Low-rank binary matrix approximation in column-sum norm

Fahad Panolan

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India

Joint work with Fedor V. Fomin, Petr Golovach, and Kirill Simonov.

Introduction

- Low-rank matrix approximation is the method of compressing a matrix by reducing its dimension.
- It is the basic component in data analysis including Principal Component Analysis (PCA) and has applications in machine learning, scientific computing, etc.

Low Rank Matrix Approximation

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $\|\mathbf{A}-\mathbf{B}\|_{\nu}$.

Low Rank Matrix Approximation

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $\|\mathbf{A}-\mathbf{B}\|_{\nu}$.

- Frobenius norm, $\|\mathbf{A}-\mathbf{B}\|_{F}^{2}=\sum_{i, j}\left(a_{i, j}-b_{i, j}\right)^{2}$.
- Spectral norm, $\|\mathbf{A}-\mathbf{B}\|_{2}=\sup _{x \neq 0} \frac{\|(\mathbf{A}-\mathbf{B}) \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$.

Low Rank Matrix Approximation

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $\|\mathbf{A}-\mathbf{B}\|_{\nu}$.

- Frobenius norm, $\|\mathbf{A}-\mathbf{B}\|_{F}^{2}=\sum_{i, j}\left(a_{i, j}-b_{i, j}\right)^{2}$.
- Spectral norm, $\|\mathbf{A}-\mathbf{B}\|_{2}=\sup _{x \neq 0} \frac{\|(\mathbf{A}-\mathbf{B}) \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$.

Both the problems are solvable in polynomial time using Singular Value Decomposition.

Low Rank Matrix Approximation

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a positive integer r, objective is a to find a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank at most r minimizing some matrix norm $\|\mathbf{A}-\mathbf{B}\|_{\nu}$.

- Frobenius norm, $\|\mathbf{A}-\mathbf{B}\|_{F}^{2}=\sum_{i, j}\left(a_{i, j}-b_{i, j}\right)^{2}$.
- Spectral norm, $\|\mathbf{A}-\mathbf{B}\|_{2}=\sup _{x \neq 0} \frac{\|(\mathbf{A}-\mathbf{B}) \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$.

Both the problems are solvable in polynomial time using Singular Value Decomposition.

We consider Low Rank Matrix Approximation of binary matrices over GF(2).

Low Rank Matrix Approximation Over GF (2)

\[

\]

Low Rank Matrix Approximation Over GF (2)

\[

\]

Low Rank Matrix Approximation Over GF (2)

$$
\begin{gathered}
A \\
{\left[\begin{array}{ccccc}
1 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 1 & 1 & \cdots & 1
\end{array}\right]_{m \times n} \approx\left[\begin{array}{ccc}
1 & \cdots & 0 \\
0 & \cdots & 1 \\
1 & \cdots & 0 \\
\vdots & \vdots & \vdots \\
0 & \cdots & 1
\end{array}\right]_{m \times r}\left[\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 1 & 0 & \cdots & 1
\end{array}\right]_{r \times n}} \\
\min _{\mathbf{B}}\|\mathbf{A}-\mathbf{B}\|_{\nu}
\end{gathered}
$$

- Entry-wise ℓ_{0}-norm $\left(\sum_{i} \sum_{j}\left|a_{i, j}-b_{i, j}\right|\right)$: Low GF2 Rank Approximation

Low Rank Matrix Approximation Over GF(2)

$$
\begin{gathered}
A \\
{\left[\begin{array}{ccccc}
1 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 1 & 1 & \cdots & 1
\end{array}\right]_{m \times n} \approx\left[\begin{array}{ccc}
1 & \cdots & 0 \\
0 & \cdots & 1 \\
1 & \cdots & 0 \\
\vdots & \vdots & \vdots \\
0 & \cdots & 1
\end{array}\right]_{m \times r}\left[\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 1 & 0 & \cdots & 1
\end{array}\right]_{r \times n}} \\
\min _{\mathbf{B}}\|\mathbf{A}-\mathbf{B}\|_{\nu}
\end{gathered}
$$

- Entry-wise ℓ_{0}-norm $\left(\sum_{i} \sum_{j}\left|a_{i, j}-b_{i, j}\right|\right)$: Low GF2 Rank Approximation
- Column-sum norm $\left(\|\mathbf{A}-\mathbf{B}\|_{1}=\max _{j} \sum_{i}\left|a_{i, j}-b_{i, j}\right|\right)$

$$
\ell_{1} \text {-Rank- } r \text { Approximation over GF (2) }
$$

Known Results: Low GF2 Rank Approximation

$$
\text { Minimize entry-wise } \ell_{0} \text {-norm, } \sum_{i} \sum_{j}\left|a_{i, j}-b_{i, j}\right|
$$

- NP-hard
[Gillis and Vavasis (2015)], [Dan, Hansen, Jiang, Wang, and Zhou (2015)]
- A PTAS with running time $n^{\mathcal{O}\left(\frac{2^{2 r}}{\epsilon^{2}} \log \frac{1}{\epsilon}\right)}$.

Known Results: Low GF2 Rank Approximation

$$
\text { Minimize entry-wise } \ell_{0} \text {-norm, } \sum_{i} \sum_{j}\left|a_{i, j}-b_{i, j}\right|
$$

- NP-hard
[Gillis and Vavasis (2015)], [Dan, Hansen, Jiang, Wang, and Zhou (2015)]
- A PTAS with running time $n^{\mathcal{O}\left(\frac{2^{2 r}}{\epsilon^{2}} \log \frac{1}{\epsilon}\right)}$.
- A randomized linear time approximation scheme (Running time $f(k, \epsilon) n m$).
[Fomin, Golovach, Lokshtanov, Panolan, Saurabh (2019)]
[Ban, Bhattiprolu, Bringmann, Kolev, Woodruff (2019)]

Our Result: ℓ_{1}-Rank- r Approximation over GF (2)

$$
\text { Minimize the column-sum norm, } \max _{j} \sum_{j}\left|a_{i, j}-b_{i, j}\right|
$$

A simple reduction from Closest String shows that the problem is NP-hard.

Main result

For every $\varepsilon \in(0,1)$, there is a randomized $(1+\varepsilon)$-approximation algorithm of running time $m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}$.

Proof Overview

The proof has 3 steps.

Step 1:

Reduce the problem to Binary Constrained k-Center (BCC)

Step 2:

Using dimension reduction technique reduce BCC to Binary Constrained Partition Center (BCPC)

Step 3:

Solve BCPC using Integer Linear Programming

Step 1

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{1} & \cdots & a_{n} \\
A & B_{i}
\end{array}\right) \approx \sum_{i=1}^{r}\left(\begin{array}{ccc}
b_{1}^{i} & \cdots & b_{n}^{i} \\
& B
\end{array}\right)=\left(\begin{array}{lll}
b_{1} & \cdots & b_{n} \\
&
\end{array}\right)
\end{gathered}
$$

Rank of $B_{i}=1$ (i.e., all non-zero columns of B_{i} are identical).

Step 1

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{1} & \cdots & a_{n} \\
A
\end{array}\right) \approx \sum_{i=1}^{r}\left(\begin{array}{ccc}
b_{1}^{i} & \cdots & b_{n}^{i} \\
& B_{i}
\end{array}\right)=\left(\begin{array}{lll}
b_{1} & \cdots & b_{n} \\
& B
\end{array}\right)
\end{gathered}
$$

Rank of $B_{i}=1$ (i.e., all non-zero columns of B_{i} are identical).
No. of distinct columns in B is at most 2^{r}.

Step 1

$$
\begin{array}{r}
\left(\begin{array}{ccc}
a_{1} & \cdots & a_{n}
\end{array}\right) \approx \sum_{i=1}^{r}\left(\begin{array}{lll}
b_{1}^{i} & \cdots & b_{n}^{i} \\
& B_{i}
\end{array}\right)=\left(\begin{array}{lll}
b_{1} & \cdots & b_{n} \\
& B
\end{array}\right)
\end{array}
$$

Rank of $B_{i}=1$ (i.e., all non-zero columns of B_{i} are identical).
No. of distinct columns in B is at most 2^{r}.

- Minimize the maximum Hamming distance from red points to closest blue point.
- There is a relation between cluster centers.

Binary Constrained k-Center

- $R_{1}, \ldots, R_{m}-k$-ary relations with elements from $\{0,1\}$.
- $C=\left\{c_{1}, \ldots, c_{k}\right\} \subseteq\{0,1\}^{m}$ satisfies $\mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$ if:

$$
\left(c_{1}[i], \ldots, c_{k}[i]\right) \in R_{i} \text { for all } i \in[m] .
$$

Binary Constrained k-Center

- $R_{1}, \ldots, R_{m}-k$-ary relations with elements from $\{0,1\}$.
- $C=\left\{c_{1}, \ldots, c_{k}\right\} \subseteq\{0,1\}^{m}$ satisfies $\mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$ if :

$$
\left(c_{1}[i], \ldots, c_{k}[i]\right) \in R_{i} \text { for all } i \in[m] .
$$

Example:

- $m=2, k=3$
- $R_{1}=\{(0,0,1),(1,0,0)\}$, and $R_{2}=\{(1,1,1),(1,0,1),(0,0,1)\}$

Binary Constrained k-Center

- $R_{1}, \ldots, R_{m}-k$-ary relations with elements from $\{0,1\}$.
- $C=\left\{c_{1}, \ldots, c_{k}\right\} \subseteq\{0,1\}^{m}$ satisfies $\mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$ if :

$$
\left(c_{1}[i], \ldots, c_{k}[i]\right) \in R_{i} \text { for all } i \in[m]
$$

Example:

- $m=2, k=3$
- $R_{1}=\{(0,0,1),(1,0,0)\}$, and $R_{2}=\{(1,1,1),(1,0,1),(0,0,1)\}$

$$
c_{1}=\binom{0}{1}, c_{2}=\binom{0}{0}, c_{3}=\binom{1}{1} \quad \text { satisfies } \mathcal{R}=\left\{R_{1}, R_{2}\right\}
$$

Binary Constrained k-Center

- Input: $X \subseteq\{0,1\}^{m}, k \in \mathbb{N}$, and $\mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$.
- Output: Among all the sets $C=\left\{c_{1}, \ldots, c_{k}\right\}$ satisfying \mathcal{R}, find C

$$
\operatorname{minimizing} \max _{x \in X} d(x, C)
$$

Reduction to Binary Constrained k-Center (BCC)

$$
A=\left(\begin{array}{ccc}
& & \\
a_{1} & \cdots & a_{n}
\end{array}\right) \text { and } r \in \mathbb{N}
$$

- Partition columns of A into 2^{r} parts
- Find centers for each part s.t. centers are linear span of r vectors minimizing maximum distance distance of a column to the closest center.

Reduction to Binary Constrained k-Center (BCC)

$$
A=\left(\begin{array}{lll}
& & \\
a_{1} & \cdots & a_{n}
\end{array}\right) \text { and } r \in \mathbb{N}
$$

- Partition columns of A into 2^{r} parts
- Find centers for each part s.t. centers are linear span of r vectors minimizing maximum distance distance of a column to the closest center.

Reduction for $\mathbf{r}=\mathbf{2}$

- X is the the set of columns of A and for all $i \in[m], R_{i}=\{(0,0,0,0)$,

$$
\begin{aligned}
& (0,0,1,1) \\
& (0,1,0,1) \\
& (0,1,1,0)\}
\end{aligned}
$$

Step 2: BCC to BCPC

- Input : $X \subseteq\{0,1\}^{m}, k \in \mathbb{N}, \mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$, and a partition $X_{1} \uplus \ldots \uplus X_{k}$ of X.
- Output: Among all the sets $C=\left\{c_{1}, \ldots, c_{k}\right\}$ satisfying \mathcal{R}, find C minimizing

$$
\max _{i=1}^{k} \max _{x \in X_{i}} d\left(x, c_{i}\right)=\operatorname{cost}\left(X_{1} \uplus \ldots \uplus X_{k}, C\right) .
$$

Step 2: Proof sketch

- Dimension reduction [Ostrovsky and Rabani, 2002]. For any
$Y \subseteq\{0,1\}^{m}$ of size $n+k$, and $\varepsilon>0$, there is a linear map ψ from Y to $\{0,1\}^{\mathcal{O}\left(\frac{1}{\varepsilon^{4}} \log n\right)}$ such that the Hamming distances between any two vectors in $\psi(Y)$ are relatively preserved w.h.p.

There exits α s.t. $(1-\varepsilon) \alpha d(x, y) \leq d(\psi(x), \psi(y)) \leq(1+\varepsilon) \alpha d(x, y), \forall x, y \in Y$

Step 2: Proof sketch

- Dimension reduction [Ostrovsky and Rabani, 2002]. For any $Y \subseteq\{0,1\}^{m}$ of size $n+k$, and $\varepsilon>0$, there is a linear map ψ from Y to $\{0,1\}^{\mathcal{O}\left(\frac{1}{\varepsilon^{4}} \log n\right)}$ such that the Hamming distances between any two vectors in $\psi(Y)$ are relatively preserved w.h.p.

There exits α s.t. $(1-\varepsilon) \alpha d(x, y) \leq d(\psi(x), \psi(y)) \leq(1+\varepsilon) \alpha d(x, y), \forall x, y \in Y$

- Let $Y=X \cup C$, where C is a hypothetical solution. Then, for any vector $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

Step 2: Proof sketch

- Dimension reduction [Ostrovsky and Rabani, 2002]. For any $Y \subseteq\{0,1\}^{m}$ of size $n+k$, and $\varepsilon>0$, there is a linear map ψ from Y to $\{0,1\}^{\mathcal{O}\left(\frac{1}{\varepsilon^{4}} \log n\right)}$ such that the Hamming distances between any two vectors in $\psi(Y)$ are relatively preserved w.h.p.

There exits α s.t. $(1-\varepsilon) \alpha d(x, y) \leq d(\psi(x), \psi(y)) \leq(1+\varepsilon) \alpha d(x, y), \forall x, y \in Y$

- Let $Y=X \cup C$, where C is a hypothetical solution. Then, for any vector $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.
- Guess $\psi(C)$ and then partition X into k blocks based on distances between $\psi(X)$ and $\psi(C)$. Cost of this guess is $n^{\mathcal{O}\left(k / \varepsilon^{4}\right)}$.

Step 2: Proof sketch

- Let $Y=X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

Step 2: Proof sketch

- Let $Y=X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

Step 2: Proof sketch

- Let $Y=X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

Step 2: Proof sketch

- Let $Y=X \cup C$, where C is a hypothetical solution. Then, for any $x \in X$ and $c \in C$, the Hamming distance $d(\psi(x), \psi(c))$ is relatively preserved w.h.p.

The above partition gives us an instance of BCPC. A $(1+\varepsilon)$-approx solution C^{\prime} to the instance of BCPC is a $(1+\varepsilon)^{2}$-approx solution for the instance of BCC.

Step 3: Solving BCPC

- We formulate BCPC as Integer Programming formulation
- We solve it using randomized rounding method. This method is similar to the method used for PTAS of Closest String.

Step 3: Solving BCPC (Case 1: OPT $>m / c$ for a constant c)

- We formulate BCPC as Integer Programming formulation
- For every $j \in[m]$ and tuple $t \in R_{j}$, we have a variable $y_{j, t}$. Interpretation: if $y_{j, t}=1$, then the row j of center vectors (solution) is same as tuple t.

Step 3: Solving BCPC (Case 1: OPT $>m / c$ for a constant c)

- We formulate BCPC as Integer Programming formulation
- For every $j \in[m]$ and tuple $t \in R_{j}$, we have a variable $y_{j, t}$. Interpretation: if $y_{j, t}=1$, then the row j of center vectors (solution) is same as tuple t.

$$
\begin{array}{lr}
\min d \\
\text { subject to } & \\
\sum_{t \in R_{j}} y_{j, t}=1, & \text { for all } j \in[m] ; \\
\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t} \leq d, & \text { for all } i \in[k] \text { and } \mathbf{x} \in X_{i} \\
y_{j, t} \in\{0,1\}, & \text { for all } j \in[m] \text { and } t \in R_{j} .
\end{array}
$$

Here, $\chi_{i}(\mathbf{x}[j], t)=0$ if $\mathbf{x}[j]=t[i]$ and $\chi_{i}(\mathbf{x}[j], t)=1$ if $\mathbf{x}[j] \neq t[i]$

Step 3: Solving BCPC (Case 1: OPT $>m / c$ for a constant c)

- Solve the LP relaxation of the above IP, and obtain fractional solution $y_{j, t}^{\star}$ $\left(j \in[m]\right.$ and $\left.t \in R_{j}\right)$
- Now, for each $j \in[m]$, independently with probability $y_{j, t}^{\star}$, we set $y_{j, t}^{\prime}=1$ and $y_{j, t^{\prime}}^{\prime}=0$, for any $t^{\prime} \in R_{j} \backslash\{t\}$.
- Then $y_{j, t}^{\prime}\left(j \in[m]\right.$ and $\left.t \in R_{j}\right)$ form a solution to IP.
- Claim: $y_{j, t}^{\prime}\left(j \in[m]\right.$ and $\left.t \in R_{j}\right)$ is a $(1+\varepsilon)$ - approximate solution.

Step 3: Solving BCPC (Case 1: $O P T>m / c$ for a constant c)

$$
\begin{aligned}
E\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)\right] & =E\left[\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t}^{\prime}\right] \\
& =\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot E\left[y_{j, t}^{\prime}\right] \\
& =\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t}^{\star} \leq d
\end{aligned}
$$

Step 3: Solving BCPC (Case 1: OPT $>m / c$ for a constant c)

$$
\begin{aligned}
E\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)\right] & =E\left[\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t}^{\prime}\right] \\
& =\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot E\left[y_{j, t}^{\prime}\right] \\
& =\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t}^{\star} \leq d
\end{aligned}
$$

Fix $\delta=\frac{\varepsilon}{c}$. By Chernoff bound,

$$
\operatorname{Pr}\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)>d+\varepsilon O P T\right] \leq \operatorname{Pr}\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)>d+\delta m\right]=\leq e^{-\frac{1}{3} m \delta^{2}}
$$

Step 3: Solving BCPC (Case 1: OPT $>m / c$ for a constant c)

$$
\begin{aligned}
E\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)\right] & =E\left[\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t}^{\prime}\right] \\
& =\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot E\left[y_{j, t}^{\prime}\right] \\
& =\sum_{j \in[m]} \sum_{t \in R_{j}} \chi_{i}(\mathbf{x}[j], t) \cdot y_{j, t}^{\star} \leq d
\end{aligned}
$$

Fix $\delta=\frac{\varepsilon}{c}$. By Chernoff bound,

$$
\operatorname{Pr}\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)>d+\varepsilon O P T\right] \leq \operatorname{Pr}\left[d\left(\mathbf{x}, \mathbf{c}_{i}\right)>d+\delta m\right]=\leq e^{-\frac{1}{3} m \delta^{2}}
$$

Therefore, by the union bound,
$\operatorname{Pr}\left[\right.$ There exist $i \in[k]$ and $\mathbf{x} \in X_{i}$ such that $\left.d\left(\mathbf{x}, \mathbf{c}_{i}\right)>d+\varepsilon O P T\right] \leq n \cdot e^{-\frac{1}{3} m \delta^{2}} \leq n^{-2}$ for $m=\Omega(\log n)$

Step 3: Solving BCPC (Case 1: $O P T \leq m / c$)

- We fix some co-ordinates of center vectors and then the remaining will have large optimum.
- That is, there exist $Y_{1} \subseteq X_{1}, \ldots, Y_{k} \subseteq X_{k}$ such that $\left|Y_{i}\right|=O(1 / \varepsilon)$ and fixing identical co-ordinates in $Y_{i} \mathrm{~s}$ will leads a good approximate solution.

Conclusion

- We gave PTAS for ℓ_{1}-Rank- r Approximation over GF (2). Running time is

$$
m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}
$$

Conclusion

- We gave PTAS for ℓ_{1}-Rank- r Approximation over GF (2). Running time is

$$
m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}
$$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(m n)^{g(r)}$?

Conclusion

- We gave PTAS for ℓ_{1}-Rank-r Approximation over GF (2). Running time is

$$
m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}
$$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(m n)^{g(r)}$? An adaptation of a result on Closest String by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for $r=1$ is not possible assuming $\mathrm{FPT} \neq \mathrm{W}[1]$.

Conclusion

- We gave PTAS for ℓ_{1}-Rank-r Approximation over GF (2). Running time is

$$
m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}
$$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(m n)^{g(r)}$? An adaptation of a result on Closest String by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for $r=1$ is not possible assuming $\mathrm{FPT} \neq \mathrm{W}[1]$.

Conclusion

- We gave PTAS for ℓ_{1}-Rank-r Approximation over GF (2). Running time is

$$
m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}
$$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(m n)^{g(r)}$? An adaptation of a result on Closest String by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for $r=1$ is not possible assuming $\mathrm{FPT} \neq \mathrm{W}[1]$.
- Also, existence of an algorithm with running time $f(\varepsilon) n^{o(1 / \varepsilon)}$ even for $r=1$ will contradict Exponential Time Hypothesis (ETH).

Conclusion

- We gave PTAS for ℓ_{1}-Rank-r Approximation over GF(2). Running time is

$$
m^{\mathcal{O}(1)} n^{\mathcal{O}\left(2^{4 r} \cdot \varepsilon^{-4}\right)}
$$

- What about a EPTAS, i.e., with running time $f(\varepsilon)(m n)^{g(r)}$? An adaptation of a result on Closest String by Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for $r=1$ is not possible assuming $\mathrm{FPT} \neq \mathrm{W}[1]$.
- Also, existence of an algorithm with running time $f(\varepsilon) n^{o(1 / \varepsilon)}$ even for $r=1$ will contradict Exponential Time Hypothesis (ETH).
- But, algorithm with running $f(r, \varepsilon)(m n)^{p o l y(1 / \varepsilon)}$ is open.

Thank You.

