links $R \subseteq U$ with $w(R) \leq \varepsilon \cdot w(U)$.

► Construct partition C of OPT into k-thin components s.t. all up-links in $U \setminus R$ are covered, i.e.,

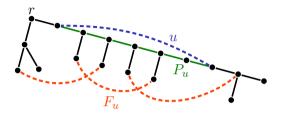
$$U \setminus R \subseteq \bigcup_{C \in \mathcal{C}} \operatorname{Drop}_U(C)$$







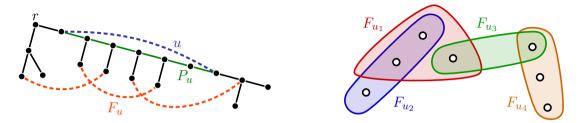
1 For $u \in U$, fix a covering $F_u \subseteq \text{OPT}$ of P_u .



1 For $u \in U$, fix a covering $F_u \subseteq \text{OPT}$ of P_u .

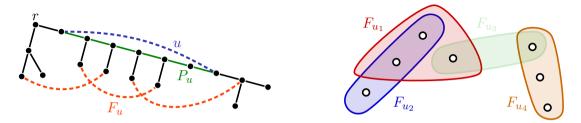
1 For $u \in U$, fix a covering $F_u \subseteq OPT$ of P_u .

 $\mathbf{0}\,\mathrm{OPT}$



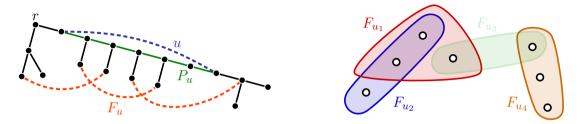
1 For $u \in U$, fix a covering $F_u \subseteq \text{OPT}$ of P_u .

 $\mathbf{0}\,\mathrm{OPT}$

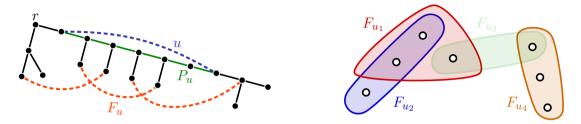


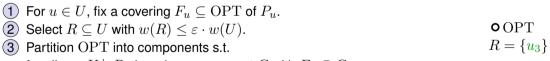
(1) For $u \in U$, fix a covering $F_u \subseteq \text{OPT}$ of P_u . (2) Select $R \subseteq U$ with $w(R) \le \varepsilon \cdot w(U)$.

 $\mathbf{OPT} \\ R = \{u_3\}$



1 For $u \in U$, fix a covering $F_u \subseteq \text{OPT}$ of P_u .	
2 Select $R \subseteq U$ with $w(R) \leq \varepsilon \cdot w(U)$.	OPT
3 Partition OPT into components s.t.	$R = \{u_3\}$
for all $u \in U \setminus R$, there is a component C with $F_u \subseteq C$.	

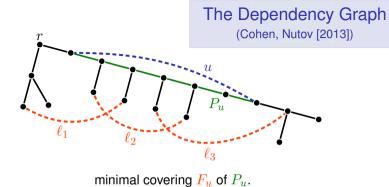


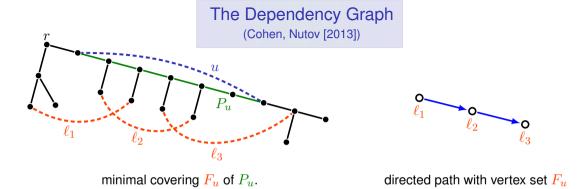


for all $u \in U \setminus R$, there is a component C with $F_u \subseteq C$.

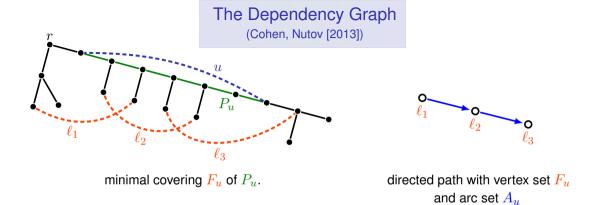
Challenge

Make choices in (1) and (2) s.t. the resulting components are k-thin.

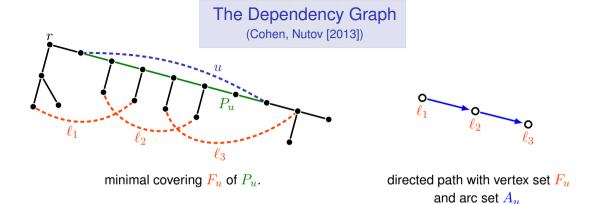




and arc set A_u



dependency graph for U := digraph with vertex set OPT and arc set $\bigcup_{u \in U} A_u$.

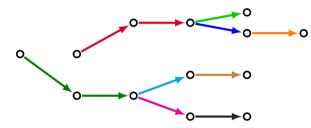


dependency graph for U := digraph with vertex set OPT and arc set $\bigcup_{u \in U} A_u$.

The dependency graph is a branching.

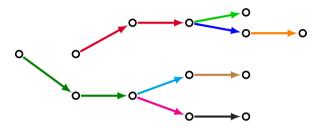
Thinness and the Dependency Graph

different colors = different paths A_u



Thinness and the Dependency Graph

different colors = different paths A_u



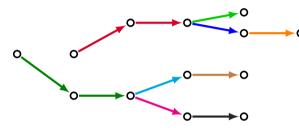
Key properties of the dependency graph

For a careful choice of the coverings F_u :

- (i) The dependency graph is a branching.
- (ii) If every path in the dependency graph intersects $\leq k 1$ sets A_u , then every component is *k*-thin.

Thinness and the Dependency Graph

different colors = different paths A_u



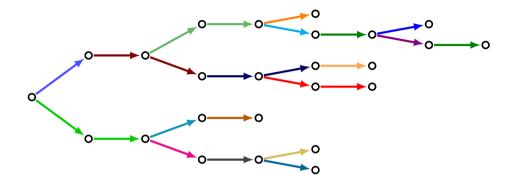
Every connected component corresponds to a 4-thin link set.

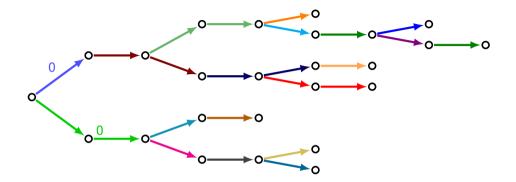
Key properties of the dependency graph

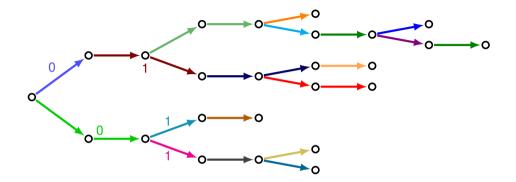
For a careful choice of the coverings F_u :

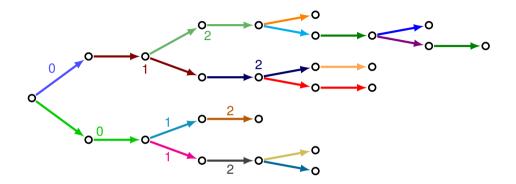
(i) The dependency graph is a branching.

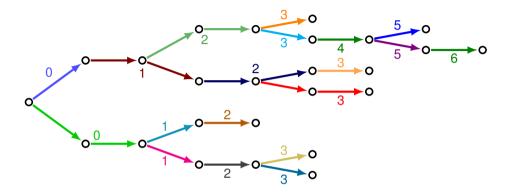
(ii) If every path in the dependency graph intersects $\leq k - 1$ sets A_u , then every component is *k*-thin.



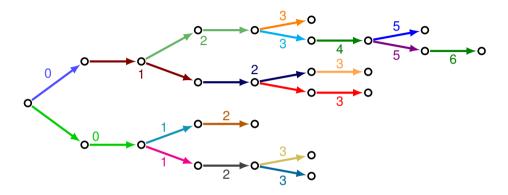








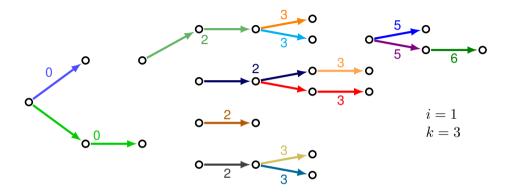
Selecting the uncovered up-links R



Sample $i \in \{0, \ldots, k-1\}$ uniformly at random.

$$R \coloneqq \left\{ u \in U : \text{label of } A_u \text{ is in } \left\{ i, i + k, i + 2k, \ldots \right\} \right\}$$

Selecting the uncovered up-links R



Sample $i \in \{0, \ldots, k-1\}$ uniformly at random.

$$R \coloneqq \left\{ u \in U : \text{label of } A_u \text{ is in } \left\{ i, i + k, i + 2k, \ldots \right\} \right\}$$

The decomposition theorem

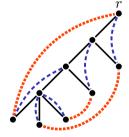
Fix $\varepsilon > 0$.

 $U \coloneqq$ set of up-links s.t. the paths P_u with $u \in U$ are disjoint.

Decomposition Theorem

There exists a partition C of OPT into $\lceil 1/\epsilon \rceil$ -thin components s.t.:

$$\sum_{C \in \mathcal{C}} w(\operatorname{Drop}_U(C)) \ge (1 - \varepsilon) \cdot w(U).$$



Conclusions

Conclusions

We gave two better-than-2 approximation algorithms for WTAP:

- ▶ Relative greedy: approximation ratio $1 + \ln 2 + \varepsilon \approx 1.69$
- Local search: approximation ratio $1.5 + \varepsilon$

Some open questions:

Summary

- ► Can we beat factor 2 for weighted connectivity augmentation?
- Can we beat factor 2 for the min. weight 2-edge-connected spanning subgraph problem?
- What about LP relaxations?
- What about node connectivity?

Conclusions

We gave two better-than-2 approximation algorithms for WTAP:

- ▶ Relative greedy: approximation ratio $1 + \ln 2 + \varepsilon \approx 1.69$
- Local search: approximation ratio $1.5 + \varepsilon$

Some open questions:

Summary

- ► Can we beat factor 2 for weighted connectivity augmentation?
- Can we beat factor 2 for the min. weight 2-edge-connected spanning subgraph problem?
- What about LP relaxations?
- What about node connectivity?

Thank you!