Low-rank binary matrix approximation in column-sum norm

Fahad Panolan

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India

Joint work with Fedor V. Fomin, Petr Golovach, and Kirill Simonov.

Introduction

- Low-rank matrix approximation is the method of compressing a matrix by reducing its dimension.
- It is the basic component in data analysis including Principal Component Analysis (PCA) and has applications in machine learning, scientific computing, etc.

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $||\mathbf{A} - \mathbf{B}||_{\nu}$.

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $||\mathbf{A} - \mathbf{B}||_{\nu}$.

- Frobenius norm, $||\mathbf{A} \mathbf{B}||_F^2 = \sum_{i,j} (a_{i,j} b_{i,j})^2$.
- Spectral norm, $\|\mathbf{A} \mathbf{B}\|_2 = \sup_{x \neq 0} \frac{\|(\mathbf{A} \mathbf{B})\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$.

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $||\mathbf{A} - \mathbf{B}||_{\nu}$.

- Frobenius norm, $||\mathbf{A} \mathbf{B}||_F^2 = \sum_{i,j} (a_{i,j} b_{i,j})^2$.
- Spectral norm, $\|\mathbf{A} \mathbf{B}\|_2 = \sup_{x \neq 0} \frac{\|(\mathbf{A} \mathbf{B})\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$.

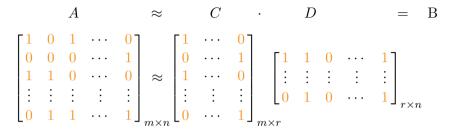
Both the problems are solvable in polynomial time using Singular Value Decomposition.

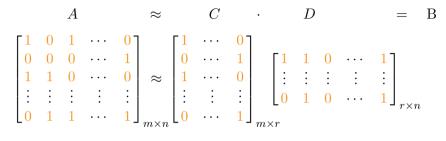
Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $||\mathbf{A} - \mathbf{B}||_{\nu}$.

- Frobenius norm, $||\mathbf{A} \mathbf{B}||_F^2 = \sum_{i,j} (a_{i,j} b_{i,j})^2$.
- Spectral norm, $\|\mathbf{A} \mathbf{B}\|_2 = \sup_{x \neq 0} \frac{\|(\mathbf{A} \mathbf{B})\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$.

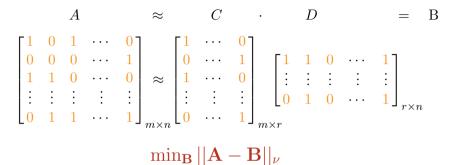
Both the problems are solvable in polynomial time using Singular Value Decomposition.

We consider LOW RANK MATRIX APPROXIMATION of binary matrices over GF(2).

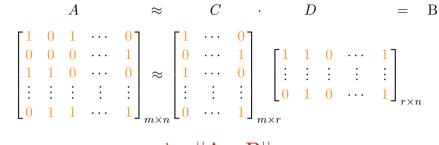




 $\min_{\mathbf{B}} ||\mathbf{A} - \mathbf{B}||_{\nu}$



• Entry-wise ℓ_0 -norm $\left(\sum_i \sum_j |a_{i,j} - b_{i,j}|\right)$: Low GF2 Rank Approximation



 $\min_{\mathbf{B}} ||\mathbf{A} - \mathbf{B}||_{\nu}$

Entry-wise ℓ₀-norm (∑_i ∑_j |a_{i,j} - b_{i,j}|): Low GF2 RANK APPROXIMATION
Column-sum norm (||A - B||₁ = max_j ∑_i |a_{i,j} - b_{i,j}|) ℓ₁-RANK-r APPROXIMATION OVER GF(2)

Known Results: LOW GF2 RANK APPROXIMATION

Minimize entry-wise ℓ_0 -norm, $\sum_i \sum_j |a_{i,j} - b_{i,j}|$

• NP-hard

[Gillis and Vavasis (2015)], [Dan, Hansen, Jiang, Wang, and Zhou (2015)]

• A PTAS with running time $n^{\mathcal{O}(\frac{2^{2r}}{\epsilon^2}\log \frac{1}{\epsilon})}$.

Known Results: LOW GF2 RANK APPROXIMATION

Minimize entry-wise ℓ_0 -norm, $\sum_i \sum_j |a_{i,j} - b_{i,j}|$

• NP-hard

[Gillis and Vavasis (2015)], [Dan, Hansen, Jiang, Wang, and Zhou (2015)]

• A PTAS with running time $n^{\mathcal{O}(\frac{2^{2r}}{\epsilon^2}\log \frac{1}{\epsilon})}$.

A randomized linear time approximation scheme (Running time f(k, ε)nm).
[Fomin, Golovach, Lokshtanov, Panolan, Saurabh (2019)]
[Ban, Bhattiprolu, Bringmann, Kolev, Woodruff (2019)]

Our Result: ℓ_1 -RANK-r APPROXIMATION OVER GF(2)

Minimize the column-sum norm, $\max_j \sum_i |a_{i,j} - b_{i,j}|$

A simple reduction from CLOSEST STRING shows that the problem is NP-hard.

Main result

For every $\varepsilon \in (0, 1)$, there is a randomized $(1 + \varepsilon)$ -approximation algorithm of running time $m^{\mathcal{O}(1)} n^{\mathcal{O}(2^{4r} \cdot \varepsilon^{-4})}$.

Proof Overview

The proof has 3 steps.

Step 1:

Reduce the problem to BINARY CONSTRAINED k-CENTER (BCC)

Step 2:

Using dimension reduction technique reduce BCC to BINARY CONSTRAINED PARTITION CENTER (BCPC)

Step 3: Solve BCPC using Integer Linear Programming Step 1

$$\begin{pmatrix} a_1 & \cdots & a_n \\ A & & B_i \end{pmatrix} \approx \sum_{i=1}^r \begin{pmatrix} b_1^i & \cdots & b_n^i \\ B_i & & B \end{pmatrix} = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}$$

Rank of $B_i = 1$ (i.e., all non-zero columns of B_i are identical).

Step 1

$$\begin{pmatrix} a_1 & \cdots & a_n \\ & A \end{pmatrix} \approx \sum_{i=1}^r \begin{pmatrix} b_1^i & \cdots & b_n^i \\ & B_i \end{pmatrix} = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}$$

Rank of $B_i = 1$ (i.e., all non-zero columns of B_i are identical).

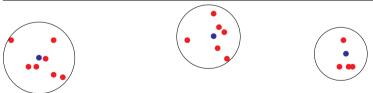
No. of distinct columns in B is at most 2^r .

Step 1

$$\begin{pmatrix} a_1 & \cdots & a_n \\ & & \end{pmatrix} \approx \sum_{i=1}^r \begin{pmatrix} b_1^i & \cdots & b_n^i \\ & & B_i \end{pmatrix} = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}$$

Rank of $B_i = 1$ (i.e., all non-zero columns of B_i are identical).

No. of distinct columns in B is at most 2^r .



- Minimize the maximum Hamming distance from red points to closest blue point.
- There is a relation between cluster centers.

BINARY CONSTRAINED k-Center

• $R_1, \ldots, R_m - k$ -ary relations with elements from $\{0, 1\}$.

• $C = \{c_1, \ldots, c_k\} \subseteq \{0, 1\}^m$ satisfies $\mathcal{R} = \{R_1, \ldots, R_m\}$ if :

 $(c_1[i],\ldots,c_k[i]) \in R_i$ for all $i \in [m]$.

BINARY CONSTRAINED k-Center

• $R_1, \ldots, R_m - k$ -ary relations with elements from $\{0, 1\}$.

• $C = \{c_1, \ldots, c_k\} \subseteq \{0, 1\}^m$ satisfies $\mathcal{R} = \{R_1, \ldots, R_m\}$ if :

 $(c_1[i],\ldots,c_k[i]) \in R_i \text{ for all } i \in [m].$

Example:

• m = 2, k = 3

• $R_1 = \{(0,0,1), (1,0,0)\}, \text{ and } R_2 = \{(1,1,1), (1,0,1), (0,0,1)\}$

BINARY CONSTRAINED k-Center

• $R_1, \ldots, R_m - k$ -ary relations with elements from $\{0, 1\}$.

• $C = \{c_1, \ldots, c_k\} \subseteq \{0, 1\}^m$ satisfies $\mathcal{R} = \{R_1, \ldots, R_m\}$ if :

 $(c_1[i],\ldots,c_k[i]) \in R_i$ for all $i \in [m]$.

Example:

۲

• m = 2, k = 3

• $R_1 = \{(0,0,1), (1,0,0)\}, \text{ and } R_2 = \{(1,1,1), (1,0,1), (0,0,1)\}$

$$c_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, c_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, c_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 satisfies $\mathcal{R} = \{R_1, R_2\}$

- Input : $X \subseteq \{0,1\}^m$, $k \in \mathbb{N}$, and $\mathcal{R} = \{R_1, \dots, R_m\}$.
- Output : Among all the sets $C = \{c_1, \ldots, c_k\}$ satisfying \mathcal{R} , find C

minimizing $\max_{x \in X} d(x, C)$.

Reduction to BINARY CONSTRAINED k-CENTER (BCC)

$$A = \left(a_1 \ \cdots \ a_n\right) \text{ and } r \in \mathbb{N}$$

- Partition columns of A into 2^r parts
- Find centers for each part s.t. centers are linear span of r vectors minimizing maximum distance distance of a column to the closest center.

Reduction to BINARY CONSTRAINED k-CENTER (BCC)

$$A = \left(a_1 \ \cdots \ a_n\right) \text{ and } r \in \mathbb{N}$$

- Partition columns of A into 2^r parts
- Find centers for each part s.t. centers are linear span of r vectors minimizing maximum distance distance of a column to the closest center.

Reduction for r=2

• X is the the set of columns of A and for all $i \in [m]$, $R_i = \{(0, 0, 0, 0), \dots, n\}$

(0, 0, 1, 1),(0, 1, 0, 1), $(0, 1, 1, 0)\}.$

- Input : $X \subseteq \{0,1\}^m$, $k \in \mathbb{N}$, $\mathcal{R} = \{R_1, \ldots, R_m\}$, and a partition $X_1 \uplus \ldots \uplus X_k$ of X.
- Output : Among all the sets $C = \{c_1, \ldots, c_k\}$ satisfying \mathcal{R} , find C minimizing

$$\max_{i=1}^{k} \max_{x \in X_i} d(x, c_i) = \operatorname{cost}(X_1 \uplus \ldots \uplus X_k, C).$$

• Dimension reduction [Ostrovsky and Rabani, 2002]. For any $Y \subseteq \{0,1\}^m$ of size n + k, and $\varepsilon > 0$, there is a linear map ψ from Y to $\{0,1\}^{\mathcal{O}(\frac{1}{\varepsilon^4}\log n)}$ such that the Hamming distances between any two vectors in $\psi(Y)$ are relatively preserved w.h.p.

There exits α s.t. $(1-\varepsilon)\alpha d(x,y) \leq d(\psi(x),\psi(y)) \leq (1+\varepsilon)\alpha d(x,y), \forall x,y \in Y$

• Dimension reduction [Ostrovsky and Rabani, 2002]. For any $Y \subseteq \{0,1\}^m$ of size n + k, and $\varepsilon > 0$, there is a linear map ψ from Y to $\{0,1\}^{\mathcal{O}(\frac{1}{\varepsilon^4}\log n)}$ such that the Hamming distances between any two vectors in $\psi(Y)$ are relatively preserved w.h.p.

There exits α s.t. $(1 - \varepsilon)\alpha d(x, y) \leq d(\psi(x), \psi(y)) \leq (1 + \varepsilon)\alpha d(x, y), \forall x, y \in Y$

• Let $Y = X \cup C$, where C is a hypothetical solution. Then, for any vector $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

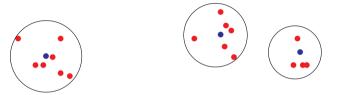
• Dimension reduction [Ostrovsky and Rabani, 2002]. For any $Y \subseteq \{0,1\}^m$ of size n + k, and $\varepsilon > 0$, there is a linear map ψ from Y to $\{0,1\}^{\mathcal{O}(\frac{1}{\varepsilon^4}\log n)}$ such that the Hamming distances between any two vectors in $\psi(Y)$ are relatively preserved w.h.p.

There exits α s.t. $(1 - \varepsilon)\alpha d(x, y) \leq d(\psi(x), \psi(y)) \leq (1 + \varepsilon)\alpha d(x, y), \forall x, y \in Y$

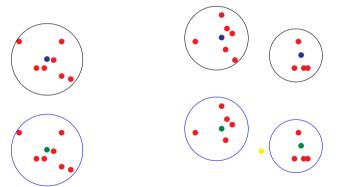
- Let $Y = X \cup C$, where C is a hypothetical solution. Then, for any vector $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.
- Guess $\psi(C)$ and then partition X into k blocks based on distances between $\psi(X)$ and $\psi(C)$. Cost of this guess is $n^{\mathcal{O}(k/\varepsilon^4)}$.

• Let $Y = X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

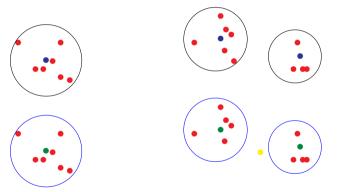
• Let $Y = X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.



• Let $Y = X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.



• Let $Y = X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.



The above partition gives us an instance of BCPC. A $(1 + \varepsilon)$ -approx solution C' to the instance of BCPC is a $(1 + \varepsilon)^2$ -approx solution for the instance of BCC.

- We formulate **BCPC** as Integer Programming formulation
- We solve it using randomized rounding method. This method is similar to the method used for PTAS of CLOSEST STRING.

- We formulate **BCPC** as Integer Programming formulation
- For every $j \in [m]$ and tuple $t \in R_j$, we have a variable $y_{j,t}$. Interpretation: if $y_{j,t} = 1$, then the row j of center vectors (solution) is same as tuple t.

- We formulate **BCPC** as Integer Programming formulation
- For every $j \in [m]$ and tuple $t \in R_j$, we have a variable $y_{j,t}$. Interpretation: if $y_{j,t} = 1$, then the row j of center vectors (solution) is same as tuple t.

$$\begin{split} \min d \\ \text{subject to} \\ &\sum_{t \in R_j} y_{j,t} = 1, \\ &\sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot y_{j,t} \leq d, \\ &y_{j,t} \in \{0, 1\}, \end{split} \quad \text{for all } j \in [m] \text{ and } \mathbf{x} \in X_i \\ \end{split}$$

Here, $\chi_i(\mathbf{x}[j], t) = 0$ if $\mathbf{x}[j] = t[i]$ and $\chi_i(\mathbf{x}[j], t) = 1$ if $\mathbf{x}[j] \neq t[i]$

- Solve the LP relaxation of the above IP, and obtain fractional solution $y_{j,t}^{\star}$ $(j \in [m] \text{ and } t \in R_j)$
- Now, for each $j \in [m]$, independently with probability $y_{j,t}^{\star}$, we set $y_{j,t}' = 1$ and $y_{j,t'}' = 0$, for any $t' \in R_j \setminus \{t\}$.
- Then $y'_{j,t}$ $(j \in [m]$ and $t \in R_j)$ form a solution to IP.
- Claim: $y'_{j,t}$ $(j \in [m]$ and $t \in R_j)$ is a $(1 + \varepsilon)$ approximate solution.

$$\begin{aligned} \boldsymbol{E}[\boldsymbol{d}(\mathbf{x}, \mathbf{c}_i)] &= E\left[\sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot \boldsymbol{y}_{j,t}'\right] \\ &= \sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot E[\boldsymbol{y}_{j,t}'] \\ &= \sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot \boldsymbol{y}_{j,t}^{\star} \leq d \end{aligned}$$

$$E[d(\mathbf{x}, \mathbf{c}_i)] = E\left[\sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot y'_{j,t}\right]$$
$$= \sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot E[y'_{j,t}]$$
$$= \sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot y^*_{j,t} \le d$$

Fix $\delta = \frac{\varepsilon}{c}$. By Chernoff bound,

 $\Pr[d(\mathbf{x}, \mathbf{c}_i) > d + \varepsilon OPT] \le \Pr[d(\mathbf{x}, \mathbf{c}_i) > d + \delta m] = \le e^{-\frac{1}{3}m\delta^2}.$

$$\begin{aligned} E[d(\mathbf{x}, \mathbf{c}_i)] &= E\left[\sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot y'_{j,t}\right] \\ &= \sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot E[y'_{j,t}] \\ &= \sum_{j \in [m]} \sum_{t \in R_j} \chi_i(\mathbf{x}[j], t) \cdot y^*_{j,t} \le d \end{aligned}$$

Fix $\delta = \frac{\varepsilon}{c}$. By Chernoff bound,

 $\Pr[d(\mathbf{x}, \mathbf{c}_i) > d + \varepsilon OPT] \le \Pr[d(\mathbf{x}, \mathbf{c}_i) > d + \delta m] = \le e^{-\frac{1}{3}m\delta^2}.$

Therefore, by the union bound,

Pr[There exist $i \in [k]$ and $\mathbf{x} \in X_i$ such that $d(\mathbf{x}, \mathbf{c}_i) > d + \varepsilon OPT \le n \cdot e^{-\frac{1}{3}m\delta^2} \le n^{-2}$ for $m = \Omega(\log n)$ Step 3: Solving **BCPC** (Case 1: $OPT \le m/c$)

- We fix some co-ordinates of center vectors and then the remaining will have large optimum.
- That is, there exist $Y_1 \subseteq X_1, \ldots, Y_k \subseteq X_k$ such that $|Y_i| = O(1/\varepsilon)$ and fixing identical co-ordinates in Y_i s will leads a good approximate solution.

• We gave PTAS for ℓ_1 -RANK-r APPROXIMATION OVER GF(2). Running time is

 $m^{\mathcal{O}(1)}n^{\mathcal{O}(2^{4r}\cdot\varepsilon^{-4})}$

• We gave PTAS for ℓ_1 -RANK-r APPROXIMATION OVER GF(2). Running time is

 $m^{\mathcal{O}(1)}n^{\mathcal{O}(2^{4r}\cdot\varepsilon^{-4})}$

• What about a EPTAS, i.e., with running time $f(\varepsilon)(mn)^{g(r)}$?

• We gave PTAS for ℓ_1 -RANK-r APPROXIMATION OVER GF(2). Running time is

 $m^{\mathcal{O}(1)}n^{\mathcal{O}(2^{4r}\cdot\varepsilon^{-4})}$

• What about a EPTAS, i.e., with running time $f(\varepsilon)(mn)^{g(r)}$? An adaptation of a result on CLOSEST STRING by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for r = 1 is not possible assuming FPT \neq W[1].

• We gave PTAS for ℓ_1 -RANK-r APPROXIMATION OVER GF(2). Running time is

 $m^{\mathcal{O}(1)}n^{\mathcal{O}(2^{4r}\cdot\varepsilon^{-4})}$

• What about a EPTAS, i.e., with running time $f(\varepsilon)(mn)^{g(r)}$? An adaptation of a result on CLOSEST STRING by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for r = 1 is not possible assuming FPT \neq W[1].

• We gave PTAS for ℓ_1 -RANK-r APPROXIMATION OVER GF(2). Running time is

 $m^{\mathcal{O}(1)}n^{\mathcal{O}(2^{4r}\cdot\varepsilon^{-4})}$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(mn)^{g(r)}$? An adaptation of a result on CLOSEST STRING by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for r = 1 is not possible assuming FPT \neq W[1].
- Also, existence of an algorithm with running time $f(\varepsilon)n^{o(1/\varepsilon)}$ even for r = 1 will contradict Exponential Time Hypothesis (ETH).

• We gave PTAS for ℓ_1 -RANK-r APPROXIMATION OVER GF(2). Running time is

 $m^{\mathcal{O}(1)}n^{\mathcal{O}(2^{4r}\cdot\varepsilon^{-4})}$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(mn)^{g(r)}$? An adaptation of a result on CLOSEST STRING by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for r = 1 is not possible assuming FPT \neq W[1].
- Also, existence of an algorithm with running time $f(\varepsilon)n^{o(1/\varepsilon)}$ even for r = 1 will contradict Exponential Time Hypothesis (ETH).
- But, algorithm with running $f(r,\varepsilon)(mn)^{poly(1/\varepsilon)}$ is open.

Thank You.